huge_memory.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. } khugepaged_scan = {
  86. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  87. };
  88. static int set_recommended_min_free_kbytes(void)
  89. {
  90. struct zone *zone;
  91. int nr_zones = 0;
  92. unsigned long recommended_min;
  93. extern int min_free_kbytes;
  94. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  95. &transparent_hugepage_flags) &&
  96. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  97. &transparent_hugepage_flags))
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. int wakeup;
  126. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  127. err = -ENOMEM;
  128. goto out;
  129. }
  130. mutex_lock(&khugepaged_mutex);
  131. if (!khugepaged_thread)
  132. khugepaged_thread = kthread_run(khugepaged, NULL,
  133. "khugepaged");
  134. if (unlikely(IS_ERR(khugepaged_thread))) {
  135. printk(KERN_ERR
  136. "khugepaged: kthread_run(khugepaged) failed\n");
  137. err = PTR_ERR(khugepaged_thread);
  138. khugepaged_thread = NULL;
  139. }
  140. wakeup = !list_empty(&khugepaged_scan.mm_head);
  141. mutex_unlock(&khugepaged_mutex);
  142. if (wakeup)
  143. wake_up_interruptible(&khugepaged_wait);
  144. set_recommended_min_free_kbytes();
  145. } else
  146. /* wakeup to exit */
  147. wake_up_interruptible(&khugepaged_wait);
  148. out:
  149. return err;
  150. }
  151. #ifdef CONFIG_SYSFS
  152. static ssize_t double_flag_show(struct kobject *kobj,
  153. struct kobj_attribute *attr, char *buf,
  154. enum transparent_hugepage_flag enabled,
  155. enum transparent_hugepage_flag req_madv)
  156. {
  157. if (test_bit(enabled, &transparent_hugepage_flags)) {
  158. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  159. return sprintf(buf, "[always] madvise never\n");
  160. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  161. return sprintf(buf, "always [madvise] never\n");
  162. else
  163. return sprintf(buf, "always madvise [never]\n");
  164. }
  165. static ssize_t double_flag_store(struct kobject *kobj,
  166. struct kobj_attribute *attr,
  167. const char *buf, size_t count,
  168. enum transparent_hugepage_flag enabled,
  169. enum transparent_hugepage_flag req_madv)
  170. {
  171. if (!memcmp("always", buf,
  172. min(sizeof("always")-1, count))) {
  173. set_bit(enabled, &transparent_hugepage_flags);
  174. clear_bit(req_madv, &transparent_hugepage_flags);
  175. } else if (!memcmp("madvise", buf,
  176. min(sizeof("madvise")-1, count))) {
  177. clear_bit(enabled, &transparent_hugepage_flags);
  178. set_bit(req_madv, &transparent_hugepage_flags);
  179. } else if (!memcmp("never", buf,
  180. min(sizeof("never")-1, count))) {
  181. clear_bit(enabled, &transparent_hugepage_flags);
  182. clear_bit(req_madv, &transparent_hugepage_flags);
  183. } else
  184. return -EINVAL;
  185. return count;
  186. }
  187. static ssize_t enabled_show(struct kobject *kobj,
  188. struct kobj_attribute *attr, char *buf)
  189. {
  190. return double_flag_show(kobj, attr, buf,
  191. TRANSPARENT_HUGEPAGE_FLAG,
  192. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  193. }
  194. static ssize_t enabled_store(struct kobject *kobj,
  195. struct kobj_attribute *attr,
  196. const char *buf, size_t count)
  197. {
  198. ssize_t ret;
  199. ret = double_flag_store(kobj, attr, buf, count,
  200. TRANSPARENT_HUGEPAGE_FLAG,
  201. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  202. if (ret > 0) {
  203. int err = start_khugepaged();
  204. if (err)
  205. ret = err;
  206. }
  207. if (ret > 0 &&
  208. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  209. &transparent_hugepage_flags) ||
  210. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  211. &transparent_hugepage_flags)))
  212. set_recommended_min_free_kbytes();
  213. return ret;
  214. }
  215. static struct kobj_attribute enabled_attr =
  216. __ATTR(enabled, 0644, enabled_show, enabled_store);
  217. static ssize_t single_flag_show(struct kobject *kobj,
  218. struct kobj_attribute *attr, char *buf,
  219. enum transparent_hugepage_flag flag)
  220. {
  221. return sprintf(buf, "%d\n",
  222. !!test_bit(flag, &transparent_hugepage_flags));
  223. }
  224. static ssize_t single_flag_store(struct kobject *kobj,
  225. struct kobj_attribute *attr,
  226. const char *buf, size_t count,
  227. enum transparent_hugepage_flag flag)
  228. {
  229. unsigned long value;
  230. int ret;
  231. ret = kstrtoul(buf, 10, &value);
  232. if (ret < 0)
  233. return ret;
  234. if (value > 1)
  235. return -EINVAL;
  236. if (value)
  237. set_bit(flag, &transparent_hugepage_flags);
  238. else
  239. clear_bit(flag, &transparent_hugepage_flags);
  240. return count;
  241. }
  242. /*
  243. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  244. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  245. * memory just to allocate one more hugepage.
  246. */
  247. static ssize_t defrag_show(struct kobject *kobj,
  248. struct kobj_attribute *attr, char *buf)
  249. {
  250. return double_flag_show(kobj, attr, buf,
  251. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  252. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  253. }
  254. static ssize_t defrag_store(struct kobject *kobj,
  255. struct kobj_attribute *attr,
  256. const char *buf, size_t count)
  257. {
  258. return double_flag_store(kobj, attr, buf, count,
  259. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  260. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  261. }
  262. static struct kobj_attribute defrag_attr =
  263. __ATTR(defrag, 0644, defrag_show, defrag_store);
  264. #ifdef CONFIG_DEBUG_VM
  265. static ssize_t debug_cow_show(struct kobject *kobj,
  266. struct kobj_attribute *attr, char *buf)
  267. {
  268. return single_flag_show(kobj, attr, buf,
  269. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  270. }
  271. static ssize_t debug_cow_store(struct kobject *kobj,
  272. struct kobj_attribute *attr,
  273. const char *buf, size_t count)
  274. {
  275. return single_flag_store(kobj, attr, buf, count,
  276. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  277. }
  278. static struct kobj_attribute debug_cow_attr =
  279. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  280. #endif /* CONFIG_DEBUG_VM */
  281. static struct attribute *hugepage_attr[] = {
  282. &enabled_attr.attr,
  283. &defrag_attr.attr,
  284. #ifdef CONFIG_DEBUG_VM
  285. &debug_cow_attr.attr,
  286. #endif
  287. NULL,
  288. };
  289. static struct attribute_group hugepage_attr_group = {
  290. .attrs = hugepage_attr,
  291. };
  292. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  293. struct kobj_attribute *attr,
  294. char *buf)
  295. {
  296. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  297. }
  298. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  299. struct kobj_attribute *attr,
  300. const char *buf, size_t count)
  301. {
  302. unsigned long msecs;
  303. int err;
  304. err = strict_strtoul(buf, 10, &msecs);
  305. if (err || msecs > UINT_MAX)
  306. return -EINVAL;
  307. khugepaged_scan_sleep_millisecs = msecs;
  308. wake_up_interruptible(&khugepaged_wait);
  309. return count;
  310. }
  311. static struct kobj_attribute scan_sleep_millisecs_attr =
  312. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  313. scan_sleep_millisecs_store);
  314. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  315. struct kobj_attribute *attr,
  316. char *buf)
  317. {
  318. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  319. }
  320. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  321. struct kobj_attribute *attr,
  322. const char *buf, size_t count)
  323. {
  324. unsigned long msecs;
  325. int err;
  326. err = strict_strtoul(buf, 10, &msecs);
  327. if (err || msecs > UINT_MAX)
  328. return -EINVAL;
  329. khugepaged_alloc_sleep_millisecs = msecs;
  330. wake_up_interruptible(&khugepaged_wait);
  331. return count;
  332. }
  333. static struct kobj_attribute alloc_sleep_millisecs_attr =
  334. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  335. alloc_sleep_millisecs_store);
  336. static ssize_t pages_to_scan_show(struct kobject *kobj,
  337. struct kobj_attribute *attr,
  338. char *buf)
  339. {
  340. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  341. }
  342. static ssize_t pages_to_scan_store(struct kobject *kobj,
  343. struct kobj_attribute *attr,
  344. const char *buf, size_t count)
  345. {
  346. int err;
  347. unsigned long pages;
  348. err = strict_strtoul(buf, 10, &pages);
  349. if (err || !pages || pages > UINT_MAX)
  350. return -EINVAL;
  351. khugepaged_pages_to_scan = pages;
  352. return count;
  353. }
  354. static struct kobj_attribute pages_to_scan_attr =
  355. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  356. pages_to_scan_store);
  357. static ssize_t pages_collapsed_show(struct kobject *kobj,
  358. struct kobj_attribute *attr,
  359. char *buf)
  360. {
  361. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  362. }
  363. static struct kobj_attribute pages_collapsed_attr =
  364. __ATTR_RO(pages_collapsed);
  365. static ssize_t full_scans_show(struct kobject *kobj,
  366. struct kobj_attribute *attr,
  367. char *buf)
  368. {
  369. return sprintf(buf, "%u\n", khugepaged_full_scans);
  370. }
  371. static struct kobj_attribute full_scans_attr =
  372. __ATTR_RO(full_scans);
  373. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  374. struct kobj_attribute *attr, char *buf)
  375. {
  376. return single_flag_show(kobj, attr, buf,
  377. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  378. }
  379. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  380. struct kobj_attribute *attr,
  381. const char *buf, size_t count)
  382. {
  383. return single_flag_store(kobj, attr, buf, count,
  384. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  385. }
  386. static struct kobj_attribute khugepaged_defrag_attr =
  387. __ATTR(defrag, 0644, khugepaged_defrag_show,
  388. khugepaged_defrag_store);
  389. /*
  390. * max_ptes_none controls if khugepaged should collapse hugepages over
  391. * any unmapped ptes in turn potentially increasing the memory
  392. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  393. * reduce the available free memory in the system as it
  394. * runs. Increasing max_ptes_none will instead potentially reduce the
  395. * free memory in the system during the khugepaged scan.
