dm.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842
  1. /*
  2. * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
  3. * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
  4. *
  5. * This file is released under the GPL.
  6. */
  7. #include "dm.h"
  8. #include "dm-uevent.h"
  9. #include <linux/init.h>
  10. #include <linux/module.h>
  11. #include <linux/mutex.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/blkpg.h>
  14. #include <linux/bio.h>
  15. #include <linux/buffer_head.h>
  16. #include <linux/mempool.h>
  17. #include <linux/slab.h>
  18. #include <linux/idr.h>
  19. #include <linux/hdreg.h>
  20. #include <trace/events/block.h>
  21. #define DM_MSG_PREFIX "core"
  22. static const char *_name = DM_NAME;
  23. static unsigned int major = 0;
  24. static unsigned int _major = 0;
  25. static DEFINE_SPINLOCK(_minor_lock);
  26. /*
  27. * For bio-based dm.
  28. * One of these is allocated per bio.
  29. */
  30. struct dm_io {
  31. struct mapped_device *md;
  32. int error;
  33. atomic_t io_count;
  34. struct bio *bio;
  35. unsigned long start_time;
  36. };
  37. /*
  38. * For bio-based dm.
  39. * One of these is allocated per target within a bio. Hopefully
  40. * this will be simplified out one day.
  41. */
  42. struct dm_target_io {
  43. struct dm_io *io;
  44. struct dm_target *ti;
  45. union map_info info;
  46. };
  47. /*
  48. * For request-based dm.
  49. * One of these is allocated per request.
  50. */
  51. struct dm_rq_target_io {
  52. struct mapped_device *md;
  53. struct dm_target *ti;
  54. struct request *orig, clone;
  55. int error;
  56. union map_info info;
  57. };
  58. /*
  59. * For request-based dm.
  60. * One of these is allocated per bio.
  61. */
  62. struct dm_rq_clone_bio_info {
  63. struct bio *orig;
  64. struct request *rq;
  65. };
  66. union map_info *dm_get_mapinfo(struct bio *bio)
  67. {
  68. if (bio && bio->bi_private)
  69. return &((struct dm_target_io *)bio->bi_private)->info;
  70. return NULL;
  71. }
  72. #define MINOR_ALLOCED ((void *)-1)
  73. /*
  74. * Bits for the md->flags field.
  75. */
  76. #define DMF_BLOCK_IO_FOR_SUSPEND 0
  77. #define DMF_SUSPENDED 1
  78. #define DMF_FROZEN 2
  79. #define DMF_FREEING 3
  80. #define DMF_DELETING 4
  81. #define DMF_NOFLUSH_SUSPENDING 5
  82. #define DMF_QUEUE_IO_TO_THREAD 6
  83. /*
  84. * Work processed by per-device workqueue.
  85. */
  86. struct mapped_device {
  87. struct rw_semaphore io_lock;
  88. struct mutex suspend_lock;
  89. rwlock_t map_lock;
  90. atomic_t holders;
  91. atomic_t open_count;
  92. unsigned long flags;
  93. struct request_queue *queue;
  94. struct gendisk *disk;
  95. char name[16];
  96. void *interface_ptr;
  97. /*
  98. * A list of ios that arrived while we were suspended.
  99. */
  100. atomic_t pending;
  101. wait_queue_head_t wait;
  102. struct work_struct work;
  103. struct bio_list deferred;
  104. spinlock_t deferred_lock;
  105. /*
  106. * An error from the barrier request currently being processed.
  107. */
  108. int barrier_error;
  109. /*
  110. * Processing queue (flush/barriers)
  111. */
  112. struct workqueue_struct *wq;
  113. /*
  114. * The current mapping.
  115. */
  116. struct dm_table *map;
  117. /*
  118. * io objects are allocated from here.
  119. */
  120. mempool_t *io_pool;
  121. mempool_t *tio_pool;
  122. struct bio_set *bs;
  123. /*
  124. * Event handling.
  125. */
  126. atomic_t event_nr;
  127. wait_queue_head_t eventq;
  128. atomic_t uevent_seq;
  129. struct list_head uevent_list;
  130. spinlock_t uevent_lock; /* Protect access to uevent_list */
  131. /*
  132. * freeze/thaw support require holding onto a super block
  133. */
  134. struct super_block *frozen_sb;
  135. struct block_device *bdev;
  136. /* forced geometry settings */
  137. struct hd_geometry geometry;
  138. /* sysfs handle */
  139. struct kobject kobj;
  140. };
  141. #define MIN_IOS 256
  142. static struct kmem_cache *_io_cache;
  143. static struct kmem_cache *_tio_cache;
  144. static struct kmem_cache *_rq_tio_cache;
  145. static struct kmem_cache *_rq_bio_info_cache;
  146. static int __init local_init(void)
  147. {
  148. int r = -ENOMEM;
  149. /* allocate a slab for the dm_ios */
  150. _io_cache = KMEM_CACHE(dm_io, 0);
  151. if (!_io_cache)
  152. return r;
  153. /* allocate a slab for the target ios */
  154. _tio_cache = KMEM_CACHE(dm_target_io, 0);
  155. if (!_tio_cache)
  156. goto out_free_io_cache;
  157. _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
  158. if (!_rq_tio_cache)
  159. goto out_free_tio_cache;
  160. _rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
  161. if (!_rq_bio_info_cache)
  162. goto out_free_rq_tio_cache;
  163. r = dm_uevent_init();
  164. if (r)
  165. goto out_free_rq_bio_info_cache;
  166. _major = major;
  167. r = register_blkdev(_major, _name);
  168. if (r < 0)
  169. goto out_uevent_exit;
  170. if (!_major)
  171. _major = r;
  172. return 0;
  173. out_uevent_exit:
  174. dm_uevent_exit();
  175. out_free_rq_bio_info_cache:
  176. kmem_cache_destroy(_rq_bio_info_cache);
  177. out_free_rq_tio_cache:
  178. kmem_cache_destroy(_rq_tio_cache);
  179. out_free_tio_cache:
  180. kmem_cache_destroy(_tio_cache);
  181. out_free_io_cache:
  182. kmem_cache_destroy(_io_cache);
  183. return r;
  184. }
  185. static void local_exit(void)
  186. {
  187. kmem_cache_destroy(_rq_bio_info_cache);
  188. kmem_cache_destroy(_rq_tio_cache);
  189. kmem_cache_destroy(_tio_cache);
  190. kmem_cache_destroy(_io_cache);
  191. unregister_blkdev(_major, _name);
  192. dm_uevent_exit();
  193. _major = 0;
  194. DMINFO("cleaned up");
  195. }
  196. static int (*_inits[])(void) __initdata = {
  197. local_init,
  198. dm_target_init,
  199. dm_linear_init,
  200. dm_stripe_init,
  201. dm_kcopyd_init,
  202. dm_interface_init,
  203. };
  204. static void (*_exits[])(void) = {
  205. local_exit,
  206. dm_target_exit,
  207. dm_linear_exit,
  208. dm_stripe_exit,
  209. dm_kcopyd_exit,
  210. dm_interface_exit,
