efuse.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation.
  4. *
  5. * Tmis program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * Tmis program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * tmis program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * Tme full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "wifi.h"
  30. #include "efuse.h"
  31. static const u8 MAX_PGPKT_SIZE = 9;
  32. static const u8 PGPKT_DATA_SIZE = 8;
  33. static const int EFUSE_MAX_SIZE = 512;
  34. static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
  35. static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
  36. {0, 0, 0, 2},
  37. {0, 1, 0, 2},
  38. {0, 2, 0, 2},
  39. {1, 0, 0, 1},
  40. {1, 0, 1, 1},
  41. {1, 1, 0, 1},
  42. {1, 1, 1, 3},
  43. {1, 3, 0, 17},
  44. {3, 3, 1, 48},
  45. {10, 0, 0, 6},
  46. {10, 3, 0, 1},
  47. {10, 3, 1, 1},
  48. {11, 0, 0, 28}
  49. };
  50. static void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset,
  51. u8 *pbuf);
  52. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
  53. u8 *value);
  54. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
  55. u16 *value);
  56. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
  57. u32 *value);
  58. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
  59. u8 value);
  60. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
  61. u16 value);
  62. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
  63. u32 value);
  64. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
  65. u8 *data);
  66. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
  67. u8 data);
  68. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
  69. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
  70. u8 *data);
  71. static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
  72. u8 word_en, u8 *data);
  73. static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  74. u8 *targetdata);
  75. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  76. u16 efuse_addr, u8 word_en, u8 *data);
  77. static void efuse_power_switch(struct ieee80211_hw *hw, u8 bwrite,
  78. u8 pwrstate);
  79. static u16 efuse_get_current_size(struct ieee80211_hw *hw);
  80. static u8 efuse_calculate_word_cnts(u8 word_en);
  81. void efuse_initialize(struct ieee80211_hw *hw)
  82. {
  83. struct rtl_priv *rtlpriv = rtl_priv(hw);
  84. u8 bytetemp;
  85. u8 temp;
  86. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
  87. temp = bytetemp | 0x20;
  88. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
  89. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
  90. temp = bytetemp & 0xFE;
  91. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
  92. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
  93. temp = bytetemp | 0x80;
  94. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
  95. rtl_write_byte(rtlpriv, 0x2F8, 0x3);
  96. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  97. }
  98. u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
  99. {
  100. struct rtl_priv *rtlpriv = rtl_priv(hw);
  101. u8 data;
  102. u8 bytetemp;
  103. u8 temp;
  104. u32 k = 0;
  105. if (address < EFUSE_REAL_CONTENT_LEN) {
  106. temp = address & 0xFF;
  107. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  108. temp);
  109. bytetemp = rtl_read_byte(rtlpriv,
  110. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  111. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  112. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  113. temp);
  114. bytetemp = rtl_read_byte(rtlpriv,
  115. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  116. temp = bytetemp & 0x7F;
  117. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  118. temp);
  119. bytetemp = rtl_read_byte(rtlpriv,
  120. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  121. while (!(bytetemp & 0x80)) {
  122. bytetemp = rtl_read_byte(rtlpriv,
  123. rtlpriv->cfg->
  124. maps[EFUSE_CTRL] + 3);
  125. k++;
  126. if (k == 1000) {
  127. k = 0;
  128. break;
  129. }
  130. }
  131. data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  132. return data;
  133. } else
  134. return 0xFF;
  135. }
  136. EXPORT_SYMBOL(efuse_read_1byte);
  137. void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
  138. {
  139. struct rtl_priv *rtlpriv = rtl_priv(hw);