  396. */
  397. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  398. struct kobj_attribute *attr,
  399. char *buf)
  400. {
  401. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  402. }
  403. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  404. struct kobj_attribute *attr,
  405. const char *buf, size_t count)
  406. {
  407. int err;
  408. unsigned long max_ptes_none;
  409. err = strict_strtoul(buf, 10, &max_ptes_none);
  410. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  411. return -EINVAL;
  412. khugepaged_max_ptes_none = max_ptes_none;
  413. return count;
  414. }
  415. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  416. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  417. khugepaged_max_ptes_none_store);
  418. static struct attribute *khugepaged_attr[] = {
  419. &khugepaged_defrag_attr.attr,
  420. &khugepaged_max_ptes_none_attr.attr,
  421. &pages_to_scan_attr.attr,
  422. &pages_collapsed_attr.attr,
  423. &full_scans_attr.attr,
  424. &scan_sleep_millisecs_attr.attr,
  425. &alloc_sleep_millisecs_attr.attr,
  426. NULL,
  427. };
  428. static struct attribute_group khugepaged_attr_group = {
  429. .attrs = khugepaged_attr,
  430. .name = "khugepaged",
  431. };
  432. #endif /* CONFIG_SYSFS */
  433. static int __init hugepage_init(void)
  434. {
  435. int err;
  436. #ifdef CONFIG_SYSFS
  437. static struct kobject *hugepage_kobj;
  438. #endif
  439. err = -EINVAL;
  440. if (!has_transparent_hugepage()) {
  441. transparent_hugepage_flags = 0;
  442. goto out;
  443. }
  444. #ifdef CONFIG_SYSFS
  445. err = -ENOMEM;
  446. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  447. if (unlikely(!hugepage_kobj)) {
  448. printk(KERN_ERR "hugepage: failed kobject create\n");
  449. goto out;
  450. }
  451. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  452. if (err) {
  453. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  454. goto out;
  455. }
  456. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  457. if (err) {
  458. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  459. goto out;
  460. }
  461. #endif
  462. err = khugepaged_slab_init();
  463. if (err)
  464. goto out;
  465. err = mm_slots_hash_init();
  466. if (err) {
  467. khugepaged_slab_free();
  468. goto out;
  469. }
  470. /*
  471. * By default disable transparent hugepages on smaller systems,
  472. * where the extra memory used could hurt more than TLB overhead
  473. * is likely to save. The admin can still enable it through /sys.
  474. */
  475. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  476. transparent_hugepage_flags = 0;
  477. start_khugepaged();
  478. set_recommended_min_free_kbytes();
  479. out:
  480. return err;
  481. }
  482. module_init(hugepage_init)
  483. static int __init setup_transparent_hugepage(char *str)
  484. {
  485. int ret = 0;
  486. if (!str)
  487. goto out;
  488. if (!strcmp(str, "always")) {
  489. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  490. &transparent_hugepage_flags);
  491. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  492. &transparent_hugepage_flags);
  493. ret = 1;
  494. } else if (!strcmp(str, "madvise")) {
  495. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  496. &transparent_hugepage_flags);
  497. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  498. &transparent_hugepage_flags);
  499. ret = 1;
  500. } else if (!strcmp(str, "never")) {
  501. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  502. &transparent_hugepage_flags);
  503. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  504. &transparent_hugepage_flags);
  505. ret = 1;
  506. }
  507. out:
  508. if (!ret)
  509. printk(KERN_WARNING
  510. "transparent_hugepage= cannot parse, ignored\n");
  511. return ret;
  512. }
  513. __setup("transparent_hugepage=", setup_transparent_hugepage);
  514. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  515. struct mm_struct *mm)
  516. {
  517. assert_spin_locked(&mm->page_table_lock);
  518. /* FIFO */
  519. if (!mm->pmd_huge_pte)
  520. INIT_LIST_HEAD(&pgtable->lru);
  521. else
  522. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  523. mm->pmd_huge_pte = pgtable;
  524. }
  525. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  526. {
  527. if (likely(vma->vm_flags & VM_WRITE))
  528. pmd = pmd_mkwrite(pmd);
  529. return pmd;
  530. }
  531. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  532. struct vm_area_struct *vma,
  533. unsigned long haddr, pmd_t *pmd,
  534. struct page *page)
  535. {
  536. int ret = 0;
  537. pgtable_t pgtable;
  538. VM_BUG_ON(!PageCompound(page));
  539. pgtable = pte_alloc_one(mm, haddr);
  540. if (unlikely(!pgtable)) {
  541. mem_cgroup_uncharge_page(page);
  542. put_page(page);
  543. return VM_FAULT_OOM;
  544. }
  545. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  546. __SetPageUptodate(page);
  547. spin_lock(&mm->page_table_lock);
  548. if (unlikely(!pmd_none(*pmd))) {
  549. spin_unlock(&mm->page_table_lock);
  550. mem_cgroup_uncharge_page(page);
  551. put_page(page);
  552. pte_free(mm, pgtable);
  553. } else {
  554. pmd_t entry;
  555. entry = mk_pmd(page, vma->vm_page_prot);
  556. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  557. entry = pmd_mkhuge(entry);
  558. /*
  559. * The spinlocking to take the lru_lock inside
  560. * page_add_new_anon_rmap() acts as a full memory
  561. * barrier to be sure clear_huge_page writes become
  562. * visible after the set_pmd_at() write.
  563. */
  564. page_add_new_anon_rmap(page, vma, haddr);
  565. set_pmd_at(mm, haddr, pmd, entry);
  566. prepare_pmd_huge_pte(pgtable, mm);
  567. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  568. spin_unlock(&mm->page_table_lock);
  569. }
  570. return ret;
  571. }
  572. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  573. {
  574. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  575. }
  576. static inline struct page *alloc_hugepage_vma(int defrag,
  577. struct vm_area_struct *vma,
  578. unsigned long haddr, int nd,
  579. gfp_t extra_gfp)
  580. {
  581. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  582. HPAGE_PMD_ORDER, vma, haddr, nd);
  583. }
  584. #ifndef CONFIG_NUMA
  585. static inline struct page *alloc_hugepage(int defrag)
  586. {
  587. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  588. HPAGE_PMD_ORDER);
  589. }
  590. #endif
  591. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  592. unsigned long address, pmd_t *pmd,
  593. unsigned int flags)
  594. {
  595. struct page *page;
  596. unsigned long haddr = address & HPAGE_PMD_MASK;
  597. pte_t *pte;
  598. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  599. if (unlikely(anon_vma_prepare(vma)))
  600. return VM_FAULT_OOM;
  601. if (unlikely(khugepaged_enter(vma)))
  602. return VM_FAULT_OOM;
  603. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  604. vma, haddr, numa_node_id(), 0);
  605. if (unlikely(!page)) {
  606. count_vm_event(THP_FAULT_FALLBACK);
  607. goto out;
  608. }
  609. count_vm_event(THP_FAULT_ALLOC);
  610. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  611. put_page(page);
  612. goto out;
  613. }
  614. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  615. }
  616. out:
  617. /*
  618. * Use __pte_alloc instead of pte_alloc_map, because we can't
  619. * run pte_offset_map on the pmd, if an huge pmd could
  620. * materialize from under us from a different thread.
  621. */
  622. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  623. return VM_FAULT_OOM;
  624. /* if an huge pmd materialized from under us just retry later */
  625. if (unlikely(pmd_trans_huge(*pmd)))
  626. return 0;
  627. /*
  628. * A regular pmd is established and it can't morph into a huge pmd
  629. * from under us anymore at this point because we hold the mmap_sem
  630. * read mode and khugepaged takes it in write mode. So now it's
  631. * safe to run pte_offset_map().