  211. };
  212. static int __init dm_init(void)
  213. {
  214. const int count = ARRAY_SIZE(_inits);
  215. int r, i;
  216. for (i = 0; i < count; i++) {
  217. r = _inits[i]();
  218. if (r)
  219. goto bad;
  220. }
  221. return 0;
  222. bad:
  223. while (i--)
  224. _exits[i]();
  225. return r;
  226. }
  227. static void __exit dm_exit(void)
  228. {
  229. int i = ARRAY_SIZE(_exits);
  230. while (i--)
  231. _exits[i]();
  232. }
  233. /*
  234. * Block device functions
  235. */
  236. static int dm_blk_open(struct block_device *bdev, fmode_t mode)
  237. {
  238. struct mapped_device *md;
  239. spin_lock(&_minor_lock);
  240. md = bdev->bd_disk->private_data;
  241. if (!md)
  242. goto out;
  243. if (test_bit(DMF_FREEING, &md->flags) ||
  244. test_bit(DMF_DELETING, &md->flags)) {
  245. md = NULL;
  246. goto out;
  247. }
  248. dm_get(md);
  249. atomic_inc(&md->open_count);
  250. out:
  251. spin_unlock(&_minor_lock);
  252. return md ? 0 : -ENXIO;
  253. }
  254. static int dm_blk_close(struct gendisk *disk, fmode_t mode)
  255. {
  256. struct mapped_device *md = disk->private_data;
  257. atomic_dec(&md->open_count);
  258. dm_put(md);
  259. return 0;
  260. }
  261. int dm_open_count(struct mapped_device *md)
  262. {
  263. return atomic_read(&md->open_count);
  264. }
  265. /*
  266. * Guarantees nothing is using the device before it's deleted.
  267. */
  268. int dm_lock_for_deletion(struct mapped_device *md)
  269. {
  270. int r = 0;
  271. spin_lock(&_minor_lock);
  272. if (dm_open_count(md))
  273. r = -EBUSY;
  274. else
  275. set_bit(DMF_DELETING, &md->flags);
  276. spin_unlock(&_minor_lock);
  277. return r;
  278. }
  279. static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  280. {
  281. struct mapped_device *md = bdev->bd_disk->private_data;
  282. return dm_get_geometry(md, geo);
  283. }
  284. static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
  285. unsigned int cmd, unsigned long arg)
  286. {
  287. struct mapped_device *md = bdev->bd_disk->private_data;
  288. struct dm_table *map = dm_get_table(md);
  289. struct dm_target *tgt;
  290. int r = -ENOTTY;
  291. if (!map || !dm_table_get_size(map))
  292. goto out;
  293. /* We only support devices that have a single target */
  294. if (dm_table_get_num_targets(map) != 1)
  295. goto out;
  296. tgt = dm_table_get_target(map, 0);
  297. if (dm_suspended(md)) {
  298. r = -EAGAIN;
  299. goto out;
  300. }
  301. if (tgt->type->ioctl)
  302. r = tgt->type->ioctl(tgt, cmd, arg);
  303. out:
  304. dm_table_put(map);
  305. return r;
  306. }
  307. static struct dm_io *alloc_io(struct mapped_device *md)
  308. {
  309. return mempool_alloc(md->io_pool, GFP_NOIO);
  310. }
  311. static void free_io(struct mapped_device *md, struct dm_io *io)
  312. {
  313. mempool_free(io, md->io_pool);
  314. }
  315. static struct dm_target_io *alloc_tio(struct mapped_device *md)
  316. {
  317. return mempool_alloc(md->tio_pool, GFP_NOIO);
  318. }
  319. static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
  320. {
  321. mempool_free(tio, md->tio_pool);
  322. }
  323. static void start_io_acct(struct dm_io *io)
  324. {
  325. struct mapped_device *md = io->md;
  326. int cpu;
  327. io->start_time = jiffies;
  328. cpu = part_stat_lock();
  329. part_round_stats(cpu, &dm_disk(md)->part0);
  330. part_stat_unlock();
  331. dm_disk(md)->part0.in_flight = atomic_inc_return(&md->pending);
  332. }
  333. static void end_io_acct(struct dm_io *io)
  334. {
  335. struct mapped_device *md = io->md;
  336. struct bio *bio = io->bio;
  337. unsigned long duration = jiffies - io->start_time;
  338. int pending, cpu;
  339. int rw = bio_data_dir(bio);
  340. cpu = part_stat_lock();
  341. part_round_stats(cpu, &dm_disk(md)->part0);
  342. part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
  343. part_stat_unlock();
  344. /*
  345. * After this is decremented the bio must not be touched if it is
  346. * a barrier.
  347. */
  348. dm_disk(md)->part0.in_flight = pending =
  349. atomic_dec_return(&md->pending);
  350. /* nudge anyone waiting on suspend queue */
  351. if (!pending)
  352. wake_up(&md->wait);
  353. }
  354. /*
  355. * Add the bio to the list of deferred io.
  356. */
  357. static void queue_io(struct mapped_device *md, struct bio *bio)
  358. {
  359. down_write(&md->io_lock);
  360. spin_lock_irq(&md->deferred_lock);
  361. bio_list_add(&md->deferred, bio);
  362. spin_unlock_irq(&md->deferred_lock);
  363. if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags))
  364. queue_work(md->wq, &md->work);
  365. up_write(&md->io_lock);
  366. }
  367. /*
  368. * Everyone (including functions in this file), should use this
  369. * function to access the md->map field, and make sure they call
  370. * dm_table_put() when finished.
  371. */
  372. struct dm_table *dm_get_table(struct mapped_device *md)
  373. {
  374. struct dm_table *t;
  375. read_lock(&md->map_lock);
  376. t = md->map;
  377. if (t)
  378. dm_table_get(t);
  379. read_unlock(&md->map_lock);
  380. return t;
  381. }
  382. /*
  383. * Get the geometry associated with a dm device
  384. */
  385. int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
  386. {
  387. *geo = md->geometry;
  388. return 0;
  389. }
  390. /*
  391. * Set the geometry of a device.
  392. */
  393. int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
  394. {
  395. sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
  396. if (geo->start > sz) {
  397. DMWARN("Start sector is beyond the geometry limits.");
  398. return -EINVAL;
  399. }
  400. md->geometry = *geo;
  401. return 0;
  402. }
  403. /*-----------------------------------------------------------------
  404. * CRUD START:
  405. * A more elegant soln is in the works that uses the queue
  406. * merge fn, unfortunately there are a couple of changes to
  407. * the block layer that I want to make for this. So in the
  408. * interests of getting something for people to use I give
  409. * you this clearly demarcated crap.