  140. u8 bytetemp;
  141. u8 temp;
  142. u32 k = 0;
  143. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  144. ("Addr=%x Data =%x\n", address, value));
  145. if (address < EFUSE_REAL_CONTENT_LEN) {
  146. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
  147. temp = address & 0xFF;
  148. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  149. temp);
  150. bytetemp = rtl_read_byte(rtlpriv,
  151. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  152. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  153. rtl_write_byte(rtlpriv,
  154. rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
  155. bytetemp = rtl_read_byte(rtlpriv,
  156. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  157. temp = bytetemp | 0x80;
  158. rtl_write_byte(rtlpriv,
  159. rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
  160. bytetemp = rtl_read_byte(rtlpriv,
  161. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  162. while (bytetemp & 0x80) {
  163. bytetemp = rtl_read_byte(rtlpriv,
  164. rtlpriv->cfg->
  165. maps[EFUSE_CTRL] + 3);
  166. k++;
  167. if (k == 100) {
  168. k = 0;
  169. break;
  170. }
  171. }
  172. }
  173. }
  174. static void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
  175. {
  176. struct rtl_priv *rtlpriv = rtl_priv(hw);
  177. u32 value32;
  178. u8 readbyte;
  179. u16 retry;
  180. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  181. (_offset & 0xff));
  182. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  183. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  184. ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  185. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  186. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  187. (readbyte & 0x7f));
  188. retry = 0;
  189. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  190. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  191. value32 = rtl_read_dword(rtlpriv,
  192. rtlpriv->cfg->maps[EFUSE_CTRL]);
  193. retry++;
  194. }
  195. udelay(50);
  196. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  197. *pbuf = (u8) (value32 & 0xff);
  198. }
  199. void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
  200. {
  201. struct rtl_priv *rtlpriv = rtl_priv(hw);
  202. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  203. u8 efuse_tbl[EFUSE_MAP_LEN];
  204. u8 rtemp8[1];
  205. u16 efuse_addr = 0;
  206. u8 offset, wren;
  207. u16 i;
  208. u16 j;
  209. u16 efuse_word[EFUSE_MAX_SECTION][EFUSE_MAX_WORD_UNIT];
  210. u16 efuse_utilized = 0;
  211. u8 efuse_usage;
  212. if ((_offset + _size_byte) > EFUSE_MAP_LEN) {
  213. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  214. ("read_efuse(): Invalid offset(%#x) with read "
  215. "bytes(%#x)!!\n", _offset, _size_byte));
  216. return;
  217. }
  218. for (i = 0; i < EFUSE_MAX_SECTION; i++)
  219. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
  220. efuse_word[i][j] = 0xFFFF;
  221. read_efuse_byte(hw, efuse_addr, rtemp8);
  222. if (*rtemp8 != 0xFF) {
  223. efuse_utilized++;
  224. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  225. ("Addr=%d\n", efuse_addr));
  226. efuse_addr++;
  227. }
  228. while ((*rtemp8 != 0xFF) && (efuse_addr < EFUSE_REAL_CONTENT_LEN)) {
  229. offset = ((*rtemp8 >> 4) & 0x0f);
  230. if (offset < EFUSE_MAX_SECTION) {
  231. wren = (*rtemp8 & 0x0f);
  232. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  233. ("offset-%d Worden=%x\n", offset, wren));
  234. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  235. if (!(wren & 0x01)) {
  236. RTPRINT(rtlpriv, FEEPROM,
  237. EFUSE_READ_ALL, ("Addr=%d\n",
  238. efuse_addr));
  239. read_efuse_byte(hw, efuse_addr, rtemp8);
  240. efuse_addr++;
  241. efuse_utilized++;
  242. efuse_word[offset][i] = (*rtemp8 & 0xff);
  243. if (efuse_addr >= EFUSE_REAL_CONTENT_LEN)
  244. break;
  245. RTPRINT(rtlpriv, FEEPROM,
  246. EFUSE_READ_ALL, ("Addr=%d\n",
  247. efuse_addr));
  248. read_efuse_byte(hw, efuse_addr, rtemp8);
  249. efuse_addr++;
  250. efuse_utilized++;
  251. efuse_word[offset][i] |=
  252. (((u16)*rtemp8 << 8) & 0xff00);
  253. if (efuse_addr >= EFUSE_REAL_CONTENT_LEN)
  254. break;
  255. }
  256. wren >>= 1;
  257. }
  258. }
  259. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  260. ("Addr=%d\n", efuse_addr));