  632. */
  633. pte = pte_offset_map(pmd, address);
  634. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  635. }
  636. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  637. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  638. struct vm_area_struct *vma)
  639. {
  640. struct page *src_page;
  641. pmd_t pmd;
  642. pgtable_t pgtable;
  643. int ret;
  644. ret = -ENOMEM;
  645. pgtable = pte_alloc_one(dst_mm, addr);
  646. if (unlikely(!pgtable))
  647. goto out;
  648. spin_lock(&dst_mm->page_table_lock);
  649. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  650. ret = -EAGAIN;
  651. pmd = *src_pmd;
  652. if (unlikely(!pmd_trans_huge(pmd))) {
  653. pte_free(dst_mm, pgtable);
  654. goto out_unlock;
  655. }
  656. if (unlikely(pmd_trans_splitting(pmd))) {
  657. /* split huge page running from under us */
  658. spin_unlock(&src_mm->page_table_lock);
  659. spin_unlock(&dst_mm->page_table_lock);
  660. pte_free(dst_mm, pgtable);
  661. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  662. goto out;
  663. }
  664. src_page = pmd_page(pmd);
  665. VM_BUG_ON(!PageHead(src_page));
  666. get_page(src_page);
  667. page_dup_rmap(src_page);
  668. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  669. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  670. pmd = pmd_mkold(pmd_wrprotect(pmd));
  671. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  672. prepare_pmd_huge_pte(pgtable, dst_mm);
  673. ret = 0;
  674. out_unlock:
  675. spin_unlock(&src_mm->page_table_lock);
  676. spin_unlock(&dst_mm->page_table_lock);
  677. out:
  678. return ret;
  679. }
  680. /* no "address" argument so destroys page coloring of some arch */
  681. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  682. {
  683. pgtable_t pgtable;
  684. assert_spin_locked(&mm->page_table_lock);
  685. /* FIFO */
  686. pgtable = mm->pmd_huge_pte;
  687. if (list_empty(&pgtable->lru))
  688. mm->pmd_huge_pte = NULL;
  689. else {
  690. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  691. struct page, lru);
  692. list_del(&pgtable->lru);
  693. }
  694. return pgtable;
  695. }
  696. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  697. struct vm_area_struct *vma,
  698. unsigned long address,
  699. pmd_t *pmd, pmd_t orig_pmd,
  700. struct page *page,
  701. unsigned long haddr)
  702. {
  703. pgtable_t pgtable;
  704. pmd_t _pmd;
  705. int ret = 0, i;
  706. struct page **pages;
  707. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  708. GFP_KERNEL);
  709. if (unlikely(!pages)) {
  710. ret |= VM_FAULT_OOM;
  711. goto out;
  712. }
  713. for (i = 0; i < HPAGE_PMD_NR; i++) {
  714. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  715. __GFP_OTHER_NODE,
  716. vma, address, page_to_nid(page));
  717. if (unlikely(!pages[i] ||
  718. mem_cgroup_newpage_charge(pages[i], mm,
  719. GFP_KERNEL))) {
  720. if (pages[i])
  721. put_page(pages[i]);
  722. mem_cgroup_uncharge_start();
  723. while (--i >= 0) {
  724. mem_cgroup_uncharge_page(pages[i]);
  725. put_page(pages[i]);
  726. }
  727. mem_cgroup_uncharge_end();
  728. kfree(pages);
  729. ret |= VM_FAULT_OOM;
  730. goto out;
  731. }
  732. }
  733. for (i = 0; i < HPAGE_PMD_NR; i++) {
  734. copy_user_highpage(pages[i], page + i,
  735. haddr + PAGE_SHIFT*i, vma);
  736. __SetPageUptodate(pages[i]);
  737. cond_resched();
  738. }
  739. spin_lock(&mm->page_table_lock);
  740. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  741. goto out_free_pages;
  742. VM_BUG_ON(!PageHead(page));
  743. pmdp_clear_flush_notify(vma, haddr, pmd);
  744. /* leave pmd empty until pte is filled */
  745. pgtable = get_pmd_huge_pte(mm);
  746. pmd_populate(mm, &_pmd, pgtable);
  747. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  748. pte_t *pte, entry;
  749. entry = mk_pte(pages[i], vma->vm_page_prot);
  750. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  751. page_add_new_anon_rmap(pages[i], vma, haddr);
  752. pte = pte_offset_map(&_pmd, haddr);
  753. VM_BUG_ON(!pte_none(*pte));
  754. set_pte_at(mm, haddr, pte, entry);
  755. pte_unmap(pte);
  756. }
  757. kfree(pages);
  758. mm->nr_ptes++;
  759. smp_wmb(); /* make pte visible before pmd */
  760. pmd_populate(mm, pmd, pgtable);
  761. page_remove_rmap(page);
  762. spin_unlock(&mm->page_table_lock);
  763. ret |= VM_FAULT_WRITE;
  764. put_page(page);
  765. out:
  766. return ret;
  767. out_free_pages:
  768. spin_unlock(&mm->page_table_lock);
  769. mem_cgroup_uncharge_start();
  770. for (i = 0; i < HPAGE_PMD_NR; i++) {
  771. mem_cgroup_uncharge_page(pages[i]);
  772. put_page(pages[i]);
  773. }
  774. mem_cgroup_uncharge_end();
  775. kfree(pages);
  776. goto out;
  777. }
  778. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  779. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  780. {
  781. int ret = 0;
  782. struct page *page, *new_page;
  783. unsigned long haddr;
  784. VM_BUG_ON(!vma->anon_vma);
  785. spin_lock(&mm->page_table_lock);
  786. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  787. goto out_unlock;
  788. page = pmd_page(orig_pmd);
  789. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  790. haddr = address & HPAGE_PMD_MASK;
  791. if (page_mapcount(page) == 1) {
  792. pmd_t entry;
  793. entry = pmd_mkyoung(orig_pmd);
  794. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  795. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  796. update_mmu_cache(vma, address, entry);
  797. ret |= VM_FAULT_WRITE;
  798. goto out_unlock;
  799. }
  800. get_page(page);
  801. spin_unlock(&mm->page_table_lock);
  802. if (transparent_hugepage_enabled(vma) &&
  803. !transparent_hugepage_debug_cow())
  804. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  805. vma, haddr, numa_node_id(), 0);
  806. else
  807. new_page = NULL;
  808. if (unlikely(!new_page)) {
  809. count_vm_event(THP_FAULT_FALLBACK);
  810. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  811. pmd, orig_pmd, page, haddr);
  812. put_page(page);
  813. goto out;
  814. }
  815. count_vm_event(THP_FAULT_ALLOC);
  816. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  817. put_page(new_page);
  818. put_page(page);
  819. ret |= VM_FAULT_OOM;
  820. goto out;
  821. }
  822. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  823. __SetPageUptodate(new_page);
  824. spin_lock(&mm->page_table_lock);
  825. put_page(page);
  826. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  827. mem_cgroup_uncharge_page(new_page);
  828. put_page(new_page);
  829. } else {
  830. pmd_t entry;
  831. VM_BUG_ON(!PageHead(page));
  832. entry = mk_pmd(new_page, vma->vm_page_prot);
  833. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  834. entry = pmd_mkhuge(entry);
  835. pmdp_clear_flush_notify(vma, haddr, pmd);
  836. page_add_new_anon_rmap(new_page, vma, haddr);
  837. set_pmd_at(mm, haddr, pmd, entry);
  838. update_mmu_cache(vma, address, entry);
  839. page_remove_rmap(page);
  840. put_page(page);
  841. ret |= VM_FAULT_WRITE;
  842. }
  843. out_unlock:
  844. spin_unlock(&mm->page_table_lock);
  845. out:
  846. return ret;
  847. }
  848. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  849. unsigned long addr,
  850. pmd_t *pmd,
  851. unsigned int flags)
  852. {
  853. struct page *page = NULL;
  854. assert_spin_locked(&mm->page_table_lock);
  855. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  856. goto out;
  857. page = pmd_page(*pmd);
  858. VM_BUG_ON(!PageHead(page));
  859. if (flags & FOLL_TOUCH) {
  860. pmd_t _pmd;
  861. /*
  862. * We should set the dirty bit only for FOLL_WRITE but
  863. * for now the dirty bit in the pmd is meaningless.
  864. * And if the dirty bit will become meaningful and
  865. * we'll only set it with FOLL_WRITE, an atomic
  866. * set_bit will be required on the pmd to set the
  867. * young bit, instead of the current set_pmd_at.
