slab.h 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. #ifndef MM_SLAB_H
  2. #define MM_SLAB_H
  3. /*
  4. * Internal slab definitions
  5. */
  6. /*
  7. * State of the slab allocator.
  8. *
  9. * This is used to describe the states of the allocator during bootup.
  10. * Allocators use this to gradually bootstrap themselves. Most allocators
  11. * have the problem that the structures used for managing slab caches are
  12. * allocated from slab caches themselves.
  13. */
  14. enum slab_state {
  15. DOWN, /* No slab functionality yet */
  16. PARTIAL, /* SLUB: kmem_cache_node available */
  17. PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
  18. PARTIAL_L3, /* SLAB: kmalloc size for l3 struct available */
  19. UP, /* Slab caches usable but not all extras yet */
  20. FULL /* Everything is working */
  21. };
  22. extern enum slab_state slab_state;
  23. /* The slab cache mutex protects the management structures during changes */
  24. extern struct mutex slab_mutex;
  25. /* The list of all slab caches on the system */
  26. extern struct list_head slab_caches;
  27. /* The slab cache that manages slab cache information */
  28. extern struct kmem_cache *kmem_cache;
  29. unsigned long calculate_alignment(unsigned long flags,
  30. unsigned long align, unsigned long size);
  31. #ifndef CONFIG_SLOB
  32. /* Kmalloc array related functions */
  33. void create_kmalloc_caches(unsigned long);
  34. #endif
  35. /* Functions provided by the slab allocators */
  36. extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  37. extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  38. unsigned long flags);
  39. extern void create_boot_cache(struct kmem_cache *, const char *name,
  40. size_t size, unsigned long flags);
  41. struct mem_cgroup;
  42. #ifdef CONFIG_SLUB
  43. struct kmem_cache *
  44. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  45. size_t align, unsigned long flags, void (*ctor)(void *));
  46. #else
  47. static inline struct kmem_cache *
  48. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  49. size_t align, unsigned long flags, void (*ctor)(void *))
  50. { return NULL; }
  51. #endif
  52. /* Legal flag mask for kmem_cache_create(), for various configurations */
  53. #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
  54. SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
  55. #if defined(CONFIG_DEBUG_SLAB)
  56. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  57. #elif defined(CONFIG_SLUB_DEBUG)
  58. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  59. SLAB_TRACE | SLAB_DEBUG_FREE)
  60. #else
  61. #define SLAB_DEBUG_FLAGS (0)
  62. #endif
  63. #if defined(CONFIG_SLAB)
  64. #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
  65. SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
  66. #elif defined(CONFIG_SLUB)
  67. #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
  68. SLAB_TEMPORARY | SLAB_NOTRACK)
  69. #else
  70. #define SLAB_CACHE_FLAGS (0)
  71. #endif
  72. #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
  73. int __kmem_cache_shutdown(struct kmem_cache *);
  74. struct seq_file;
  75. struct file;
  76. struct slabinfo {
  77. unsigned long active_objs;
  78. unsigned long num_objs;
  79. unsigned long active_slabs;
  80. unsigned long num_slabs;
  81. unsigned long shared_avail;
  82. unsigned int limit;
  83. unsigned int batchcount;
  84. unsigned int shared;
  85. unsigned int objects_per_slab;
  86. unsigned int cache_order;
  87. };
  88. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
  89. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
  90. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  91. size_t count, loff_t *ppos);
  92. #ifdef CONFIG_MEMCG_KMEM
  93. static inline bool is_root_cache(struct kmem_cache *s)
  94. {
  95. return !s->memcg_params || s->memcg_params->is_root_cache;
  96. }
  97. static inline bool cache_match_memcg(struct kmem_cache *cachep,
  98. struct mem_cgroup *memcg)
  99. {
  100. return (is_root_cache(cachep) && !memcg) ||
  101. (cachep->memcg_params->memcg == memcg);
  102. }
  103. static inline void memcg_bind_pages(struct kmem_cache *s, int order)
  104. {
  105. if (!is_root_cache(s))
  106. atomic_add(1 << order, &s->memcg_params->nr_pages);
  107. }
  108. static inline void memcg_release_pages(struct kmem_cache *s, int order)
  109. {
  110. if (is_root_cache(s))
  111. return;
  112. if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
  113. mem_cgroup_destroy_cache(s);
  114. }
  115. static inline bool slab_equal_or_root(struct kmem_cache *s,
  116. struct kmem_cache *p)
  117. {
  118. return (p == s) ||
  119. (s->memcg_params && (p == s->memcg_params->root_cache));
  120. }
  121. /*
  122. * We use suffixes to the name in memcg because we can't have caches
  123. * created in the system with the same name. But when we print them
  124. * locally, better refer to them with the base name
  125. */
  126. static inline const char *cache_name(struct kmem_cache *s)
  127. {
  128. if (!is_root_cache(s))
  129. return s->memcg_params->root_cache->name;
  130. return s->name;
  131. }
  132. static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
  133. {
  134. return s->memcg_params->memcg_caches[idx];
  135. }
  136. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  137. {
  138. if (is_root_cache(s))
  139. return s;
  140. return s->memcg_params->root_cache;
  141. }
  142. #else
  143. static inline bool is_root_cache(struct kmem_cache *s)
  144. {
  145. return true;
  146. }
  147. static inline bool cache_match_memcg(struct kmem_cache *cachep,
  148. struct mem_cgroup *memcg)
  149. {
  150. return true;
  151. }
  152. static inline void memcg_bind_pages(struct kmem_cache *s, int order)
  153. {
  154. }
  155. static inline void memcg_release_pages(struct kmem_cache *s, int order)
  156. {
  157. }
  158. static inline bool slab_equal_or_root(struct kmem_cache *s,
  159. struct kmem_cache *p)
  160. {
  161. return true;
  162. }
  163. static inline const char *cache_name(struct kmem_cache *s)
  164. {
  165. return s->name;
  166. }
  167. static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
  168. {
  169. return NULL;
  170. }
  171. static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
  172. {
  173. return s;
  174. }
  175. #endif
  176. static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
  177. {
  178. struct kmem_cache *cachep;
  179. struct page *page;
  180. /*
  181. * When kmemcg is not being used, both assignments should return the
  182. * same value. but we don't want to pay the assignment price in that
  183. * case. If it is not compiled in, the compiler should be smart enough
  184. * to not do even the assignment. In that case, slab_equal_or_root
  185. * will also be a constant.
  186. */
  187. if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
  188. return s;
  189. page = virt_to_head_page(x);
  190. cachep = page->slab_cache;
  191. if (slab_equal_or_root(cachep, s))
  192. return cachep;
  193. pr_err("%s: Wrong slab cache. %s but object is from %s\n",
  194. __FUNCTION__, cachep->name, s->name);
  195. WARN_ON_ONCE(1);
  196. return s;
  197. }
  198. #endif