  261. read_efuse_byte(hw, efuse_addr, rtemp8);
  262. if (*rtemp8 != 0xFF && (efuse_addr < 512)) {
  263. efuse_utilized++;
  264. efuse_addr++;
  265. }
  266. }
  267. for (i = 0; i < EFUSE_MAX_SECTION; i++) {
  268. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
  269. efuse_tbl[(i * 8) + (j * 2)] =
  270. (efuse_word[i][j] & 0xff);
  271. efuse_tbl[(i * 8) + ((j * 2) + 1)] =
  272. ((efuse_word[i][j] >> 8) & 0xff);
  273. }
  274. }
  275. for (i = 0; i < _size_byte; i++)
  276. pbuf[i] = efuse_tbl[_offset + i];
  277. rtlefuse->efuse_usedbytes = efuse_utilized;
  278. efuse_usage = (u8)((efuse_utilized * 100) / EFUSE_REAL_CONTENT_LEN);
  279. rtlefuse->efuse_usedpercentage = efuse_usage;
  280. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
  281. (u8 *)&efuse_utilized);
  282. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
  283. (u8 *)&efuse_usage);
  284. }
  285. bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
  286. {
  287. struct rtl_priv *rtlpriv = rtl_priv(hw);
  288. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  289. u8 section_idx, i, Base;
  290. u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
  291. bool wordchanged, result = true;
  292. for (section_idx = 0; section_idx < 16; section_idx++) {
  293. Base = section_idx * 8;
  294. wordchanged = false;
  295. for (i = 0; i < 8; i = i + 2) {
  296. if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
  297. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
  298. (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
  299. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
  300. 1])) {
  301. words_need++;
  302. wordchanged = true;
  303. }
  304. }
  305. if (wordchanged == true)
  306. hdr_num++;
  307. }
  308. totalbytes = hdr_num + words_need * 2;
  309. efuse_used = rtlefuse->efuse_usedbytes;
  310. if ((totalbytes + efuse_used) >=
  311. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
  312. result = false;
  313. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  314. ("efuse_shadow_update_chk(): totalbytes(%#x), "
  315. "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
  316. totalbytes, hdr_num, words_need, efuse_used));
  317. return result;
  318. }
  319. void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
  320. u16 offset, u32 *value)
  321. {
  322. if (type == 1)
  323. efuse_shadow_read_1byte(hw, offset, (u8 *) value);
  324. else if (type == 2)
  325. efuse_shadow_read_2byte(hw, offset, (u16 *) value);
  326. else if (type == 4)
  327. efuse_shadow_read_4byte(hw, offset, (u32 *) value);
  328. }
  329. void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
  330. u32 value)
  331. {
  332. if (type == 1)
  333. efuse_shadow_write_1byte(hw, offset, (u8) value);
  334. else if (type == 2)
  335. efuse_shadow_write_2byte(hw, offset, (u16) value);
  336. else if (type == 4)
  337. efuse_shadow_write_4byte(hw, offset, value);
  338. }
  339. bool efuse_shadow_update(struct ieee80211_hw *hw)
  340. {
  341. struct rtl_priv *rtlpriv = rtl_priv(hw);
  342. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  343. u16 i, offset, base;
  344. u8 word_en = 0x0F;
  345. u8 first_pg = false;
  346. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
  347. if (!efuse_shadow_update_chk(hw)) {
  348. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  349. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  350. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  351. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  352. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  353. ("<---efuse out of capacity!!\n"));
  354. return false;
  355. }
  356. efuse_power_switch(hw, true, true);
  357. for (offset = 0; offset < 16; offset++) {
  358. word_en = 0x0F;
  359. base = offset * 8;
  360. for (i = 0; i < 8; i++) {
  361. if (first_pg == true) {
  362. word_en &= ~(BIT(i / 2));
  363. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  364. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  365. } else {
  366. if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
  367. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
  368. word_en &= ~(BIT(i / 2));
  369. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  370. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  371. }