  868. */
  869. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  870. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  871. }
  872. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  873. VM_BUG_ON(!PageCompound(page));
  874. if (flags & FOLL_GET)
  875. get_page(page);
  876. out:
  877. return page;
  878. }
  879. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  880. pmd_t *pmd)
  881. {
  882. int ret = 0;
  883. spin_lock(&tlb->mm->page_table_lock);
  884. if (likely(pmd_trans_huge(*pmd))) {
  885. if (unlikely(pmd_trans_splitting(*pmd))) {
  886. spin_unlock(&tlb->mm->page_table_lock);
  887. wait_split_huge_page(vma->anon_vma,
  888. pmd);
  889. } else {
  890. struct page *page;
  891. pgtable_t pgtable;
  892. pgtable = get_pmd_huge_pte(tlb->mm);
  893. page = pmd_page(*pmd);
  894. pmd_clear(pmd);
  895. page_remove_rmap(page);
  896. VM_BUG_ON(page_mapcount(page) < 0);
  897. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  898. VM_BUG_ON(!PageHead(page));
  899. spin_unlock(&tlb->mm->page_table_lock);
  900. tlb_remove_page(tlb, page);
  901. pte_free(tlb->mm, pgtable);
  902. ret = 1;
  903. }
  904. } else
  905. spin_unlock(&tlb->mm->page_table_lock);
  906. return ret;
  907. }
  908. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  909. unsigned long addr, unsigned long end,
  910. unsigned char *vec)
  911. {
  912. int ret = 0;
  913. spin_lock(&vma->vm_mm->page_table_lock);
  914. if (likely(pmd_trans_huge(*pmd))) {
  915. ret = !pmd_trans_splitting(*pmd);
  916. spin_unlock(&vma->vm_mm->page_table_lock);
  917. if (unlikely(!ret))
  918. wait_split_huge_page(vma->anon_vma, pmd);
  919. else {
  920. /*
  921. * All logical pages in the range are present
  922. * if backed by a huge page.
  923. */
  924. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  925. }
  926. } else
  927. spin_unlock(&vma->vm_mm->page_table_lock);
  928. return ret;
  929. }
  930. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  931. unsigned long addr, pgprot_t newprot)
  932. {
  933. struct mm_struct *mm = vma->vm_mm;
  934. int ret = 0;
  935. spin_lock(&mm->page_table_lock);
  936. if (likely(pmd_trans_huge(*pmd))) {
  937. if (unlikely(pmd_trans_splitting(*pmd))) {
  938. spin_unlock(&mm->page_table_lock);
  939. wait_split_huge_page(vma->anon_vma, pmd);
  940. } else {
  941. pmd_t entry;
  942. entry = pmdp_get_and_clear(mm, addr, pmd);
  943. entry = pmd_modify(entry, newprot);
  944. set_pmd_at(mm, addr, pmd, entry);
  945. spin_unlock(&vma->vm_mm->page_table_lock);
  946. flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
  947. ret = 1;
  948. }
  949. } else
  950. spin_unlock(&vma->vm_mm->page_table_lock);
  951. return ret;
  952. }
  953. pmd_t *page_check_address_pmd(struct page *page,
  954. struct mm_struct *mm,
  955. unsigned long address,
  956. enum page_check_address_pmd_flag flag)
  957. {
  958. pgd_t *pgd;
  959. pud_t *pud;
  960. pmd_t *pmd, *ret = NULL;
  961. if (address & ~HPAGE_PMD_MASK)
  962. goto out;
  963. pgd = pgd_offset(mm, address);
  964. if (!pgd_present(*pgd))
  965. goto out;
  966. pud = pud_offset(pgd, address);
  967. if (!pud_present(*pud))
  968. goto out;
  969. pmd = pmd_offset(pud, address);
  970. if (pmd_none(*pmd))
  971. goto out;
  972. if (pmd_page(*pmd) != page)
  973. goto out;
  974. /*
  975. * split_vma() may create temporary aliased mappings. There is
  976. * no risk as long as all huge pmd are found and have their
  977. * splitting bit set before __split_huge_page_refcount
  978. * runs. Finding the same huge pmd more than once during the
  979. * same rmap walk is not a problem.
  980. */
  981. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  982. pmd_trans_splitting(*pmd))
  983. goto out;
  984. if (pmd_trans_huge(*pmd)) {
  985. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  986. !pmd_trans_splitting(*pmd));
  987. ret = pmd;
  988. }
  989. out:
  990. return ret;
  991. }
  992. static int __split_huge_page_splitting(struct page *page,
  993. struct vm_area_struct *vma,
  994. unsigned long address)
  995. {
  996. struct mm_struct *mm = vma->vm_mm;
  997. pmd_t *pmd;
  998. int ret = 0;
  999. spin_lock(&mm->page_table_lock);
  1000. pmd = page_check_address_pmd(page, mm, address,
  1001. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1002. if (pmd) {
  1003. /*
  1004. * We can't temporarily set the pmd to null in order
  1005. * to split it, the pmd must remain marked huge at all
  1006. * times or the VM won't take the pmd_trans_huge paths
  1007. * and it won't wait on the anon_vma->root->lock to
  1008. * serialize against split_huge_page*.
  1009. */
  1010. pmdp_splitting_flush_notify(vma, address, pmd);
  1011. ret = 1;
  1012. }
  1013. spin_unlock(&mm->page_table_lock);
  1014. return ret;
  1015. }
  1016. static void __split_huge_page_refcount(struct page *page)
  1017. {
  1018. int i;
  1019. unsigned long head_index = page->index;
  1020. struct zone *zone = page_zone(page);
  1021. int zonestat;
  1022. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1023. spin_lock_irq(&zone->lru_lock);
  1024. compound_lock(page);
  1025. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1026. struct page *page_tail = page + i;
  1027. /* tail_page->_count cannot change */
  1028. atomic_sub(atomic_read(&page_tail->_count), &page->_count);
  1029. BUG_ON(page_count(page) <= 0);
  1030. atomic_add(page_mapcount(page) + 1, &page_tail->_count);
  1031. BUG_ON(atomic_read(&page_tail->_count) <= 0);
  1032. /* after clearing PageTail the gup refcount can be released */
  1033. smp_mb();
  1034. /*
  1035. * retain hwpoison flag of the poisoned tail page:
  1036. * fix for the unsuitable process killed on Guest Machine(KVM)
  1037. * by the memory-failure.
  1038. */
  1039. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1040. page_tail->flags |= (page->flags &
  1041. ((1L << PG_referenced) |
  1042. (1L << PG_swapbacked) |
  1043. (1L << PG_mlocked) |
  1044. (1L << PG_uptodate)));
  1045. page_tail->flags |= (1L << PG_dirty);
  1046. /*
  1047. * 1) clear PageTail before overwriting first_page
  1048. * 2) clear PageTail before clearing PageHead for VM_BUG_ON
  1049. */
  1050. smp_wmb();
  1051. /*
  1052. * __split_huge_page_splitting() already set the
  1053. * splitting bit in all pmd that could map this
  1054. * hugepage, that will ensure no CPU can alter the
  1055. * mapcount on the head page. The mapcount is only
  1056. * accounted in the head page and it has to be
  1057. * transferred to all tail pages in the below code. So
  1058. * for this code to be safe, the split the mapcount
  1059. * can't change. But that doesn't mean userland can't
  1060. * keep changing and reading the page contents while
  1061. * we transfer the mapcount, so the pmd splitting
  1062. * status is achieved setting a reserved bit in the
  1063. * pmd, not by clearing the present bit.
  1064. */
  1065. BUG_ON(page_mapcount(page_tail));
  1066. page_tail->_mapcount = page->_mapcount;
  1067. BUG_ON(page_tail->mapping);
  1068. page_tail->mapping = page->mapping;
  1069. page_tail->index = ++head_index;
  1070. BUG_ON(!PageAnon(page_tail));
  1071. BUG_ON(!PageUptodate(page_tail));
  1072. BUG_ON(!PageDirty(page_tail));
  1073. BUG_ON(!PageSwapBacked(page_tail));
  1074. mem_cgroup_split_huge_fixup(page, page_tail);
  1075. lru_add_page_tail(zone, page, page_tail);
  1076. }
  1077. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1078. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1079. /*
  1080. * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
  1081. * so adjust those appropriately if this page is on the LRU.
  1082. */
  1083. if (PageLRU(page)) {
  1084. zonestat = NR_LRU_BASE + page_lru(page);
  1085. __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
  1086. }
  1087. ClearPageCompound(page);
  1088. compound_unlock(page);
  1089. spin_unlock_irq(&zone->lru_lock);
  1090. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1091. struct page *page_tail = page + i;
  1092. BUG_ON(page_count(page_tail) <= 0);
  1093. /*
  1094. * Tail pages may be freed if there wasn't any mapping
  1095. * like if add_to_swap() is running on a lru page that
  1096. * had its mapping zapped. And freeing these pages
  1097. * requires taking the lru_lock so we do the put_page
  1098. * of the tail pages after the split is complete.
  1099. */
  1100. put_page(page_tail);
  1101. }
  1102. /*
  1103. * Only the head page (now become a regular page) is required
  1104. * to be pinned by the caller.