  410. *---------------------------------------------------------------*/
  411. static int __noflush_suspending(struct mapped_device *md)
  412. {
  413. return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  414. }
  415. /*
  416. * Decrements the number of outstanding ios that a bio has been
  417. * cloned into, completing the original io if necc.
  418. */
  419. static void dec_pending(struct dm_io *io, int error)
  420. {
  421. unsigned long flags;
  422. int io_error;
  423. struct bio *bio;
  424. struct mapped_device *md = io->md;
  425. /* Push-back supersedes any I/O errors */
  426. if (error && !(io->error > 0 && __noflush_suspending(md)))
  427. io->error = error;
  428. if (atomic_dec_and_test(&io->io_count)) {
  429. if (io->error == DM_ENDIO_REQUEUE) {
  430. /*
  431. * Target requested pushing back the I/O.
  432. */
  433. spin_lock_irqsave(&md->deferred_lock, flags);
  434. if (__noflush_suspending(md)) {
  435. if (!bio_barrier(io->bio))
  436. bio_list_add_head(&md->deferred,
  437. io->bio);
  438. } else
  439. /* noflush suspend was interrupted. */
  440. io->error = -EIO;
  441. spin_unlock_irqrestore(&md->deferred_lock, flags);
  442. }
  443. io_error = io->error;
  444. bio = io->bio;
  445. if (bio_barrier(bio)) {
  446. /*
  447. * There can be just one barrier request so we use
  448. * a per-device variable for error reporting.
  449. * Note that you can't touch the bio after end_io_acct
  450. */
  451. if (!md->barrier_error && io_error != -EOPNOTSUPP)
  452. md->barrier_error = io_error;
  453. end_io_acct(io);
  454. } else {
  455. end_io_acct(io);
  456. if (io_error != DM_ENDIO_REQUEUE) {
  457. trace_block_bio_complete(md->queue, bio);
  458. bio_endio(bio, io_error);
  459. }
  460. }
  461. free_io(md, io);
  462. }
  463. }
  464. static void clone_endio(struct bio *bio, int error)
  465. {
  466. int r = 0;
  467. struct dm_target_io *tio = bio->bi_private;
  468. struct dm_io *io = tio->io;
  469. struct mapped_device *md = tio->io->md;
  470. dm_endio_fn endio = tio->ti->type->end_io;
  471. if (!bio_flagged(bio, BIO_UPTODATE) && !error)
  472. error = -EIO;
  473. if (endio) {
  474. r = endio(tio->ti, bio, error, &tio->info);
  475. if (r < 0 || r == DM_ENDIO_REQUEUE)
  476. /*
  477. * error and requeue request are handled
  478. * in dec_pending().
  479. */
  480. error = r;
  481. else if (r == DM_ENDIO_INCOMPLETE)
  482. /* The target will handle the io */
  483. return;
  484. else if (r) {
  485. DMWARN("unimplemented target endio return value: %d", r);
  486. BUG();
  487. }
  488. }
  489. /*
  490. * Store md for cleanup instead of tio which is about to get freed.
  491. */
  492. bio->bi_private = md->bs;
  493. free_tio(md, tio);
  494. bio_put(bio);
  495. dec_pending(io, error);
  496. }
  497. static sector_t max_io_len(struct mapped_device *md,
  498. sector_t sector, struct dm_target *ti)
  499. {
  500. sector_t offset = sector - ti->begin;
  501. sector_t len = ti->len - offset;
  502. /*
  503. * Does the target need to split even further ?
  504. */
  505. if (ti->split_io) {
  506. sector_t boundary;
  507. boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
  508. - offset;
  509. if (len > boundary)
  510. len = boundary;
  511. }
  512. return len;
  513. }
  514. static void __map_bio(struct dm_target *ti, struct bio *clone,
  515. struct dm_target_io *tio)
  516. {
  517. int r;
  518. sector_t sector;
  519. struct mapped_device *md;
  520. clone->bi_end_io = clone_endio;
  521. clone->bi_private = tio;
  522. /*
  523. * Map the clone. If r == 0 we don't need to do
  524. * anything, the target has assumed ownership of
  525. * this io.
  526. */
  527. atomic_inc(&tio->io->io_count);
  528. sector = clone->bi_sector;
  529. r = ti->type->map(ti, clone, &tio->info);
  530. if (r == DM_MAPIO_REMAPPED) {
  531. /* the bio has been remapped so dispatch it */
  532. trace_block_remap(bdev_get_queue(clone->bi_bdev), clone,
  533. tio->io->bio->bi_bdev->bd_dev, sector);
  534. generic_make_request(clone);
  535. } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
  536. /* error the io and bail out, or requeue it if needed */
  537. md = tio->io->md;
  538. dec_pending(tio->io, r);
  539. /*
  540. * Store bio_set for cleanup.
  541. */
  542. clone->bi_private = md->bs;
  543. bio_put(clone);
  544. free_tio(md, tio);
  545. } else if (r) {
  546. DMWARN("unimplemented target map return value: %d", r);
  547. BUG();
  548. }
  549. }
  550. struct clone_info {
  551. struct mapped_device *md;
  552. struct dm_table *map;
  553. struct bio *bio;
  554. struct dm_io *io;
  555. sector_t sector;
  556. sector_t sector_count;
  557. unsigned short idx;
  558. };
  559. static void dm_bio_destructor(struct bio *bio)
  560. {
  561. struct bio_set *bs = bio->bi_private;
  562. bio_free(bio, bs);
  563. }
  564. /*
  565. * Creates a little bio that is just does part of a bvec.
  566. */
  567. static struct bio *split_bvec(struct bio *bio, sector_t sector,
  568. unsigned short idx, unsigned int offset,
  569. unsigned int len, struct bio_set *bs)
  570. {
  571. struct bio *clone;
  572. struct bio_vec *bv = bio->bi_io_vec + idx;
  573. clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
  574. clone->bi_destructor = dm_bio_destructor;
  575. *clone->bi_io_vec = *bv;
  576. clone->bi_sector = sector;
  577. clone->bi_bdev = bio->bi_bdev;
  578. clone->bi_rw = bio->bi_rw & ~(1 << BIO_RW_BARRIER);
  579. clone->bi_vcnt = 1;
  580. clone->bi_size = to_bytes(len);
  581. clone->bi_io_vec->bv_offset = offset;
  582. clone->bi_io_vec->bv_len = clone->bi_size;
  583. clone->bi_flags |= 1 << BIO_CLONED;
  584. if (bio_integrity(bio)) {
  585. bio_integrity_clone(clone, bio, GFP_NOIO);
  586. bio_integrity_trim(clone,
  587. bio_sector_offset(bio, idx, offset), len);
  588. }
  589. return clone;
  590. }
  591. /*
  592. * Creates a bio that consists of range of complete bvecs.
