mlock.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/mempolicy.h>
  14. #include <linux/syscalls.h>
  15. #include <linux/sched.h>
  16. #include <linux/module.h>
  17. #include <linux/rmap.h>
  18. #include <linux/mmzone.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. int can_do_mlock(void)
  22. {
  23. if (capable(CAP_IPC_LOCK))
  24. return 1;
  25. if (rlimit(RLIMIT_MEMLOCK) != 0)
  26. return 1;
  27. return 0;
  28. }
  29. EXPORT_SYMBOL(can_do_mlock);
  30. /*
  31. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  32. * in vmscan and, possibly, the fault path; and to support semi-accurate
  33. * statistics.
  34. *
  35. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  36. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  37. * The unevictable list is an LRU sibling list to the [in]active lists.
  38. * PageUnevictable is set to indicate the unevictable state.
  39. *
  40. * When lazy mlocking via vmscan, it is important to ensure that the
  41. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  42. * may have mlocked a page that is being munlocked. So lazy mlock must take
  43. * the mmap_sem for read, and verify that the vma really is locked
  44. * (see mm/rmap.c).
  45. */
  46. /*
  47. * LRU accounting for clear_page_mlock()
  48. */
  49. void __clear_page_mlock(struct page *page)
  50. {
  51. VM_BUG_ON(!PageLocked(page));
  52. if (!page->mapping) { /* truncated ? */
  53. return;
  54. }
  55. dec_zone_page_state(page, NR_MLOCK);
  56. count_vm_event(UNEVICTABLE_PGCLEARED);
  57. if (!isolate_lru_page(page)) {
  58. putback_lru_page(page);
  59. } else {
  60. /*
  61. * We lost the race. the page already moved to evictable list.
  62. */
  63. if (PageUnevictable(page))
  64. count_vm_event(UNEVICTABLE_PGSTRANDED);
  65. }
  66. }
  67. /*
  68. * Mark page as mlocked if not already.
  69. * If page on LRU, isolate and putback to move to unevictable list.
  70. */
  71. void mlock_vma_page(struct page *page)
  72. {
  73. BUG_ON(!PageLocked(page));
  74. if (!TestSetPageMlocked(page)) {
  75. inc_zone_page_state(page, NR_MLOCK);
  76. count_vm_event(UNEVICTABLE_PGMLOCKED);
  77. if (!isolate_lru_page(page))
  78. putback_lru_page(page);
  79. }
  80. }
  81. /**
  82. * munlock_vma_page - munlock a vma page
  83. * @page - page to be unlocked
  84. *
  85. * called from munlock()/munmap() path with page supposedly on the LRU.
  86. * When we munlock a page, because the vma where we found the page is being
  87. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  88. * page locked so that we can leave it on the unevictable lru list and not
  89. * bother vmscan with it. However, to walk the page's rmap list in
  90. * try_to_munlock() we must isolate the page from the LRU. If some other
  91. * task has removed the page from the LRU, we won't be able to do that.
  92. * So we clear the PageMlocked as we might not get another chance. If we
  93. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  94. * [page_referenced()/try_to_unmap()] to deal with.
  95. */
  96. void munlock_vma_page(struct page *page)
  97. {
  98. BUG_ON(!PageLocked(page));
  99. if (TestClearPageMlocked(page)) {
  100. dec_zone_page_state(page, NR_MLOCK);
  101. if (!isolate_lru_page(page)) {
  102. int ret = try_to_munlock(page);
  103. /*
  104. * did try_to_unlock() succeed or punt?
  105. */
  106. if (ret != SWAP_MLOCK)
  107. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  108. putback_lru_page(page);
  109. } else {
  110. /*
  111. * Some other task has removed the page from the LRU.
  112. * putback_lru_page() will take care of removing the
  113. * page from the unevictable list, if necessary.
  114. * vmscan [page_referenced()] will move the page back
  115. * to the unevictable list if some other vma has it
  116. * mlocked.
  117. */
  118. if (PageUnevictable(page))
  119. count_vm_event(UNEVICTABLE_PGSTRANDED);
  120. else
  121. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  122. }
  123. }
  124. }
  125. /**
  126. * __mlock_vma_pages_range() - mlock a range of pages in the vma.
  127. * @vma: target vma
  128. * @start: start address
  129. * @end: end address
  130. *
  131. * This takes care of making the pages present too.
  132. *
  133. * return 0 on success, negative error code on error.
  134. *
  135. * vma->vm_mm->mmap_sem must be held for at least read.