  1105. */
  1106. BUG_ON(page_count(page) <= 0);
  1107. }
  1108. static int __split_huge_page_map(struct page *page,
  1109. struct vm_area_struct *vma,
  1110. unsigned long address)
  1111. {
  1112. struct mm_struct *mm = vma->vm_mm;
  1113. pmd_t *pmd, _pmd;
  1114. int ret = 0, i;
  1115. pgtable_t pgtable;
  1116. unsigned long haddr;
  1117. spin_lock(&mm->page_table_lock);
  1118. pmd = page_check_address_pmd(page, mm, address,
  1119. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1120. if (pmd) {
  1121. pgtable = get_pmd_huge_pte(mm);
  1122. pmd_populate(mm, &_pmd, pgtable);
  1123. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1124. i++, haddr += PAGE_SIZE) {
  1125. pte_t *pte, entry;
  1126. BUG_ON(PageCompound(page+i));
  1127. entry = mk_pte(page + i, vma->vm_page_prot);
  1128. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1129. if (!pmd_write(*pmd))
  1130. entry = pte_wrprotect(entry);
  1131. else
  1132. BUG_ON(page_mapcount(page) != 1);
  1133. if (!pmd_young(*pmd))
  1134. entry = pte_mkold(entry);
  1135. pte = pte_offset_map(&_pmd, haddr);
  1136. BUG_ON(!pte_none(*pte));
  1137. set_pte_at(mm, haddr, pte, entry);
  1138. pte_unmap(pte);
  1139. }
  1140. mm->nr_ptes++;
  1141. smp_wmb(); /* make pte visible before pmd */
  1142. /*
  1143. * Up to this point the pmd is present and huge and
  1144. * userland has the whole access to the hugepage
  1145. * during the split (which happens in place). If we
  1146. * overwrite the pmd with the not-huge version
  1147. * pointing to the pte here (which of course we could
  1148. * if all CPUs were bug free), userland could trigger
  1149. * a small page size TLB miss on the small sized TLB
  1150. * while the hugepage TLB entry is still established
  1151. * in the huge TLB. Some CPU doesn't like that. See
  1152. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1153. * Erratum 383 on page 93. Intel should be safe but is
  1154. * also warns that it's only safe if the permission
  1155. * and cache attributes of the two entries loaded in
  1156. * the two TLB is identical (which should be the case
  1157. * here). But it is generally safer to never allow
  1158. * small and huge TLB entries for the same virtual
  1159. * address to be loaded simultaneously. So instead of
  1160. * doing "pmd_populate(); flush_tlb_range();" we first
  1161. * mark the current pmd notpresent (atomically because
  1162. * here the pmd_trans_huge and pmd_trans_splitting
  1163. * must remain set at all times on the pmd until the
  1164. * split is complete for this pmd), then we flush the
  1165. * SMP TLB and finally we write the non-huge version
  1166. * of the pmd entry with pmd_populate.
  1167. */
  1168. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1169. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1170. pmd_populate(mm, pmd, pgtable);
  1171. ret = 1;
  1172. }
  1173. spin_unlock(&mm->page_table_lock);
  1174. return ret;
  1175. }
  1176. /* must be called with anon_vma->root->lock hold */
  1177. static void __split_huge_page(struct page *page,
  1178. struct anon_vma *anon_vma)
  1179. {
  1180. int mapcount, mapcount2;
  1181. struct anon_vma_chain *avc;
  1182. BUG_ON(!PageHead(page));
  1183. BUG_ON(PageTail(page));
  1184. mapcount = 0;
  1185. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1186. struct vm_area_struct *vma = avc->vma;
  1187. unsigned long addr = vma_address(page, vma);
  1188. BUG_ON(is_vma_temporary_stack(vma));
  1189. if (addr == -EFAULT)
  1190. continue;
  1191. mapcount += __split_huge_page_splitting(page, vma, addr);
  1192. }
  1193. /*
  1194. * It is critical that new vmas are added to the tail of the
  1195. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1196. * and establishes a child pmd before
  1197. * __split_huge_page_splitting() freezes the parent pmd (so if
  1198. * we fail to prevent copy_huge_pmd() from running until the
  1199. * whole __split_huge_page() is complete), we will still see
  1200. * the newly established pmd of the child later during the
  1201. * walk, to be able to set it as pmd_trans_splitting too.
  1202. */
  1203. if (mapcount != page_mapcount(page))
  1204. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1205. mapcount, page_mapcount(page));
  1206. BUG_ON(mapcount != page_mapcount(page));
  1207. __split_huge_page_refcount(page);
  1208. mapcount2 = 0;
  1209. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1210. struct vm_area_struct *vma = avc->vma;
  1211. unsigned long addr = vma_address(page, vma);
  1212. BUG_ON(is_vma_temporary_stack(vma));
  1213. if (addr == -EFAULT)
  1214. continue;
  1215. mapcount2 += __split_huge_page_map(page, vma, addr);
  1216. }
  1217. if (mapcount != mapcount2)
  1218. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1219. mapcount, mapcount2, page_mapcount(page));
  1220. BUG_ON(mapcount != mapcount2);
  1221. }
  1222. int split_huge_page(struct page *page)
  1223. {
  1224. struct anon_vma *anon_vma;
  1225. int ret = 1;
  1226. BUG_ON(!PageAnon(page));
  1227. anon_vma = page_lock_anon_vma(page);
  1228. if (!anon_vma)
  1229. goto out;
  1230. ret = 0;
  1231. if (!PageCompound(page))
  1232. goto out_unlock;
  1233. BUG_ON(!PageSwapBacked(page));
  1234. __split_huge_page(page, anon_vma);
  1235. count_vm_event(THP_SPLIT);
  1236. BUG_ON(PageCompound(page));
  1237. out_unlock:
  1238. page_unlock_anon_vma(anon_vma);
  1239. out:
  1240. return ret;
  1241. }
  1242. int hugepage_madvise(struct vm_area_struct *vma,
  1243. unsigned long *vm_flags, int advice)
  1244. {
  1245. switch (advice) {
  1246. case MADV_HUGEPAGE:
  1247. /*
  1248. * Be somewhat over-protective like KSM for now!
  1249. */
  1250. if (*vm_flags & (VM_HUGEPAGE |
  1251. VM_SHARED | VM_MAYSHARE |
  1252. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1253. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1254. VM_MIXEDMAP | VM_SAO))
  1255. return -EINVAL;
  1256. *vm_flags &= ~VM_NOHUGEPAGE;
  1257. *vm_flags |= VM_HUGEPAGE;
  1258. /*
  1259. * If the vma become good for khugepaged to scan,
  1260. * register it here without waiting a page fault that
  1261. * may not happen any time soon.
  1262. */
  1263. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1264. return -ENOMEM;
  1265. break;
  1266. case MADV_NOHUGEPAGE:
  1267. /*
  1268. * Be somewhat over-protective like KSM for now!
  1269. */
  1270. if (*vm_flags & (VM_NOHUGEPAGE |
  1271. VM_SHARED | VM_MAYSHARE |
  1272. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1273. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1274. VM_MIXEDMAP | VM_SAO))
  1275. return -EINVAL;
  1276. *vm_flags &= ~VM_HUGEPAGE;
  1277. *vm_flags |= VM_NOHUGEPAGE;
  1278. /*
  1279. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1280. * this vma even if we leave the mm registered in khugepaged if
  1281. * it got registered before VM_NOHUGEPAGE was set.
  1282. */
  1283. break;
  1284. }
  1285. return 0;
  1286. }
  1287. static int __init khugepaged_slab_init(void)
  1288. {
  1289. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1290. sizeof(struct mm_slot),
  1291. __alignof__(struct mm_slot), 0, NULL);
  1292. if (!mm_slot_cache)
  1293. return -ENOMEM;
  1294. return 0;
  1295. }
  1296. static void __init khugepaged_slab_free(void)
  1297. {
  1298. kmem_cache_destroy(mm_slot_cache);
  1299. mm_slot_cache = NULL;
  1300. }
  1301. static inline struct mm_slot *alloc_mm_slot(void)
  1302. {
  1303. if (!mm_slot_cache) /* initialization failed */
  1304. return NULL;
  1305. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1306. }
  1307. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1308. {
  1309. kmem_cache_free(mm_slot_cache, mm_slot);
  1310. }
  1311. static int __init mm_slots_hash_init(void)
  1312. {
  1313. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1314. GFP_KERNEL);
  1315. if (!mm_slots_hash)
  1316. return -ENOMEM;
  1317. return 0;
  1318. }
  1319. #if 0
  1320. static void __init mm_slots_hash_free(void)
  1321. {
  1322. kfree(mm_slots_hash);
  1323. mm_slots_hash = NULL;
  1324. }
  1325. #endif
  1326. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1327. {
  1328. struct mm_slot *mm_slot;
  1329. struct hlist_head *bucket;
  1330. struct hlist_node *node;
  1331. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1332. % MM_SLOTS_HASH_HEADS];
  1333. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1334. if (mm == mm_slot->mm)
  1335. return mm_slot;
  1336. }
  1337. return NULL;
  1338. }
  1339. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1340. struct mm_slot *mm_slot)
  1341. {
  1342. struct hlist_head *bucket;
  1343. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1344. % MM_SLOTS_HASH_HEADS];
  1345. mm_slot->mm = mm;
  1346. hlist_add_head(&mm_slot->hash, bucket);
  1347. }
  1348. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1349. {
  1350. return atomic_read(&mm->mm_users) == 0;
  1351. }
  1352. int __khugepaged_enter(struct mm_struct *mm)
  1353. {
  1354. struct mm_slot *mm_slot;
  1355. int wakeup;
  1356. mm_slot = alloc_mm_slot();
  1357. if (!mm_slot)
  1358. return -ENOMEM;
  1359. /* __khugepaged_exit() must not run from under us */
  1360. VM_BUG_ON(khugepaged_test_exit(mm));
  1361. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1362. free_mm_slot(mm_slot);
  1363. return 0;
  1364. }
  1365. spin_lock(&khugepaged_mm_lock);
  1366. insert_to_mm_slots_hash(mm, mm_slot);
  1367. /*
  1368. * Insert just behind the scanning cursor, to let the area settle
  1369. * down a little.