  372. }
  373. }
  374. if (word_en != 0x0F) {
  375. u8 tmpdata[8];
  376. memcpy(tmpdata,
  377. &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
  378. 8);
  379. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
  380. ("U-efuse\n"), tmpdata, 8);
  381. if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
  382. tmpdata)) {
  383. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  384. ("PG section(%#x) fail!!\n", offset));
  385. break;
  386. }
  387. }
  388. }
  389. efuse_power_switch(hw, true, false);
  390. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  391. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  392. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  393. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  394. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
  395. return true;
  396. }
  397. void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
  398. {
  399. struct rtl_priv *rtlpriv = rtl_priv(hw);
  400. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  401. if (rtlefuse->autoload_failflag == true) {
  402. memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF, 128);
  403. } else
  404. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  405. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  406. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  407. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  408. }
  409. EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
  410. void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
  411. {
  412. u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
  413. efuse_power_switch(hw, true, true);
  414. efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
  415. efuse_power_switch(hw, true, false);
  416. }
  417. void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
  418. {
  419. }
  420. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
  421. u16 offset, u8 *value)
  422. {
  423. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  424. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  425. }
  426. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
  427. u16 offset, u16 *value)
  428. {
  429. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  430. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  431. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  432. }
  433. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
  434. u16 offset, u32 *value)
  435. {
  436. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  437. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  438. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  439. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
  440. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
  441. }
  442. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
  443. u16 offset, u8 value)
  444. {
  445. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  446. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
  447. }
  448. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
  449. u16 offset, u16 value)
  450. {
  451. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  452. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
  453. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
  454. }
  455. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
  456. u16 offset, u32 value)
  457. {
  458. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  459. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
  460. (u8) (value & 0x000000FF);
  461. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
  462. (u8) ((value >> 8) & 0x0000FF);
  463. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
  464. (u8) ((value >> 16) & 0x00FF);
  465. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
  466. (u8) ((value >> 24) & 0xFF);
  467. }
  468. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
  469. {
  470. struct rtl_priv *rtlpriv = rtl_priv(hw);
  471. u8 tmpidx = 0;
  472. int result;
  473. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  474. (u8) (addr & 0xff));
  475. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  476. ((u8) ((addr >> 8) & 0x03)) |
  477. (rtl_read_byte(rtlpriv,
  478. rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