  136. */
  137. static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  138. unsigned long start, unsigned long end,
  139. int *nonblocking)
  140. {
  141. struct mm_struct *mm = vma->vm_mm;
  142. unsigned long addr = start;
  143. int nr_pages = (end - start) / PAGE_SIZE;
  144. int gup_flags;
  145. VM_BUG_ON(start & ~PAGE_MASK);
  146. VM_BUG_ON(end & ~PAGE_MASK);
  147. VM_BUG_ON(start < vma->vm_start);
  148. VM_BUG_ON(end > vma->vm_end);
  149. VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  150. gup_flags = FOLL_TOUCH;
  151. /*
  152. * We want to touch writable mappings with a write fault in order
  153. * to break COW, except for shared mappings because these don't COW
  154. * and we would not want to dirty them for nothing.
  155. */
  156. if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
  157. gup_flags |= FOLL_WRITE;
  158. /*
  159. * We want mlock to succeed for regions that have any permissions
  160. * other than PROT_NONE.
  161. */
  162. if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
  163. gup_flags |= FOLL_FORCE;
  164. if (vma->vm_flags & VM_LOCKED)
  165. gup_flags |= FOLL_MLOCK;
  166. return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
  167. NULL, NULL, nonblocking);
  168. }
  169. /*
  170. * convert get_user_pages() return value to posix mlock() error
  171. */
  172. static int __mlock_posix_error_return(long retval)
  173. {
  174. if (retval == -EFAULT)
  175. retval = -ENOMEM;
  176. else if (retval == -ENOMEM)
  177. retval = -EAGAIN;
  178. return retval;
  179. }
  180. /**
  181. * mlock_vma_pages_range() - mlock pages in specified vma range.
  182. * @vma - the vma containing the specfied address range
  183. * @start - starting address in @vma to mlock
  184. * @end - end address [+1] in @vma to mlock
  185. *
  186. * For mmap()/mremap()/expansion of mlocked vma.
  187. *
  188. * return 0 on success for "normal" vmas.
  189. *
  190. * return number of pages [> 0] to be removed from locked_vm on success
  191. * of "special" vmas.
  192. */
  193. long mlock_vma_pages_range(struct vm_area_struct *vma,
  194. unsigned long start, unsigned long end)
  195. {
  196. int nr_pages = (end - start) / PAGE_SIZE;
  197. BUG_ON(!(vma->vm_flags & VM_LOCKED));
  198. /*
  199. * filter unlockable vmas
  200. */
  201. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  202. goto no_mlock;
  203. if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
  204. is_vm_hugetlb_page(vma) ||
  205. vma == get_gate_vma(current->mm))) {
  206. __mlock_vma_pages_range(vma, start, end, NULL);
  207. /* Hide errors from mmap() and other callers */
  208. return 0;
  209. }
  210. /*
  211. * User mapped kernel pages or huge pages:
  212. * make these pages present to populate the ptes, but
  213. * fall thru' to reset VM_LOCKED--no need to unlock, and
  214. * return nr_pages so these don't get counted against task's
  215. * locked limit. huge pages are already counted against
  216. * locked vm limit.
  217. */
  218. make_pages_present(start, end);
  219. no_mlock:
  220. vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
  221. return nr_pages; /* error or pages NOT mlocked */
  222. }
  223. /*
  224. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  225. * @vma - vma containing range to be munlock()ed.
  226. * @start - start address in @vma of the range
  227. * @end - end of range in @vma.
  228. *
  229. * For mremap(), munmap() and exit().
  230. *
  231. * Called with @vma VM_LOCKED.
  232. *
  233. * Returns with VM_LOCKED cleared. Callers must be prepared to
  234. * deal with this.
  235. *
  236. * We don't save and restore VM_LOCKED here because pages are
  237. * still on lru. In unmap path, pages might be scanned by reclaim
  238. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  239. * free them. This will result in freeing mlocked pages.
  240. */
  241. void munlock_vma_pages_range(struct vm_area_struct *vma,
  242. unsigned long start, unsigned long end)
  243. {
  244. unsigned long addr;
  245. lru_add_drain();
  246. vma->vm_flags &= ~VM_LOCKED;
  247. for (addr = start; addr < end; addr += PAGE_SIZE) {
  248. struct page *page;
  249. /*
  250. * Although FOLL_DUMP is intended for get_dump_page(),
  251. * it just so happens that its special treatment of the
  252. * ZERO_PAGE (returning an error instead of doing get_page)
  253. * suits munlock very well (and if somehow an abnormal page
  254. * has sneaked into the range, we won't oops here: great).
  255. */
  256. page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
  257. if (page && !IS_ERR(page)) {
  258. lock_page(page);
  259. /*
  260. * Like in __mlock_vma_pages_range(),
  261. * because we lock page here and migration is
  262. * blocked by the elevated reference, we need
  263. * only check for file-cache page truncation.