  1370. */
  1371. wakeup = list_empty(&khugepaged_scan.mm_head);
  1372. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1373. spin_unlock(&khugepaged_mm_lock);
  1374. atomic_inc(&mm->mm_count);
  1375. if (wakeup)
  1376. wake_up_interruptible(&khugepaged_wait);
  1377. return 0;
  1378. }
  1379. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1380. {
  1381. unsigned long hstart, hend;
  1382. if (!vma->anon_vma)
  1383. /*
  1384. * Not yet faulted in so we will register later in the
  1385. * page fault if needed.
  1386. */
  1387. return 0;
  1388. if (vma->vm_file || vma->vm_ops)
  1389. /* khugepaged not yet working on file or special mappings */
  1390. return 0;
  1391. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1392. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1393. hend = vma->vm_end & HPAGE_PMD_MASK;
  1394. if (hstart < hend)
  1395. return khugepaged_enter(vma);
  1396. return 0;
  1397. }
  1398. void __khugepaged_exit(struct mm_struct *mm)
  1399. {
  1400. struct mm_slot *mm_slot;
  1401. int free = 0;
  1402. spin_lock(&khugepaged_mm_lock);
  1403. mm_slot = get_mm_slot(mm);
  1404. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1405. hlist_del(&mm_slot->hash);
  1406. list_del(&mm_slot->mm_node);
  1407. free = 1;
  1408. }
  1409. if (free) {
  1410. spin_unlock(&khugepaged_mm_lock);
  1411. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1412. free_mm_slot(mm_slot);
  1413. mmdrop(mm);
  1414. } else if (mm_slot) {
  1415. spin_unlock(&khugepaged_mm_lock);
  1416. /*
  1417. * This is required to serialize against
  1418. * khugepaged_test_exit() (which is guaranteed to run
  1419. * under mmap sem read mode). Stop here (after we
  1420. * return all pagetables will be destroyed) until
  1421. * khugepaged has finished working on the pagetables
  1422. * under the mmap_sem.
  1423. */
  1424. down_write(&mm->mmap_sem);
  1425. up_write(&mm->mmap_sem);
  1426. } else
  1427. spin_unlock(&khugepaged_mm_lock);
  1428. }
  1429. static void release_pte_page(struct page *page)
  1430. {
  1431. /* 0 stands for page_is_file_cache(page) == false */
  1432. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1433. unlock_page(page);
  1434. putback_lru_page(page);
  1435. }
  1436. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1437. {
  1438. while (--_pte >= pte) {
  1439. pte_t pteval = *_pte;
  1440. if (!pte_none(pteval))
  1441. release_pte_page(pte_page(pteval));
  1442. }
  1443. }
  1444. static void release_all_pte_pages(pte_t *pte)
  1445. {
  1446. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1447. }
  1448. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1449. unsigned long address,
  1450. pte_t *pte)
  1451. {
  1452. struct page *page;
  1453. pte_t *_pte;
  1454. int referenced = 0, isolated = 0, none = 0;
  1455. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1456. _pte++, address += PAGE_SIZE) {
  1457. pte_t pteval = *_pte;
  1458. if (pte_none(pteval)) {
  1459. if (++none <= khugepaged_max_ptes_none)
  1460. continue;
  1461. else {
  1462. release_pte_pages(pte, _pte);
  1463. goto out;
  1464. }
  1465. }
  1466. if (!pte_present(pteval) || !pte_write(pteval)) {
  1467. release_pte_pages(pte, _pte);
  1468. goto out;
  1469. }
  1470. page = vm_normal_page(vma, address, pteval);
  1471. if (unlikely(!page)) {
  1472. release_pte_pages(pte, _pte);
  1473. goto out;
  1474. }
  1475. VM_BUG_ON(PageCompound(page));
  1476. BUG_ON(!PageAnon(page));
  1477. VM_BUG_ON(!PageSwapBacked(page));
  1478. /* cannot use mapcount: can't collapse if there's a gup pin */
  1479. if (page_count(page) != 1) {
  1480. release_pte_pages(pte, _pte);
  1481. goto out;
  1482. }
  1483. /*
  1484. * We can do it before isolate_lru_page because the
  1485. * page can't be freed from under us. NOTE: PG_lock
  1486. * is needed to serialize against split_huge_page
  1487. * when invoked from the VM.
  1488. */
  1489. if (!trylock_page(page)) {
  1490. release_pte_pages(pte, _pte);
  1491. goto out;
  1492. }
  1493. /*
  1494. * Isolate the page to avoid collapsing an hugepage
  1495. * currently in use by the VM.
  1496. */
  1497. if (isolate_lru_page(page)) {
  1498. unlock_page(page);
  1499. release_pte_pages(pte, _pte);
  1500. goto out;
  1501. }
  1502. /* 0 stands for page_is_file_cache(page) == false */
  1503. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1504. VM_BUG_ON(!PageLocked(page));
  1505. VM_BUG_ON(PageLRU(page));
  1506. /* If there is no mapped pte young don't collapse the page */
  1507. if (pte_young(pteval) || PageReferenced(page) ||
  1508. mmu_notifier_test_young(vma->vm_mm, address))
  1509. referenced = 1;
  1510. }
  1511. if (unlikely(!referenced))
  1512. release_all_pte_pages(pte);
  1513. else
  1514. isolated = 1;
  1515. out:
  1516. return isolated;
  1517. }
  1518. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1519. struct vm_area_struct *vma,
  1520. unsigned long address,
  1521. spinlock_t *ptl)
  1522. {
  1523. pte_t *_pte;
  1524. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1525. pte_t pteval = *_pte;
  1526. struct page *src_page;
  1527. if (pte_none(pteval)) {
  1528. clear_user_highpage(page, address);
  1529. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1530. } else {
  1531. src_page = pte_page(pteval);
  1532. copy_user_highpage(page, src_page, address, vma);
  1533. VM_BUG_ON(page_mapcount(src_page) != 1);
  1534. VM_BUG_ON(page_count(src_page) != 2);
  1535. release_pte_page(src_page);
  1536. /*
  1537. * ptl mostly unnecessary, but preempt has to
  1538. * be disabled to update the per-cpu stats
  1539. * inside page_remove_rmap().
  1540. */
  1541. spin_lock(ptl);
  1542. /*
  1543. * paravirt calls inside pte_clear here are
  1544. * superfluous.
  1545. */
  1546. pte_clear(vma->vm_mm, address, _pte);
  1547. page_remove_rmap(src_page);
  1548. spin_unlock(ptl);
  1549. free_page_and_swap_cache(src_page);
  1550. }
  1551. address += PAGE_SIZE;
  1552. page++;
  1553. }
  1554. }
  1555. static void collapse_huge_page(struct mm_struct *mm,
  1556. unsigned long address,
  1557. struct page **hpage,
  1558. struct vm_area_struct *vma,
  1559. int node)
  1560. {
  1561. pgd_t *pgd;
  1562. pud_t *pud;
  1563. pmd_t *pmd, _pmd;
  1564. pte_t *pte;
  1565. pgtable_t pgtable;
  1566. struct page *new_page;
  1567. spinlock_t *ptl;
  1568. int isolated;
  1569. unsigned long hstart, hend;
  1570. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1571. #ifndef CONFIG_NUMA
  1572. VM_BUG_ON(!*hpage);
  1573. new_page = *hpage;
  1574. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1575. up_read(&mm->mmap_sem);
  1576. return;
  1577. }
  1578. #else
  1579. VM_BUG_ON(*hpage);
  1580. /*
  1581. * Allocate the page while the vma is still valid and under
  1582. * the mmap_sem read mode so there is no memory allocation
  1583. * later when we take the mmap_sem in write mode. This is more
  1584. * friendly behavior (OTOH it may actually hide bugs) to
  1585. * filesystems in userland with daemons allocating memory in
  1586. * the userland I/O paths. Allocating memory with the
  1587. * mmap_sem in read mode is good idea also to allow greater
  1588. * scalability.
  1589. */
  1590. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1591. node, __GFP_OTHER_NODE);
  1592. if (unlikely(!new_page)) {
  1593. up_read(&mm->mmap_sem);
  1594. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1595. *hpage = ERR_PTR(-ENOMEM);
  1596. return;
  1597. }
  1598. count_vm_event(THP_COLLAPSE_ALLOC);
  1599. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1600. up_read(&mm->mmap_sem);
  1601. put_page(new_page);
  1602. return;
  1603. }
  1604. #endif
  1605. /* after allocating the hugepage upgrade to mmap_sem write mode */
  1606. up_read(&mm->mmap_sem);
  1607. /*
  1608. * Prevent all access to pagetables with the exception of
  1609. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1610. * handled by the anon_vma lock + PG_lock.