  479. 0xFC));
  480. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  481. while (!(0x80 & rtl_read_byte(rtlpriv,
  482. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  483. && (tmpidx < 100)) {
  484. tmpidx++;
  485. }
  486. if (tmpidx < 100) {
  487. *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  488. result = true;
  489. } else {
  490. *data = 0xff;
  491. result = false;
  492. }
  493. return result;
  494. }
  495. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
  496. {
  497. struct rtl_priv *rtlpriv = rtl_priv(hw);
  498. u8 tmpidx = 0;
  499. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  500. ("Addr = %x Data=%x\n", addr, data));
  501. rtl_write_byte(rtlpriv,
  502. rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
  503. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  504. (rtl_read_byte(rtlpriv,
  505. rtlpriv->cfg->maps[EFUSE_CTRL] +
  506. 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
  507. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
  508. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
  509. while ((0x80 & rtl_read_byte(rtlpriv,
  510. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  511. && (tmpidx < 100)) {
  512. tmpidx++;
  513. }
  514. if (tmpidx < 100)
  515. return true;
  516. return false;
  517. }
  518. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
  519. {
  520. efuse_power_switch(hw, false, true);
  521. read_efuse(hw, 0, 128, efuse);
  522. efuse_power_switch(hw, false, false);
  523. }
  524. static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  525. u8 efuse_data, u8 offset, u8 *tmpdata,
  526. u8 *readstate)
  527. {
  528. bool bdataempty = true;
  529. u8 hoffset;
  530. u8 tmpidx;
  531. u8 hworden;
  532. u8 word_cnts;
  533. hoffset = (efuse_data >> 4) & 0x0F;
  534. hworden = efuse_data & 0x0F;
  535. word_cnts = efuse_calculate_word_cnts(hworden);
  536. if (hoffset == offset) {
  537. for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
  538. if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
  539. &efuse_data)) {
  540. tmpdata[tmpidx] = efuse_data;
  541. if (efuse_data != 0xff)
  542. bdataempty = true;
  543. }
  544. }
  545. if (bdataempty == true)
  546. *readstate = PG_STATE_DATA;
  547. else {
  548. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  549. *readstate = PG_STATE_HEADER;
  550. }
  551. } else {
  552. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  553. *readstate = PG_STATE_HEADER;
  554. }
  555. }
  556. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
  557. {
  558. u8 readstate = PG_STATE_HEADER;
  559. bool continual = true;
  560. u8 efuse_data, word_cnts = 0;
  561. u16 efuse_addr = 0;
  562. u8 tmpdata[8];
  563. if (data == NULL)
  564. return false;
  565. if (offset > 15)
  566. return false;
  567. memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  568. memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  569. while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
  570. if (readstate & PG_STATE_HEADER) {
  571. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  572. && (efuse_data != 0xFF))
  573. efuse_read_data_case1(hw, &efuse_addr,
  574. efuse_data,
  575. offset, tmpdata,
  576. &readstate);
  577. else
  578. continual = false;
  579. } else if (readstate & PG_STATE_DATA) {
  580. efuse_word_enable_data_read(0, tmpdata, data);
  581. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  582. readstate = PG_STATE_HEADER;
  583. }
  584. }
  585. if ((data[0] == 0xff) && (data[1] == 0xff) &&
  586. (data[2] == 0xff) && (data[3] == 0xff) &&
  587. (data[4] == 0xff) && (data[5] == 0xff) &&
  588. (data[6] == 0xff) && (data[7] == 0xff))
  589. return false;
  590. else
  591. return true;
  592. }
  593. static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  594. u8 efuse_data, u8 offset, int *continual,
  595. u8 *write_state, struct pgpkt_struct *target_pkt,
  596. int *repeat_times, int *result, u8 word_en)
  597. {
  598. struct rtl_priv *rtlpriv = rtl_priv(hw);
  599. struct pgpkt_struct tmp_pkt;
  600. bool dataempty = true;
  601. u8 originaldata[8 * sizeof(u8)];
  602. u8 badworden = 0x0F;
  603. u8 match_word_en, tmp_word_en;
  604. u8 tmpindex;
  605. u8 tmp_header = efuse_data;