  264. */
  265. if (page->mapping)
  266. munlock_vma_page(page);
  267. unlock_page(page);
  268. put_page(page);
  269. }
  270. cond_resched();
  271. }
  272. }
  273. /*
  274. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  275. *
  276. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  277. * munlock is a no-op. However, for some special vmas, we go ahead and
  278. * populate the ptes via make_pages_present().
  279. *
  280. * For vmas that pass the filters, merge/split as appropriate.
  281. */
  282. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  283. unsigned long start, unsigned long end, unsigned int newflags)
  284. {
  285. struct mm_struct *mm = vma->vm_mm;
  286. pgoff_t pgoff;
  287. int nr_pages;
  288. int ret = 0;
  289. int lock = newflags & VM_LOCKED;
  290. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  291. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  292. goto out; /* don't set VM_LOCKED, don't count */
  293. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  294. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  295. vma->vm_file, pgoff, vma_policy(vma));
  296. if (*prev) {
  297. vma = *prev;
  298. goto success;
  299. }
  300. if (start != vma->vm_start) {
  301. ret = split_vma(mm, vma, start, 1);
  302. if (ret)
  303. goto out;
  304. }
  305. if (end != vma->vm_end) {
  306. ret = split_vma(mm, vma, end, 0);
  307. if (ret)
  308. goto out;
  309. }
  310. success:
  311. /*
  312. * Keep track of amount of locked VM.
  313. */
  314. nr_pages = (end - start) >> PAGE_SHIFT;
  315. if (!lock)
  316. nr_pages = -nr_pages;
  317. mm->locked_vm += nr_pages;
  318. /*
  319. * vm_flags is protected by the mmap_sem held in write mode.
  320. * It's okay if try_to_unmap_one unmaps a page just after we
  321. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  322. */
  323. if (lock)
  324. vma->vm_flags = newflags;
  325. else
  326. munlock_vma_pages_range(vma, start, end);
  327. out:
  328. *prev = vma;
  329. return ret;
  330. }
  331. static int do_mlock(unsigned long start, size_t len, int on)
  332. {
  333. unsigned long nstart, end, tmp;
  334. struct vm_area_struct * vma, * prev;
  335. int error;
  336. VM_BUG_ON(start & ~PAGE_MASK);
  337. VM_BUG_ON(len != PAGE_ALIGN(len));
  338. end = start + len;
  339. if (end < start)
  340. return -EINVAL;
  341. if (end == start)
  342. return 0;
  343. vma = find_vma_prev(current->mm, start, &prev);
  344. if (!vma || vma->vm_start > start)
  345. return -ENOMEM;
  346. if (start > vma->vm_start)
  347. prev = vma;
  348. for (nstart = start ; ; ) {
  349. unsigned int newflags;
  350. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  351. newflags = vma->vm_flags | VM_LOCKED;
  352. if (!on)
  353. newflags &= ~VM_LOCKED;
  354. tmp = vma->vm_end;
  355. if (tmp > end)
  356. tmp = end;
  357. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  358. if (error)
  359. break;
  360. nstart = tmp;
  361. if (nstart < prev->vm_end)
  362. nstart = prev->vm_end;
  363. if (nstart >= end)
  364. break;
  365. vma = prev->vm_next;
  366. if (!vma || vma->vm_start != nstart) {
  367. error = -ENOMEM;
  368. break;
  369. }
  370. }
  371. return error;
  372. }
  373. static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
  374. {
  375. struct mm_struct *mm = current->mm;
  376. unsigned long end, nstart, nend;
  377. struct vm_area_struct *vma = NULL;
  378. int locked = 0;
  379. int ret = 0;
  380. VM_BUG_ON(start & ~PAGE_MASK);
  381. VM_BUG_ON(len != PAGE_ALIGN(len));
  382. end = start + len;
  383. for (nstart = start; nstart < end; nstart = nend) {
  384. /*
  385. * We want to fault in pages for [nstart; end) address range.
  386. * Find first corresponding VMA.
  387. */
  388. if (!locked) {
  389. locked = 1;
  390. down_read(&mm->mmap_sem);
  391. vma = find_vma(mm, nstart);
  392. } else if (nstart >= vma->vm_end)
  393. vma = vma->vm_next;
  394. if (!vma || vma->vm_start >= end)
  395. break;
  396. /*
  397. * Set [nstart; nend) to intersection of desired address
  398. * range with the first VMA. Also, skip undesirable VMA types.
  399. */
  400. nend = min(end, vma->vm_end);
  401. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  402. continue;
  403. if (nstart < vma->vm_start)
  404. nstart = vma->vm_start;
  405. /*
  406. * Now fault in a range of pages. __mlock_vma_pages_range()
  407. * double checks the vma flags, so that it won't mlock pages
  408. * if the vma was already munlocked.