  1611. */
  1612. down_write(&mm->mmap_sem);
  1613. if (unlikely(khugepaged_test_exit(mm)))
  1614. goto out;
  1615. vma = find_vma(mm, address);
  1616. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1617. hend = vma->vm_end & HPAGE_PMD_MASK;
  1618. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1619. goto out;
  1620. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1621. (vma->vm_flags & VM_NOHUGEPAGE))
  1622. goto out;
  1623. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1624. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1625. goto out;
  1626. if (is_vma_temporary_stack(vma))
  1627. goto out;
  1628. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1629. pgd = pgd_offset(mm, address);
  1630. if (!pgd_present(*pgd))
  1631. goto out;
  1632. pud = pud_offset(pgd, address);
  1633. if (!pud_present(*pud))
  1634. goto out;
  1635. pmd = pmd_offset(pud, address);
  1636. /* pmd can't go away or become huge under us */
  1637. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1638. goto out;
  1639. anon_vma_lock(vma->anon_vma);
  1640. pte = pte_offset_map(pmd, address);
  1641. ptl = pte_lockptr(mm, pmd);
  1642. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1643. /*
  1644. * After this gup_fast can't run anymore. This also removes
  1645. * any huge TLB entry from the CPU so we won't allow
  1646. * huge and small TLB entries for the same virtual address
  1647. * to avoid the risk of CPU bugs in that area.
  1648. */
  1649. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1650. spin_unlock(&mm->page_table_lock);
  1651. spin_lock(ptl);
  1652. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1653. spin_unlock(ptl);
  1654. if (unlikely(!isolated)) {
  1655. pte_unmap(pte);
  1656. spin_lock(&mm->page_table_lock);
  1657. BUG_ON(!pmd_none(*pmd));
  1658. set_pmd_at(mm, address, pmd, _pmd);
  1659. spin_unlock(&mm->page_table_lock);
  1660. anon_vma_unlock(vma->anon_vma);
  1661. goto out;
  1662. }
  1663. /*
  1664. * All pages are isolated and locked so anon_vma rmap
  1665. * can't run anymore.
  1666. */
  1667. anon_vma_unlock(vma->anon_vma);
  1668. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1669. pte_unmap(pte);
  1670. __SetPageUptodate(new_page);
  1671. pgtable = pmd_pgtable(_pmd);
  1672. VM_BUG_ON(page_count(pgtable) != 1);
  1673. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1674. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1675. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1676. _pmd = pmd_mkhuge(_pmd);
  1677. /*
  1678. * spin_lock() below is not the equivalent of smp_wmb(), so
  1679. * this is needed to avoid the copy_huge_page writes to become
  1680. * visible after the set_pmd_at() write.
  1681. */
  1682. smp_wmb();
  1683. spin_lock(&mm->page_table_lock);
  1684. BUG_ON(!pmd_none(*pmd));
  1685. page_add_new_anon_rmap(new_page, vma, address);
  1686. set_pmd_at(mm, address, pmd, _pmd);
  1687. update_mmu_cache(vma, address, entry);
  1688. prepare_pmd_huge_pte(pgtable, mm);
  1689. mm->nr_ptes--;
  1690. spin_unlock(&mm->page_table_lock);
  1691. #ifndef CONFIG_NUMA
  1692. *hpage = NULL;
  1693. #endif
  1694. khugepaged_pages_collapsed++;
  1695. out_up_write:
  1696. up_write(&mm->mmap_sem);
  1697. return;
  1698. out:
  1699. mem_cgroup_uncharge_page(new_page);
  1700. #ifdef CONFIG_NUMA
  1701. put_page(new_page);
  1702. #endif
  1703. goto out_up_write;
  1704. }
  1705. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1706. struct vm_area_struct *vma,
  1707. unsigned long address,
  1708. struct page **hpage)
  1709. {
  1710. pgd_t *pgd;
  1711. pud_t *pud;
  1712. pmd_t *pmd;
  1713. pte_t *pte, *_pte;
  1714. int ret = 0, referenced = 0, none = 0;
  1715. struct page *page;
  1716. unsigned long _address;
  1717. spinlock_t *ptl;
  1718. int node = -1;
  1719. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1720. pgd = pgd_offset(mm, address);
  1721. if (!pgd_present(*pgd))
  1722. goto out;
  1723. pud = pud_offset(pgd, address);
  1724. if (!pud_present(*pud))
  1725. goto out;
  1726. pmd = pmd_offset(pud, address);
  1727. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1728. goto out;
  1729. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1730. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1731. _pte++, _address += PAGE_SIZE) {
  1732. pte_t pteval = *_pte;
  1733. if (pte_none(pteval)) {
  1734. if (++none <= khugepaged_max_ptes_none)
  1735. continue;
  1736. else
  1737. goto out_unmap;
  1738. }
  1739. if (!pte_present(pteval) || !pte_write(pteval))
  1740. goto out_unmap;
  1741. page = vm_normal_page(vma, _address, pteval);
  1742. if (unlikely(!page))
  1743. goto out_unmap;
  1744. /*
  1745. * Chose the node of the first page. This could
  1746. * be more sophisticated and look at more pages,
  1747. * but isn't for now.
  1748. */
  1749. if (node == -1)
  1750. node = page_to_nid(page);
  1751. VM_BUG_ON(PageCompound(page));
  1752. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1753. goto out_unmap;
  1754. /* cannot use mapcount: can't collapse if there's a gup pin */
  1755. if (page_count(page) != 1)
  1756. goto out_unmap;
  1757. if (pte_young(pteval) || PageReferenced(page) ||
  1758. mmu_notifier_test_young(vma->vm_mm, address))
  1759. referenced = 1;
  1760. }
  1761. if (referenced)
  1762. ret = 1;
  1763. out_unmap:
  1764. pte_unmap_unlock(pte, ptl);
  1765. if (ret)
  1766. /* collapse_huge_page will return with the mmap_sem released */
  1767. collapse_huge_page(mm, address, hpage, vma, node);
  1768. out:
  1769. return ret;
  1770. }
  1771. static void collect_mm_slot(struct mm_slot *mm_slot)
  1772. {
  1773. struct mm_struct *mm = mm_slot->mm;
  1774. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1775. if (khugepaged_test_exit(mm)) {
  1776. /* free mm_slot */
  1777. hlist_del(&mm_slot->hash);
  1778. list_del(&mm_slot->mm_node);
  1779. /*
  1780. * Not strictly needed because the mm exited already.
  1781. *
  1782. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1783. */
  1784. /* khugepaged_mm_lock actually not necessary for the below */
  1785. free_mm_slot(mm_slot);
  1786. mmdrop(mm);
  1787. }
  1788. }
  1789. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1790. struct page **hpage)
  1791. {
  1792. struct mm_slot *mm_slot;
  1793. struct mm_struct *mm;
  1794. struct vm_area_struct *vma;
  1795. int progress = 0;
  1796. VM_BUG_ON(!pages);
  1797. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1798. if (khugepaged_scan.mm_slot)
  1799. mm_slot = khugepaged_scan.mm_slot;
  1800. else {
  1801. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1802. struct mm_slot, mm_node);
  1803. khugepaged_scan.address = 0;
  1804. khugepaged_scan.mm_slot = mm_slot;
  1805. }
  1806. spin_unlock(&khugepaged_mm_lock);
  1807. mm = mm_slot->mm;
  1808. down_read(&mm->mmap_sem);
  1809. if (unlikely(khugepaged_test_exit(mm)))
  1810. vma = NULL;
  1811. else
  1812. vma = find_vma(mm, khugepaged_scan.address);
  1813. progress++;
  1814. for (; vma; vma = vma->vm_next) {
  1815. unsigned long hstart, hend;
  1816. cond_resched();
  1817. if (unlikely(khugepaged_test_exit(mm))) {
  1818. progress++;
  1819. break;
  1820. }
  1821. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1822. !khugepaged_always()) ||
  1823. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1824. skip:
  1825. progress++;
  1826. continue;
  1827. }
  1828. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1829. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1830. goto skip;
  1831. if (is_vma_temporary_stack(vma))
  1832. goto skip;
  1833. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1834. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1835. hend = vma->vm_end & HPAGE_PMD_MASK;
  1836. if (hstart >= hend)
  1837. goto skip;
  1838. if (khugepaged_scan.address > hend)
  1839. goto skip;
  1840. if (khugepaged_scan.address < hstart)
  1841. khugepaged_scan.address = hstart;
  1842. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1843. while (khugepaged_scan.address < hend) {
  1844. int ret;
  1845. cond_resched();
  1846. if (unlikely(khugepaged_test_exit(mm)))
  1847. goto breakouterloop;
  1848. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1849. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1850. hend);
  1851. ret = khugepaged_scan_pmd(mm, vma,
  1852. khugepaged_scan.address,
  1853. hpage);
  1854. /* move to next address */
  1855. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1856. progress += HPAGE_PMD_NR;
  1857. if (ret)
  1858. /* we released mmap_sem so break loop */
  1859. goto breakouterloop_mmap_sem;
  1860. if (progress >= pages)
  1861. goto breakouterloop;
  1862. }
  1863. }
  1864. breakouterloop:
  1865. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1866. breakouterloop_mmap_sem:
  1867. spin_lock(&khugepaged_mm_lock);
  1868. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1869. /*
  1870. * Release the current mm_slot if this mm is about to die, or
  1871. * if we scanned all vmas of this mm.