  606. u8 tmp_word_cnts;
  607. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  608. tmp_pkt.word_en = tmp_header & 0x0F;
  609. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  610. if (tmp_pkt.offset != target_pkt->offset) {
  611. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  612. *write_state = PG_STATE_HEADER;
  613. } else {
  614. for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
  615. u16 address = *efuse_addr + 1 + tmpindex;
  616. if (efuse_one_byte_read(hw, address,
  617. &efuse_data) && (efuse_data != 0xFF))
  618. dataempty = false;
  619. }
  620. if (dataempty == false) {
  621. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  622. *write_state = PG_STATE_HEADER;
  623. } else {
  624. match_word_en = 0x0F;
  625. if (!((target_pkt->word_en & BIT(0)) |
  626. (tmp_pkt.word_en & BIT(0))))
  627. match_word_en &= (~BIT(0));
  628. if (!((target_pkt->word_en & BIT(1)) |
  629. (tmp_pkt.word_en & BIT(1))))
  630. match_word_en &= (~BIT(1));
  631. if (!((target_pkt->word_en & BIT(2)) |
  632. (tmp_pkt.word_en & BIT(2))))
  633. match_word_en &= (~BIT(2));
  634. if (!((target_pkt->word_en & BIT(3)) |
  635. (tmp_pkt.word_en & BIT(3))))
  636. match_word_en &= (~BIT(3));
  637. if ((match_word_en & 0x0F) != 0x0F) {
  638. badworden = efuse_word_enable_data_write(
  639. hw, *efuse_addr + 1,
  640. tmp_pkt.word_en,
  641. target_pkt->data);
  642. if (0x0F != (badworden & 0x0F)) {
  643. u8 reorg_offset = offset;
  644. u8 reorg_worden = badworden;
  645. efuse_pg_packet_write(hw, reorg_offset,
  646. reorg_worden,
  647. originaldata);
  648. }
  649. tmp_word_en = 0x0F;
  650. if ((target_pkt->word_en & BIT(0)) ^
  651. (match_word_en & BIT(0)))
  652. tmp_word_en &= (~BIT(0));
  653. if ((target_pkt->word_en & BIT(1)) ^
  654. (match_word_en & BIT(1)))
  655. tmp_word_en &= (~BIT(1));
  656. if ((target_pkt->word_en & BIT(2)) ^
  657. (match_word_en & BIT(2)))
  658. tmp_word_en &= (~BIT(2));
  659. if ((target_pkt->word_en & BIT(3)) ^
  660. (match_word_en & BIT(3)))
  661. tmp_word_en &= (~BIT(3));
  662. if ((tmp_word_en & 0x0F) != 0x0F) {
  663. *efuse_addr = efuse_get_current_size(hw);
  664. target_pkt->offset = offset;
  665. target_pkt->word_en = tmp_word_en;
  666. } else
  667. *continual = false;
  668. *write_state = PG_STATE_HEADER;
  669. *repeat_times += 1;
  670. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  671. *continual = false;
  672. *result = false;
  673. }
  674. } else {
  675. *efuse_addr += (2 * tmp_word_cnts) + 1;
  676. target_pkt->offset = offset;
  677. target_pkt->word_en = word_en;
  678. *write_state = PG_STATE_HEADER;
  679. }
  680. }
  681. }
  682. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
  683. }
  684. static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
  685. int *continual, u8 *write_state,
  686. struct pgpkt_struct target_pkt,
  687. int *repeat_times, int *result)
  688. {
  689. struct rtl_priv *rtlpriv = rtl_priv(hw);
  690. struct pgpkt_struct tmp_pkt;
  691. u8 pg_header;
  692. u8 tmp_header;
  693. u8 originaldata[8 * sizeof(u8)];
  694. u8 tmp_word_cnts;
  695. u8 badworden = 0x0F;
  696. pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
  697. efuse_one_byte_write(hw, *efuse_addr, pg_header);
  698. efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
  699. if (tmp_header == pg_header)
  700. *write_state = PG_STATE_DATA;
  701. else if (tmp_header == 0xFF) {
  702. *write_state = PG_STATE_HEADER;
  703. *repeat_times += 1;
  704. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  705. *continual = false;
  706. *result = false;
  707. }
  708. } else {
  709. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  710. tmp_pkt.word_en = tmp_header & 0x0F;
  711. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  712. memset(originaldata, 0xff, 8 * sizeof(u8));
  713. if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
  714. badworden = efuse_word_enable_data_write(hw,
  715. *efuse_addr + 1, tmp_pkt.word_en,
  716. originaldata);
  717. if (0x0F != (badworden & 0x0F)) {
  718. u8 reorg_offset = tmp_pkt.offset;
  719. u8 reorg_worden = badworden;
  720. efuse_pg_packet_write(hw, reorg_offset,
  721. reorg_worden,
  722. originaldata);
  723. *efuse_addr = efuse_get_current_size(hw);
  724. } else