  409. */
  410. ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
  411. if (ret < 0) {
  412. if (ignore_errors) {
  413. ret = 0;
  414. continue; /* continue at next VMA */
  415. }
  416. ret = __mlock_posix_error_return(ret);
  417. break;
  418. }
  419. nend = nstart + ret * PAGE_SIZE;
  420. ret = 0;
  421. }
  422. if (locked)
  423. up_read(&mm->mmap_sem);
  424. return ret; /* 0 or negative error code */
  425. }
  426. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  427. {
  428. unsigned long locked;
  429. unsigned long lock_limit;
  430. int error = -ENOMEM;
  431. if (!can_do_mlock())
  432. return -EPERM;
  433. lru_add_drain_all(); /* flush pagevec */
  434. down_write(&current->mm->mmap_sem);
  435. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  436. start &= PAGE_MASK;
  437. locked = len >> PAGE_SHIFT;
  438. locked += current->mm->locked_vm;
  439. lock_limit = rlimit(RLIMIT_MEMLOCK);
  440. lock_limit >>= PAGE_SHIFT;
  441. /* check against resource limits */
  442. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  443. error = do_mlock(start, len, 1);
  444. up_write(&current->mm->mmap_sem);
  445. if (!error)
  446. error = do_mlock_pages(start, len, 0);
  447. return error;
  448. }
  449. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  450. {
  451. int ret;
  452. down_write(&current->mm->mmap_sem);
  453. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  454. start &= PAGE_MASK;
  455. ret = do_mlock(start, len, 0);
  456. up_write(&current->mm->mmap_sem);
  457. return ret;
  458. }
  459. static int do_mlockall(int flags)
  460. {
  461. struct vm_area_struct * vma, * prev = NULL;
  462. unsigned int def_flags = 0;
  463. if (flags & MCL_FUTURE)
  464. def_flags = VM_LOCKED;
  465. current->mm->def_flags = def_flags;
  466. if (flags == MCL_FUTURE)
  467. goto out;
  468. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  469. unsigned int newflags;
  470. newflags = vma->vm_flags | VM_LOCKED;
  471. if (!(flags & MCL_CURRENT))
  472. newflags &= ~VM_LOCKED;
  473. /* Ignore errors */
  474. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  475. }
  476. out:
  477. return 0;
  478. }
  479. SYSCALL_DEFINE1(mlockall, int, flags)
  480. {
  481. unsigned long lock_limit;
  482. int ret = -EINVAL;
  483. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  484. goto out;
  485. ret = -EPERM;
  486. if (!can_do_mlock())
  487. goto out;
  488. lru_add_drain_all(); /* flush pagevec */
  489. down_write(&current->mm->mmap_sem);
  490. lock_limit = rlimit(RLIMIT_MEMLOCK);
  491. lock_limit >>= PAGE_SHIFT;
  492. ret = -ENOMEM;
  493. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  494. capable(CAP_IPC_LOCK))
  495. ret = do_mlockall(flags);
  496. up_write(&current->mm->mmap_sem);
  497. if (!ret && (flags & MCL_CURRENT)) {
  498. /* Ignore errors */
  499. do_mlock_pages(0, TASK_SIZE, 1);
  500. }
  501. out:
  502. return ret;
  503. }
  504. SYSCALL_DEFINE0(munlockall)
  505. {
  506. int ret;
  507. down_write(&current->mm->mmap_sem);
  508. ret = do_mlockall(0);
  509. up_write(&current->mm->mmap_sem);
  510. return ret;
  511. }
  512. /*
  513. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  514. * shm segments) get accounted against the user_struct instead.
  515. */
  516. static DEFINE_SPINLOCK(shmlock_user_lock);
  517. int user_shm_lock(size_t size, struct user_struct *user)
  518. {
  519. unsigned long lock_limit, locked;
  520. int allowed = 0;
  521. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  522. lock_limit = rlimit(RLIMIT_MEMLOCK);
  523. if (lock_limit == RLIM_INFINITY)
  524. allowed = 1;
  525. lock_limit >>= PAGE_SHIFT;
  526. spin_lock(&shmlock_user_lock);
  527. if (!allowed &&
  528. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  529. goto out;
  530. get_uid(user);
  531. user->locked_shm += locked;
  532. allowed = 1;
  533. out:
  534. spin_unlock(&shmlock_user_lock);
  535. return allowed;
  536. }
  537. void user_shm_unlock(size_t size, struct user_struct *user)
  538. {
  539. spin_lock(&shmlock_user_lock);
  540. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  541. spin_unlock(&shmlock_user_lock);
  542. free_uid(user);
  543. }