  593. */
  594. static struct bio *clone_bio(struct bio *bio, sector_t sector,
  595. unsigned short idx, unsigned short bv_count,
  596. unsigned int len, struct bio_set *bs)
  597. {
  598. struct bio *clone;
  599. clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
  600. __bio_clone(clone, bio);
  601. clone->bi_rw &= ~(1 << BIO_RW_BARRIER);
  602. clone->bi_destructor = dm_bio_destructor;
  603. clone->bi_sector = sector;
  604. clone->bi_idx = idx;
  605. clone->bi_vcnt = idx + bv_count;
  606. clone->bi_size = to_bytes(len);
  607. clone->bi_flags &= ~(1 << BIO_SEG_VALID);
  608. if (bio_integrity(bio)) {
  609. bio_integrity_clone(clone, bio, GFP_NOIO);
  610. if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
  611. bio_integrity_trim(clone,
  612. bio_sector_offset(bio, idx, 0), len);
  613. }
  614. return clone;
  615. }
  616. static void __flush_target(struct clone_info *ci, struct dm_target *ti,
  617. unsigned flush_nr)
  618. {
  619. struct dm_target_io *tio = alloc_tio(ci->md);
  620. struct bio *clone;
  621. tio->io = ci->io;
  622. tio->ti = ti;
  623. memset(&tio->info, 0, sizeof(tio->info));
  624. tio->info.flush_request = flush_nr;
  625. clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
  626. __bio_clone(clone, ci->bio);
  627. clone->bi_destructor = dm_bio_destructor;
  628. __map_bio(ti, clone, tio);
  629. }
  630. static int __clone_and_map_empty_barrier(struct clone_info *ci)
  631. {
  632. unsigned target_nr = 0, flush_nr;
  633. struct dm_target *ti;
  634. while ((ti = dm_table_get_target(ci->map, target_nr++)))
  635. for (flush_nr = 0; flush_nr < ti->num_flush_requests;
  636. flush_nr++)
  637. __flush_target(ci, ti, flush_nr);
  638. ci->sector_count = 0;
  639. return 0;
  640. }
  641. static int __clone_and_map(struct clone_info *ci)
  642. {
  643. struct bio *clone, *bio = ci->bio;
  644. struct dm_target *ti;
  645. sector_t len = 0, max;
  646. struct dm_target_io *tio;
  647. if (unlikely(bio_empty_barrier(bio)))
  648. return __clone_and_map_empty_barrier(ci);
  649. ti = dm_table_find_target(ci->map, ci->sector);
  650. if (!dm_target_is_valid(ti))
  651. return -EIO;
  652. max = max_io_len(ci->md, ci->sector, ti);
  653. /*
  654. * Allocate a target io object.
  655. */
  656. tio = alloc_tio(ci->md);
  657. tio->io = ci->io;
  658. tio->ti = ti;
  659. memset(&tio->info, 0, sizeof(tio->info));
  660. if (ci->sector_count <= max) {
  661. /*
  662. * Optimise for the simple case where we can do all of
  663. * the remaining io with a single clone.
  664. */
  665. clone = clone_bio(bio, ci->sector, ci->idx,
  666. bio->bi_vcnt - ci->idx, ci->sector_count,
  667. ci->md->bs);
  668. __map_bio(ti, clone, tio);
  669. ci->sector_count = 0;
  670. } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
  671. /*
  672. * There are some bvecs that don't span targets.
  673. * Do as many of these as possible.
  674. */
  675. int i;
  676. sector_t remaining = max;
  677. sector_t bv_len;
  678. for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
  679. bv_len = to_sector(bio->bi_io_vec[i].bv_len);
  680. if (bv_len > remaining)
  681. break;
  682. remaining -= bv_len;
  683. len += bv_len;
  684. }
  685. clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
  686. ci->md->bs);
  687. __map_bio(ti, clone, tio);
  688. ci->sector += len;
  689. ci->sector_count -= len;
  690. ci->idx = i;
  691. } else {
  692. /*
  693. * Handle a bvec that must be split between two or more targets.
  694. */
  695. struct bio_vec *bv = bio->bi_io_vec + ci->idx;
  696. sector_t remaining = to_sector(bv->bv_len);
  697. unsigned int offset = 0;
  698. do {
  699. if (offset) {
  700. ti = dm_table_find_target(ci->map, ci->sector);
  701. if (!dm_target_is_valid(ti))
  702. return -EIO;
  703. max = max_io_len(ci->md, ci->sector, ti);
  704. tio = alloc_tio(ci->md);
  705. tio->io = ci->io;
  706. tio->ti = ti;
  707. memset(&tio->info, 0, sizeof(tio->info));
  708. }
  709. len = min(remaining, max);
  710. clone = split_bvec(bio, ci->sector, ci->idx,
  711. bv->bv_offset + offset, len,
  712. ci->md->bs);
  713. __map_bio(ti, clone, tio);
  714. ci->sector += len;
  715. ci->sector_count -= len;
  716. offset += to_bytes(len);
  717. } while (remaining -= len);
  718. ci->idx++;
  719. }
  720. return 0;
  721. }
  722. /*
  723. * Split the bio into several clones and submit it to targets.