  1872. */
  1873. if (khugepaged_test_exit(mm) || !vma) {
  1874. /*
  1875. * Make sure that if mm_users is reaching zero while
  1876. * khugepaged runs here, khugepaged_exit will find
  1877. * mm_slot not pointing to the exiting mm.
  1878. */
  1879. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1880. khugepaged_scan.mm_slot = list_entry(
  1881. mm_slot->mm_node.next,
  1882. struct mm_slot, mm_node);
  1883. khugepaged_scan.address = 0;
  1884. } else {
  1885. khugepaged_scan.mm_slot = NULL;
  1886. khugepaged_full_scans++;
  1887. }
  1888. collect_mm_slot(mm_slot);
  1889. }
  1890. return progress;
  1891. }
  1892. static int khugepaged_has_work(void)
  1893. {
  1894. return !list_empty(&khugepaged_scan.mm_head) &&
  1895. khugepaged_enabled();
  1896. }
  1897. static int khugepaged_wait_event(void)
  1898. {
  1899. return !list_empty(&khugepaged_scan.mm_head) ||
  1900. !khugepaged_enabled();
  1901. }
  1902. static void khugepaged_do_scan(struct page **hpage)
  1903. {
  1904. unsigned int progress = 0, pass_through_head = 0;
  1905. unsigned int pages = khugepaged_pages_to_scan;
  1906. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1907. while (progress < pages) {
  1908. cond_resched();
  1909. #ifndef CONFIG_NUMA
  1910. if (!*hpage) {
  1911. *hpage = alloc_hugepage(khugepaged_defrag());
  1912. if (unlikely(!*hpage)) {
  1913. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1914. break;
  1915. }
  1916. count_vm_event(THP_COLLAPSE_ALLOC);
  1917. }
  1918. #else
  1919. if (IS_ERR(*hpage))
  1920. break;
  1921. #endif
  1922. if (unlikely(kthread_should_stop() || freezing(current)))
  1923. break;
  1924. spin_lock(&khugepaged_mm_lock);
  1925. if (!khugepaged_scan.mm_slot)
  1926. pass_through_head++;
  1927. if (khugepaged_has_work() &&
  1928. pass_through_head < 2)
  1929. progress += khugepaged_scan_mm_slot(pages - progress,
  1930. hpage);
  1931. else
  1932. progress = pages;
  1933. spin_unlock(&khugepaged_mm_lock);
  1934. }
  1935. }
  1936. static void khugepaged_alloc_sleep(void)
  1937. {
  1938. DEFINE_WAIT(wait);
  1939. add_wait_queue(&khugepaged_wait, &wait);
  1940. schedule_timeout_interruptible(
  1941. msecs_to_jiffies(
  1942. khugepaged_alloc_sleep_millisecs));
  1943. remove_wait_queue(&khugepaged_wait, &wait);
  1944. }
  1945. #ifndef CONFIG_NUMA
  1946. static struct page *khugepaged_alloc_hugepage(void)
  1947. {
  1948. struct page *hpage;
  1949. do {
  1950. hpage = alloc_hugepage(khugepaged_defrag());
  1951. if (!hpage) {
  1952. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1953. khugepaged_alloc_sleep();
  1954. } else
  1955. count_vm_event(THP_COLLAPSE_ALLOC);
  1956. } while (unlikely(!hpage) &&
  1957. likely(khugepaged_enabled()));
  1958. return hpage;
  1959. }
  1960. #endif
  1961. static void khugepaged_loop(void)
  1962. {
  1963. struct page *hpage;
  1964. #ifdef CONFIG_NUMA
  1965. hpage = NULL;
  1966. #endif
  1967. while (likely(khugepaged_enabled())) {
  1968. #ifndef CONFIG_NUMA
  1969. hpage = khugepaged_alloc_hugepage();
  1970. if (unlikely(!hpage)) {
  1971. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1972. break;
  1973. }
  1974. count_vm_event(THP_COLLAPSE_ALLOC);
  1975. #else
  1976. if (IS_ERR(hpage)) {
  1977. khugepaged_alloc_sleep();
  1978. hpage = NULL;
  1979. }
  1980. #endif
  1981. khugepaged_do_scan(&hpage);
  1982. #ifndef CONFIG_NUMA
  1983. if (hpage)
  1984. put_page(hpage);
  1985. #endif
  1986. try_to_freeze();
  1987. if (unlikely(kthread_should_stop()))
  1988. break;
  1989. if (khugepaged_has_work()) {
  1990. DEFINE_WAIT(wait);
  1991. if (!khugepaged_scan_sleep_millisecs)
  1992. continue;
  1993. add_wait_queue(&khugepaged_wait, &wait);
  1994. schedule_timeout_interruptible(
  1995. msecs_to_jiffies(
  1996. khugepaged_scan_sleep_millisecs));
  1997. remove_wait_queue(&khugepaged_wait, &wait);
  1998. } else if (khugepaged_enabled())
  1999. wait_event_freezable(khugepaged_wait,
  2000. khugepaged_wait_event());
  2001. }
  2002. }
  2003. static int khugepaged(void *none)
  2004. {
  2005. struct mm_slot *mm_slot;
  2006. set_freezable();
  2007. set_user_nice(current, 19);
  2008. /* serialize with start_khugepaged() */
  2009. mutex_lock(&khugepaged_mutex);
  2010. for (;;) {
  2011. mutex_unlock(&khugepaged_mutex);
  2012. VM_BUG_ON(khugepaged_thread != current);
  2013. khugepaged_loop();
  2014. VM_BUG_ON(khugepaged_thread != current);
  2015. mutex_lock(&khugepaged_mutex);
  2016. if (!khugepaged_enabled())
  2017. break;
  2018. if (unlikely(kthread_should_stop()))
  2019. break;
  2020. }
  2021. spin_lock(&khugepaged_mm_lock);
  2022. mm_slot = khugepaged_scan.mm_slot;
  2023. khugepaged_scan.mm_slot = NULL;
  2024. if (mm_slot)
  2025. collect_mm_slot(mm_slot);
  2026. spin_unlock(&khugepaged_mm_lock);
  2027. khugepaged_thread = NULL;
  2028. mutex_unlock(&khugepaged_mutex);
  2029. return 0;
  2030. }
  2031. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2032. {
  2033. struct page *page;
  2034. spin_lock(&mm->page_table_lock);
  2035. if (unlikely(!pmd_trans_huge(*pmd))) {
  2036. spin_unlock(&mm->page_table_lock);
  2037. return;
  2038. }
  2039. page = pmd_page(*pmd);
  2040. VM_BUG_ON(!page_count(page));
  2041. get_page(page);
  2042. spin_unlock(&mm->page_table_lock);
  2043. split_huge_page(page);
  2044. put_page(page);
  2045. BUG_ON(pmd_trans_huge(*pmd));
  2046. }
  2047. static void split_huge_page_address(struct mm_struct *mm,
  2048. unsigned long address)
  2049. {
  2050. pgd_t *pgd;
  2051. pud_t *pud;
  2052. pmd_t *pmd;
  2053. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2054. pgd = pgd_offset(mm, address);
  2055. if (!pgd_present(*pgd))
  2056. return;
  2057. pud = pud_offset(pgd, address);
  2058. if (!pud_present(*pud))
  2059. return;
  2060. pmd = pmd_offset(pud, address);
  2061. if (!pmd_present(*pmd))
  2062. return;
  2063. /*
  2064. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2065. * materialize from under us.
  2066. */
  2067. split_huge_page_pmd(mm, pmd);
  2068. }
  2069. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2070. unsigned long start,
  2071. unsigned long end,
  2072. long adjust_next)
  2073. {
  2074. /*
  2075. * If the new start address isn't hpage aligned and it could
  2076. * previously contain an hugepage: check if we need to split
  2077. * an huge pmd.
  2078. */
  2079. if (start & ~HPAGE_PMD_MASK &&
  2080. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2081. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2082. split_huge_page_address(vma->vm_mm, start);
  2083. /*
  2084. * If the new end address isn't hpage aligned and it could
  2085. * previously contain an hugepage: check if we need to split
  2086. * an huge pmd.
  2087. */
  2088. if (end & ~HPAGE_PMD_MASK &&
  2089. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2090. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2091. split_huge_page_address(vma->vm_mm, end);
  2092. /*
  2093. * If we're also updating the vma->vm_next->vm_start, if the new
  2094. * vm_next->vm_start isn't page aligned and it could previously
  2095. * contain an hugepage: check if we need to split an huge pmd.
  2096. */
  2097. if (adjust_next > 0) {
  2098. struct vm_area_struct *next = vma->vm_next;
  2099. unsigned long nstart = next->vm_start;
  2100. nstart += adjust_next << PAGE_SHIFT;
  2101. if (nstart & ~HPAGE_PMD_MASK &&
  2102. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2103. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2104. split_huge_page_address(next->vm_mm, nstart);
  2105. }
  2106. }