  725. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
  726. + 1;
  727. } else
  728. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  729. *write_state = PG_STATE_HEADER;
  730. *repeat_times += 1;
  731. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  732. *continual = false;
  733. *result = false;
  734. }
  735. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  736. ("efuse PG_STATE_HEADER-2\n"));
  737. }
  738. }
  739. static int efuse_pg_packet_write(struct ieee80211_hw *hw,
  740. u8 offset, u8 word_en, u8 *data)
  741. {
  742. struct rtl_priv *rtlpriv = rtl_priv(hw);
  743. struct pgpkt_struct target_pkt;
  744. u8 write_state = PG_STATE_HEADER;
  745. int continual = true, dataempty = true, result = true;
  746. u16 efuse_addr = 0;
  747. u8 efuse_data;
  748. u8 target_word_cnts = 0;
  749. u8 badworden = 0x0F;
  750. static int repeat_times;
  751. if (efuse_get_current_size(hw) >=
  752. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  753. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  754. ("efuse_pg_packet_write error\n"));
  755. return false;
  756. }
  757. target_pkt.offset = offset;
  758. target_pkt.word_en = word_en;
  759. memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
  760. efuse_word_enable_data_read(word_en, data, target_pkt.data);
  761. target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
  762. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
  763. while (continual && (efuse_addr <
  764. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
  765. if (write_state == PG_STATE_HEADER) {
  766. dataempty = true;
  767. badworden = 0x0F;
  768. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  769. ("efuse PG_STATE_HEADER\n"));
  770. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
  771. (efuse_data != 0xFF))
  772. efuse_write_data_case1(hw, &efuse_addr,
  773. efuse_data, offset,
  774. &continual,
  775. &write_state, &target_pkt,
  776. &repeat_times, &result,
  777. word_en);
  778. else
  779. efuse_write_data_case2(hw, &efuse_addr,
  780. &continual,
  781. &write_state,
  782. target_pkt,
  783. &repeat_times,
  784. &result);
  785. } else if (write_state == PG_STATE_DATA) {
  786. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  787. ("efuse PG_STATE_DATA\n"));
  788. badworden =
  789. efuse_word_enable_data_write(hw, efuse_addr + 1,
  790. target_pkt.word_en,
  791. target_pkt.data);
  792. if ((badworden & 0x0F) == 0x0F) {
  793. continual = false;
  794. } else {
  795. efuse_addr += (2 * target_word_cnts) + 1;
  796. target_pkt.offset = offset;
  797. target_pkt.word_en = badworden;
  798. target_word_cnts =
  799. efuse_calculate_word_cnts(target_pkt.
  800. word_en);
  801. write_state = PG_STATE_HEADER;
  802. repeat_times++;
  803. if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  804. continual = false;
  805. result = false;
  806. }
  807. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  808. ("efuse PG_STATE_HEADER-3\n"));
  809. }
  810. }
  811. }
  812. if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  813. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  814. ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
  815. }
  816. return true;
  817. }
  818. static void efuse_word_enable_data_read(u8 word_en,
  819. u8 *sourdata, u8 *targetdata)
  820. {
  821. if (!(word_en & BIT(0))) {
  822. targetdata[0] = sourdata[0];
  823. targetdata[1] = sourdata[1];
  824. }
  825. if (!(word_en & BIT(1))) {
  826. targetdata[2] = sourdata[2];
  827. targetdata[3] = sourdata[3];
  828. }
  829. if (!(word_en & BIT(2))) {
  830. targetdata[4] = sourdata[4];
  831. targetdata[5] = sourdata[5];
  832. }
  833. if (!(word_en & BIT(3))) {
  834. targetdata[6] = sourdata[6];
  835. targetdata[7] = sourdata[7];
  836. }
  837. }
  838. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  839. u16 efuse_addr, u8 word_en, u8 *data)
  840. {
  841. struct rtl_priv *rtlpriv = rtl_priv(hw);
  842. u16 tmpaddr;
  843. u16 start_addr = efuse_addr;
  844. u8 badworden = 0x0F;
  845. u8 tmpdata[8];
  846. memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
  847. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  848. ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
  849. if (!(word_en & BIT(0))) {