  724. */
  725. static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
  726. {
  727. struct clone_info ci;
  728. int error = 0;
  729. ci.map = dm_get_table(md);
  730. if (unlikely(!ci.map)) {
  731. if (!bio_barrier(bio))
  732. bio_io_error(bio);
  733. else
  734. if (!md->barrier_error)
  735. md->barrier_error = -EIO;
  736. return;
  737. }
  738. ci.md = md;
  739. ci.bio = bio;
  740. ci.io = alloc_io(md);
  741. ci.io->error = 0;
  742. atomic_set(&ci.io->io_count, 1);
  743. ci.io->bio = bio;
  744. ci.io->md = md;
  745. ci.sector = bio->bi_sector;
  746. ci.sector_count = bio_sectors(bio);
  747. if (unlikely(bio_empty_barrier(bio)))
  748. ci.sector_count = 1;
  749. ci.idx = bio->bi_idx;
  750. start_io_acct(ci.io);
  751. while (ci.sector_count && !error)
  752. error = __clone_and_map(&ci);
  753. /* drop the extra reference count */
  754. dec_pending(ci.io, error);
  755. dm_table_put(ci.map);
  756. }
  757. /*-----------------------------------------------------------------
  758. * CRUD END
  759. *---------------------------------------------------------------*/
  760. static int dm_merge_bvec(struct request_queue *q,
  761. struct bvec_merge_data *bvm,
  762. struct bio_vec *biovec)
  763. {
  764. struct mapped_device *md = q->queuedata;
  765. struct dm_table *map = dm_get_table(md);
  766. struct dm_target *ti;
  767. sector_t max_sectors;
  768. int max_size = 0;
  769. if (unlikely(!map))
  770. goto out;
  771. ti = dm_table_find_target(map, bvm->bi_sector);
  772. if (!dm_target_is_valid(ti))
  773. goto out_table;
  774. /*
  775. * Find maximum amount of I/O that won't need splitting
  776. */
  777. max_sectors = min(max_io_len(md, bvm->bi_sector, ti),
  778. (sector_t) BIO_MAX_SECTORS);
  779. max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
  780. if (max_size < 0)
  781. max_size = 0;
  782. /*
  783. * merge_bvec_fn() returns number of bytes
  784. * it can accept at this offset
  785. * max is precomputed maximal io size
  786. */
  787. if (max_size && ti->type->merge)
  788. max_size = ti->type->merge(ti, bvm, biovec, max_size);
  789. /*
  790. * If the target doesn't support merge method and some of the devices
  791. * provided their merge_bvec method (we know this by looking at
  792. * queue_max_hw_sectors), then we can't allow bios with multiple vector
  793. * entries. So always set max_size to 0, and the code below allows
  794. * just one page.
  795. */
  796. else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
  797. max_size = 0;
  798. out_table:
  799. dm_table_put(map);
  800. out:
  801. /*
  802. * Always allow an entire first page
  803. */
  804. if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
  805. max_size = biovec->bv_len;
  806. return max_size;
  807. }
  808. /*
  809. * The request function that just remaps the bio built up by
  810. * dm_merge_bvec.
  811. */
  812. static int dm_request(struct request_queue *q, struct bio *bio)
  813. {
  814. int rw = bio_data_dir(bio);
  815. struct mapped_device *md = q->queuedata;
  816. int cpu;
  817. down_read(&md->io_lock);
  818. cpu = part_stat_lock();
  819. part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
  820. part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
  821. part_stat_unlock();
  822. /*
  823. * If we're suspended or the thread is processing barriers
  824. * we have to queue this io for later.
  825. */
  826. if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags)) ||
  827. unlikely(bio_barrier(bio))) {
  828. up_read(&md->io_lock);
  829. if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) &&
  830. bio_rw(bio) == READA) {
  831. bio_io_error(bio);
  832. return 0;
  833. }
  834. queue_io(md, bio);
  835. return 0;
  836. }
  837. __split_and_process_bio(md, bio);
  838. up_read(&md->io_lock);
  839. return 0;
  840. }
  841. static void dm_unplug_all(struct request_queue *q)
  842. {
  843. struct mapped_device *md = q->queuedata;
  844. struct dm_table *map = dm_get_table(md);
  845. if (map) {
  846. dm_table_unplug_all(map);
  847. dm_table_put(map);
  848. }
  849. }
  850. static int dm_any_congested(void *congested_data, int bdi_bits)
  851. {
  852. int r = bdi_bits;
  853. struct mapped_device *md = congested_data;
  854. struct dm_table *map;
  855. if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  856. map = dm_get_table(md);
  857. if (map) {
  858. r = dm_table_any_congested(map, bdi_bits);
  859. dm_table_put(map);
  860. }
  861. }
  862. return r;
  863. }
  864. /*-----------------------------------------------------------------
  865. * An IDR is used to keep track of allocated minor numbers.
  866. *---------------------------------------------------------------*/
  867. static DEFINE_IDR(_minor_idr);
  868. static void free_minor(int minor)
  869. {
  870. spin_lock(&_minor_lock);
  871. idr_remove(&_minor_idr, minor);
  872. spin_unlock(&_minor_lock);
  873. }
  874. /*
  875. * See if the device with a specific minor # is free.
  876. */
  877. static int specific_minor(int minor)
  878. {
  879. int r, m;
  880. if (minor >= (1 << MINORBITS))
  881. return -EINVAL;
  882. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  883. if (!r)
  884. return -ENOMEM;
  885. spin_lock(&_minor_lock);
  886. if (idr_find(&_minor_idr, minor)) {
  887. r = -EBUSY;
  888. goto out;
  889. }
  890. r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
  891. if (r)
  892. goto out;
  893. if (m != minor) {
  894. idr_remove(&_minor_idr, m);
  895. r = -EBUSY;
  896. goto out;
  897. }
  898. out:
  899. spin_unlock(&_minor_lock);
  900. return r;
  901. }
  902. static int next_free_minor(int *minor)
  903. {
  904. int r, m;
  905. r = idr_pre_get(&_minor_idr, GFP_KERNEL);
  906. if (!r)
  907. return -ENOMEM;
  908. spin_lock(&_minor_lock);
  909. r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
  910. if (r)
  911. goto out;
  912. if (m >= (1 << MINORBITS)) {
  913. idr_remove(&_minor_idr, m);
  914. r = -ENOSPC;
  915. goto out;
  916. }
  917. *minor = m;
  918. out:
  919. spin_unlock(&_minor_lock);
  920. return r;
  921. }
  922. static struct block_device_operations dm_blk_dops;
  923. static void dm_wq_work(struct work_struct *work);
  924. /*
  925. * Allocate and initialise a blank device with a given minor.
  926. */
  927. static struct mapped_device *alloc_dev(int minor)
  928. {
  929. int r;
  930. struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
  931. void *old_md;
  932. if (!md) {
  933. DMWARN("unable to allocate device, out of memory.");
  934. return NULL;
  935. }
  936. if (!try_module_get(THIS_MODULE))
  937. goto bad_module_get;
  938. /* get a minor number for the dev */
  939. if (minor == DM_ANY_MINOR)
  940. r = next_free_minor(&minor);
  941. else
  942. r = specific_minor(minor);
  943. if (r < 0)
  944. goto bad_minor;
  945. init_rwsem(&md->io_lock);
  946. mutex_init(&md->suspend_lock);
  947. spin_lock_init(&md->deferred_lock);
  948. rwlock_init(&md->map_lock);
  949. atomic_set(&md->holders, 1);
  950. atomic_set(&md->open_count, 0);
  951. atomic_set(&md->event_nr, 0);
  952. atomic_set(&md->uevent_seq, 0);
  953. INIT_LIST_HEAD(&md->uevent_list);
  954. spin_lock_init(&md->uevent_lock);
  955. md->queue = blk_alloc_queue(GFP_KERNEL);
  956. if (!md->queue)
  957. goto bad_queue;
  958. md->queue->queuedata = md;
  959. md->queue->backing_dev_info.congested_fn = dm_any_congested;
  960. md->queue->backing_dev_info.congested_data = md;
  961. blk_queue_make_request(md->queue, dm_request);
  962. blk_queue_ordered(md->queue, QUEUE_ORDERED_DRAIN, NULL);
  963. blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
  964. md->queue->unplug_fn = dm_unplug_all;
  965. blk_queue_merge_bvec(md->queue, dm_merge_bvec);
  966. md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
  967. if (!md->io_pool)
  968. goto bad_io_pool;
  969. md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
  970. if (!md->tio_pool)
  971. goto bad_tio_pool;
  972. md->bs = bioset_create(16, 0);
  973. if (!md->bs)
  974. goto bad_no_bioset;
  975. md->disk = alloc_disk(1);
  976. if (!md->disk)
  977. goto bad_disk;
  978. atomic_set(&md->pending, 0);
  979. init_waitqueue_head(&md->wait);
  980. INIT_WORK(&md->work, dm_wq_work);
  981. init_waitqueue_head(&md->eventq);
  982. md->disk->major = _major;
  983. md->disk->first_minor = minor;
  984. md->disk->fops = &dm_blk_dops;
  985. md->disk->queue = md->queue;
  986. md->disk->private_data = md;
  987. sprintf(md->disk->disk_name, "dm-%d", minor);
  988. add_disk(md->disk);
  989. format_dev_t(md->name, MKDEV(_major, minor));
  990. md->wq = create_singlethread_workqueue("kdmflush");
  991. if (!md->wq)
  992. goto bad_thread;
  993. md->bdev = bdget_disk(md->disk, 0);
  994. if (!md->bdev)
  995. goto bad_bdev;
  996. /* Populate the mapping, nobody knows we exist yet */
  997. spin_lock(&_minor_lock);
  998. old_md = idr_replace(&_minor_idr, md, minor);
  999. spin_unlock(&_minor_lock);
  1000. BUG_ON(old_md != MINOR_ALLOCED);
  1001. return md;
  1002. bad_bdev:
  1003. destroy_workqueue(md->wq);
  1004. bad_thread:
  1005. put_disk(md->disk);
  1006. bad_disk:
  1007. bioset_free(md->bs);
  1008. bad_no_bioset:
  1009. mempool_destroy(md->tio_pool);
  1010. bad_tio_pool:
  1011. mempool_destroy(md->io_pool);
  1012. bad_io_pool:
  1013. blk_cleanup_queue(md->queue);
  1014. bad_queue:
  1015. free_minor(minor);
  1016. bad_minor:
  1017. module_put(THIS_MODULE);
  1018. bad_module_get:
  1019. kfree(md);
  1020. return NULL;
  1021. }
  1022. static void unlock_fs(struct mapped_device *md);
  1023. static void free_dev(struct mapped_device *md)
  1024. {
  1025. int minor = MINOR(disk_devt(md->disk));
  1026. unlock_fs(md);
  1027. bdput(md->bdev);
  1028. destroy_workqueue(md->wq);
  1029. mempool_destroy(md->tio_pool);
  1030. mempool_destroy(md->io_pool);
  1031. bioset_free(md->bs);
  1032. blk_integrity_unregister(md->disk);
  1033. del_gendisk(md->disk);
  1034. free_minor(minor);
  1035. spin_lock(&_minor_lock);
  1036. md->disk->private_data = NULL;
  1037. spin_unlock(&_minor_lock);
  1038. put_disk(md->disk);
  1039. blk_cleanup_queue(md->queue);
  1040. module_put(THIS_MODULE);
  1041. kfree(md);
  1042. }
  1043. /*
  1044. * Bind a table to the device.
  1045. */
  1046. static void event_callback(void *context)
  1047. {
  1048. unsigned long flags;
  1049. LIST_HEAD(uevents);
  1050. struct mapped_device *md = (struct mapped_device *) context;
  1051. spin_lock_irqsave(&md->uevent_lock, flags);
  1052. list_splice_init(&md->uevent_list, &uevents);
  1053. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1054. dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
  1055. atomic_inc(&md->event_nr);
  1056. wake_up(&md->eventq);
  1057. }
  1058. static void __set_size(struct mapped_device *md, sector_t size)
  1059. {
  1060. set_capacity(md->disk, size);
  1061. mutex_lock(&md->bdev->bd_inode->i_mutex);
  1062. i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
  1063. mutex_unlock(&md->bdev->bd_inode->i_mutex);
  1064. }
  1065. static int __bind(struct mapped_device *md, struct dm_table *t)
  1066. {
  1067. struct request_queue *q = md->queue;
  1068. sector_t size;
  1069. size = dm_table_get_size(t);
  1070. /*
  1071. * Wipe any geometry if the size of the table changed.
  1072. */
  1073. if (size != get_capacity(md->disk))
  1074. memset(&md->geometry, 0, sizeof(md->geometry));
  1075. __set_size(md, size);
  1076. if (!size) {
  1077. dm_table_destroy(t);
  1078. return 0;
  1079. }
  1080. dm_table_event_callback(t, event_callback, md);
  1081. write_lock(&md->map_lock);
  1082. md->map = t;
  1083. dm_table_set_restrictions(t, q);
  1084. write_unlock(&md->map_lock);
  1085. return 0;
  1086. }
  1087. static void __unbind(struct mapped_device *md)
  1088. {
  1089. struct dm_table *map = md->map;
  1090. if (!map)
  1091. return;
  1092. dm_table_event_callback(map, NULL, NULL);
  1093. write_lock(&md->map_lock);
  1094. md->map = NULL;
  1095. write_unlock(&md->map_lock);
  1096. dm_table_destroy(map);
  1097. }
  1098. /*
  1099. * Constructor for a new device.