  850. tmpaddr = start_addr;
  851. efuse_one_byte_write(hw, start_addr++, data[0]);
  852. efuse_one_byte_write(hw, start_addr++, data[1]);
  853. efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
  854. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
  855. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  856. badworden &= (~BIT(0));
  857. }
  858. if (!(word_en & BIT(1))) {
  859. tmpaddr = start_addr;
  860. efuse_one_byte_write(hw, start_addr++, data[2]);
  861. efuse_one_byte_write(hw, start_addr++, data[3]);
  862. efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
  863. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
  864. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  865. badworden &= (~BIT(1));
  866. }
  867. if (!(word_en & BIT(2))) {
  868. tmpaddr = start_addr;
  869. efuse_one_byte_write(hw, start_addr++, data[4]);
  870. efuse_one_byte_write(hw, start_addr++, data[5]);
  871. efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
  872. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
  873. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  874. badworden &= (~BIT(2));
  875. }
  876. if (!(word_en & BIT(3))) {
  877. tmpaddr = start_addr;
  878. efuse_one_byte_write(hw, start_addr++, data[6]);
  879. efuse_one_byte_write(hw, start_addr++, data[7]);
  880. efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
  881. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
  882. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  883. badworden &= (~BIT(3));
  884. }
  885. return badworden;
  886. }
  887. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
  888. {
  889. struct rtl_priv *rtlpriv = rtl_priv(hw);
  890. u8 tempval;
  891. u16 tmpV16;
  892. if (pwrstate) {
  893. tmpV16 = rtl_read_word(rtlpriv,
  894. rtlpriv->cfg->maps[SYS_ISO_CTRL]);
  895. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
  896. tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
  897. rtl_write_word(rtlpriv,
  898. rtlpriv->cfg->maps[SYS_ISO_CTRL],
  899. tmpV16);
  900. }
  901. tmpV16 = rtl_read_word(rtlpriv,
  902. rtlpriv->cfg->maps[SYS_FUNC_EN]);
  903. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
  904. tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
  905. rtl_write_word(rtlpriv,
  906. rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
  907. }
  908. tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
  909. if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
  910. (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
  911. tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
  912. rtlpriv->cfg->maps[EFUSE_ANA8M]);
  913. rtl_write_word(rtlpriv,
  914. rtlpriv->cfg->maps[SYS_CLK], tmpV16);
  915. }
  916. }
  917. if (pwrstate) {
  918. if (write) {
  919. tempval = rtl_read_byte(rtlpriv,
  920. rtlpriv->cfg->maps[EFUSE_TEST] +
  921. 3);
  922. tempval &= 0x0F;
  923. tempval |= (VOLTAGE_V25 << 4);
  924. rtl_write_byte(rtlpriv,
  925. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  926. (tempval | 0x80));
  927. }
  928. } else {
  929. if (write) {
  930. tempval = rtl_read_byte(rtlpriv,
  931. rtlpriv->cfg->maps[EFUSE_TEST] +
  932. 3);
  933. rtl_write_byte(rtlpriv,
  934. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  935. (tempval & 0x7F));
  936. }
  937. }
  938. }
  939. static u16 efuse_get_current_size(struct ieee80211_hw *hw)
  940. {
  941. int continual = true;
  942. u16 efuse_addr = 0;
  943. u8 hoffset, hworden;
  944. u8 efuse_data, word_cnts;
  945. while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  946. && (efuse_addr < EFUSE_MAX_SIZE)) {
  947. if (efuse_data != 0xFF) {
  948. hoffset = (efuse_data >> 4) & 0x0F;
  949. hworden = efuse_data & 0x0F;
  950. word_cnts = efuse_calculate_word_cnts(hworden);
  951. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  952. } else {
  953. continual = false;
  954. }
  955. }
  956. return efuse_addr;
  957. }
  958. static u8 efuse_calculate_word_cnts(u8 word_en)
  959. {
  960. u8 word_cnts = 0;
  961. if (!(word_en & BIT(0)))
  962. word_cnts++;
  963. if (!(word_en & BIT(1)))
  964. word_cnts++;
  965. if (!(word_en & BIT(2)))
  966. word_cnts++;
  967. if (!(word_en & BIT(3)))
  968. word_cnts++;
  969. return word_cnts;
  970. }