  1100. */
  1101. int dm_create(int minor, struct mapped_device **result)
  1102. {
  1103. struct mapped_device *md;
  1104. md = alloc_dev(minor);
  1105. if (!md)
  1106. return -ENXIO;
  1107. dm_sysfs_init(md);
  1108. *result = md;
  1109. return 0;
  1110. }
  1111. static struct mapped_device *dm_find_md(dev_t dev)
  1112. {
  1113. struct mapped_device *md;
  1114. unsigned minor = MINOR(dev);
  1115. if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
  1116. return NULL;
  1117. spin_lock(&_minor_lock);
  1118. md = idr_find(&_minor_idr, minor);
  1119. if (md && (md == MINOR_ALLOCED ||
  1120. (MINOR(disk_devt(dm_disk(md))) != minor) ||
  1121. test_bit(DMF_FREEING, &md->flags))) {
  1122. md = NULL;
  1123. goto out;
  1124. }
  1125. out:
  1126. spin_unlock(&_minor_lock);
  1127. return md;
  1128. }
  1129. struct mapped_device *dm_get_md(dev_t dev)
  1130. {
  1131. struct mapped_device *md = dm_find_md(dev);
  1132. if (md)
  1133. dm_get(md);
  1134. return md;
  1135. }
  1136. void *dm_get_mdptr(struct mapped_device *md)
  1137. {
  1138. return md->interface_ptr;
  1139. }
  1140. void dm_set_mdptr(struct mapped_device *md, void *ptr)
  1141. {
  1142. md->interface_ptr = ptr;
  1143. }
  1144. void dm_get(struct mapped_device *md)
  1145. {
  1146. atomic_inc(&md->holders);
  1147. }
  1148. const char *dm_device_name(struct mapped_device *md)
  1149. {
  1150. return md->name;
  1151. }
  1152. EXPORT_SYMBOL_GPL(dm_device_name);
  1153. void dm_put(struct mapped_device *md)
  1154. {
  1155. struct dm_table *map;
  1156. BUG_ON(test_bit(DMF_FREEING, &md->flags));
  1157. if (atomic_dec_and_lock(&md->holders, &_minor_lock)) {
  1158. map = dm_get_table(md);
  1159. idr_replace(&_minor_idr, MINOR_ALLOCED,
  1160. MINOR(disk_devt(dm_disk(md))));
  1161. set_bit(DMF_FREEING, &md->flags);
  1162. spin_unlock(&_minor_lock);
  1163. if (!dm_suspended(md)) {
  1164. dm_table_presuspend_targets(map);
  1165. dm_table_postsuspend_targets(map);
  1166. }
  1167. dm_sysfs_exit(md);
  1168. dm_table_put(map);
  1169. __unbind(md);
  1170. free_dev(md);
  1171. }
  1172. }
  1173. EXPORT_SYMBOL_GPL(dm_put);
  1174. static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
  1175. {
  1176. int r = 0;
  1177. DECLARE_WAITQUEUE(wait, current);
  1178. dm_unplug_all(md->queue);
  1179. add_wait_queue(&md->wait, &wait);
  1180. while (1) {
  1181. set_current_state(interruptible);
  1182. smp_mb();
  1183. if (!atomic_read(&md->pending))
  1184. break;
  1185. if (interruptible == TASK_INTERRUPTIBLE &&
  1186. signal_pending(current)) {
  1187. r = -EINTR;
  1188. break;
  1189. }
  1190. io_schedule();
  1191. }
  1192. set_current_state(TASK_RUNNING);
  1193. remove_wait_queue(&md->wait, &wait);
  1194. return r;
  1195. }
  1196. static void dm_flush(struct mapped_device *md)
  1197. {
  1198. dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
  1199. }
  1200. static void process_barrier(struct mapped_device *md, struct bio *bio)
  1201. {
  1202. md->barrier_error = 0;
  1203. dm_flush(md);
  1204. if (!bio_empty_barrier(bio)) {
  1205. __split_and_process_bio(md, bio);
  1206. dm_flush(md);
  1207. }
  1208. if (md->barrier_error != DM_ENDIO_REQUEUE)
  1209. bio_endio(bio, md->barrier_error);
  1210. else {
  1211. spin_lock_irq(&md->deferred_lock);
  1212. bio_list_add_head(&md->deferred, bio);
  1213. spin_unlock_irq(&md->deferred_lock);
  1214. }
  1215. }
  1216. /*
  1217. * Process the deferred bios
  1218. */
  1219. static void dm_wq_work(struct work_struct *work)
  1220. {
  1221. struct mapped_device *md = container_of(work, struct mapped_device,
  1222. work);
  1223. struct bio *c;
  1224. down_write(&md->io_lock);
  1225. while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
  1226. spin_lock_irq(&md->deferred_lock);
  1227. c = bio_list_pop(&md->deferred);
  1228. spin_unlock_irq(&md->deferred_lock);
  1229. if (!c) {
  1230. clear_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
  1231. break;
  1232. }
  1233. up_write(&md->io_lock);
  1234. if (bio_barrier(c))
  1235. process_barrier(md, c);
  1236. else
  1237. __split_and_process_bio(md, c);
  1238. down_write(&md->io_lock);
  1239. }
  1240. up_write(&md->io_lock);
  1241. }
  1242. static void dm_queue_flush(struct mapped_device *md)
  1243. {
  1244. clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1245. smp_mb__after_clear_bit();
  1246. queue_work(md->wq, &md->work);
  1247. }
  1248. /*
  1249. * Swap in a new table (destroying old one).
  1250. */
  1251. int dm_swap_table(struct mapped_device *md, struct dm_table *table)
  1252. {
  1253. int r = -EINVAL;
  1254. mutex_lock(&md->suspend_lock);
  1255. /* device must be suspended */
  1256. if (!dm_suspended(md))
  1257. goto out;
  1258. __unbind(md);
  1259. r = __bind(md, table);
  1260. out:
  1261. mutex_unlock(&md->suspend_lock);
  1262. return r;
  1263. }
  1264. /*
  1265. * Functions to lock and unlock any filesystem running on the
  1266. * device.
  1267. */
  1268. static int lock_fs(struct mapped_device *md)
  1269. {
  1270. int r;
  1271. WARN_ON(md->frozen_sb);
  1272. md->frozen_sb = freeze_bdev(md->bdev);
  1273. if (IS_ERR(md->frozen_sb)) {
  1274. r = PTR_ERR(md->frozen_sb);
  1275. md->frozen_sb = NULL;
  1276. return r;
  1277. }
  1278. set_bit(DMF_FROZEN, &md->flags);
  1279. return 0;
  1280. }
  1281. static void unlock_fs(struct mapped_device *md)
  1282. {
  1283. if (!test_bit(DMF_FROZEN, &md->flags))
  1284. return;
  1285. thaw_bdev(md->bdev, md->frozen_sb);
  1286. md->frozen_sb = NULL;
  1287. clear_bit(DMF_FROZEN, &md->flags);
  1288. }
  1289. /*
  1290. * We need to be able to change a mapping table under a mounted
  1291. * filesystem. For example we might want to move some data in
  1292. * the background. Before the table can be swapped with
  1293. * dm_bind_table, dm_suspend must be called to flush any in
  1294. * flight bios and ensure that any further io gets deferred.
  1295. */
  1296. int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
  1297. {
  1298. struct dm_table *map = NULL;
  1299. int r = 0;
  1300. int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
  1301. int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
  1302. mutex_lock(&md->suspend_lock);
  1303. if (dm_suspended(md)) {
  1304. r = -EINVAL;
  1305. goto out_unlock;
  1306. }
  1307. map = dm_get_table(md);
  1308. /*
  1309. * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
  1310. * This flag is cleared before dm_suspend returns.
  1311. */
  1312. if (noflush)
  1313. set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1314. /* This does not get reverted if there's an error later. */
  1315. dm_table_presuspend_targets(map);
  1316. /*
  1317. * Flush I/O to the device. noflush supersedes do_lockfs,
  1318. * because lock_fs() needs to flush I/Os.
  1319. */
  1320. if (!noflush && do_lockfs) {
  1321. r = lock_fs(md);
  1322. if (r)
  1323. goto out;
  1324. }
  1325. /*
  1326. * Here we must make sure that no processes are submitting requests
  1327. * to target drivers i.e. no one may be executing
  1328. * __split_and_process_bio. This is called from dm_request and
  1329. * dm_wq_work.
  1330. *
  1331. * To get all processes out of __split_and_process_bio in dm_request,
  1332. * we take the write lock. To prevent any process from reentering
  1333. * __split_and_process_bio from dm_request, we set
  1334. * DMF_QUEUE_IO_TO_THREAD.
  1335. *
  1336. * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
  1337. * and call flush_workqueue(md->wq). flush_workqueue will wait until
  1338. * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
  1339. * further calls to __split_and_process_bio from dm_wq_work.
  1340. */
  1341. down_write(&md->io_lock);
  1342. set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
  1343. set_bit(DMF_QUEUE_IO_TO_THREAD, &md->flags);
  1344. up_write(&md->io_lock);
  1345. flush_workqueue(md->wq);
  1346. /*
  1347. * At this point no more requests are entering target request routines.
  1348. * We call dm_wait_for_completion to wait for all existing requests
  1349. * to finish.
  1350. */
  1351. r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
  1352. down_write(&md->io_lock);
  1353. if (noflush)
  1354. clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
  1355. up_write(&md->io_lock);
  1356. /* were we interrupted ? */
  1357. if (r < 0) {
  1358. dm_queue_flush(md);
  1359. unlock_fs(md);
  1360. goto out; /* pushback list is already flushed, so skip flush */
  1361. }
  1362. /*
  1363. * If dm_wait_for_completion returned 0, the device is completely
  1364. * quiescent now. There is no request-processing activity. All new
  1365. * requests are being added to md->deferred list.
  1366. */
  1367. dm_table_postsuspend_targets(map);
  1368. set_bit(DMF_SUSPENDED, &md->flags);
  1369. out:
  1370. dm_table_put(map);
  1371. out_unlock:
  1372. mutex_unlock(&md->suspend_lock);
  1373. return r;
  1374. }
  1375. int dm_resume(struct mapped_device *md)
  1376. {
  1377. int r = -EINVAL;
  1378. struct dm_table *map = NULL;
  1379. mutex_lock(&md->suspend_lock);
  1380. if (!dm_suspended(md))
  1381. goto out;
  1382. map = dm_get_table(md);
  1383. if (!map || !dm_table_get_size(map))
  1384. goto out;
  1385. r = dm_table_resume_targets(map);
  1386. if (r)
  1387. goto out;
  1388. dm_queue_flush(md);
  1389. unlock_fs(md);
  1390. clear_bit(DMF_SUSPENDED, &md->flags);
  1391. dm_table_unplug_all(map);
  1392. dm_kobject_uevent(md);
  1393. r = 0;
  1394. out:
  1395. dm_table_put(map);
  1396. mutex_unlock(&md->suspend_lock);
  1397. return r;
  1398. }
  1399. /*-----------------------------------------------------------------
  1400. * Event notification.
  1401. *---------------------------------------------------------------*/
  1402. void dm_kobject_uevent(struct mapped_device *md)
  1403. {
  1404. kobject_uevent(&disk_to_dev(md->disk)->kobj, KOBJ_CHANGE);
  1405. }
  1406. uint32_t dm_next_uevent_seq(struct mapped_device *md)
  1407. {
  1408. return atomic_add_return(1, &md->uevent_seq);
  1409. }
  1410. uint32_t dm_get_event_nr(struct mapped_device *md)
  1411. {
  1412. return atomic_read(&md->event_nr);
  1413. }
  1414. int dm_wait_event(struct mapped_device *md, int event_nr)
  1415. {
  1416. return wait_event_interruptible(md->eventq,
  1417. (event_nr != atomic_read(&md->event_nr)));
  1418. }
  1419. void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
  1420. {
  1421. unsigned long flags;
  1422. spin_lock_irqsave(&md->uevent_lock, flags);
  1423. list_add(elist, &md->uevent_list);
  1424. spin_unlock_irqrestore(&md->uevent_lock, flags);
  1425. }
  1426. /*
  1427. * The gendisk is only valid as long as you have a reference
  1428. * count on 'md'.
  1429. */
  1430. struct gendisk *dm_disk(struct mapped_device *md)
  1431. {
  1432. return md->disk;
  1433. }
  1434. struct kobject *dm_kobject(struct mapped_device *md)
  1435. {
  1436. return &md->kobj;
  1437. }
  1438. /*
  1439. * struct mapped_device should not be exported outside of dm.c
  1440. * so use this check to verify that kobj is part of md structure
  1441. */
  1442. struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
  1443. {
  1444. struct mapped_device *md;
  1445. md = container_of(kobj, struct mapped_device, kobj);
  1446. if (&md->kobj != kobj)
  1447. return NULL;
  1448. if (test_bit(DMF_FREEING, &md->flags) ||
  1449. test_bit(DMF_DELETING, &md->flags))
  1450. return NULL;
  1451. dm_get(md);
  1452. return md;
  1453. }
  1454. int dm_suspended(struct mapped_device *md)
  1455. {
  1456. return test_bit(DMF_SUSPENDED, &md->flags);
  1457. }
  1458. int dm_noflush_suspending(struct dm_target *ti)
  1459. {
  1460. struct mapped_device *md = dm_table_get_md(ti->table);
  1461. int r = __noflush_suspending(md);
  1462. dm_put(md);
  1463. return r;
  1464. }
  1465. EXPORT_SYMBOL_GPL(dm_noflush_suspending);
  1466. static struct block_device_operations dm_blk_dops = {
  1467. .open = dm_blk_open,
  1468. .release = dm_blk_close,
  1469. .ioctl = dm_blk_ioctl,
  1470. .getgeo = dm_blk_getgeo,
  1471. .owner = THIS_MODULE
  1472. };
  1473. EXPORT_SYMBOL(dm_get_mapinfo);
  1474. /*
  1475. * module hooks
  1476. */
  1477. module_init(dm_init);
  1478. module_exit(dm_exit);
  1479. module_param(major, uint, 0);
  1480. MODULE_PARM_DESC(major, "The major number of the device mapper");
  1481. MODULE_DESCRIPTION(DM_NAME " driver");
  1482. MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
  1483. MODULE_LICENSE("GPL");