pxa2xx_spi.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/delay.h>
  33. #include <asm/dma.h>
  34. #include <mach/hardware.h>
  35. #include <mach/pxa-regs.h>
  36. #include <mach/regs-ssp.h>
  37. #include <mach/ssp.h>
  38. #include <mach/pxa2xx_spi.h>
  39. MODULE_AUTHOR("Stephen Street");
  40. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41. MODULE_LICENSE("GPL");
  42. MODULE_ALIAS("platform:pxa2xx-spi");
  43. #define MAX_BUSES 3
  44. #define RX_THRESH_DFLT 8
  45. #define TX_THRESH_DFLT 8
  46. #define TIMOUT_DFLT 1000
  47. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  48. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  49. #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
  50. #define MAX_DMA_LEN 8191
  51. /*
  52. * for testing SSCR1 changes that require SSP restart, basically
  53. * everything except the service and interrupt enables, the pxa270 developer
  54. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  55. * list, but the PXA255 dev man says all bits without really meaning the
  56. * service and interrupt enables
  57. */
  58. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  59. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  60. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  61. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  62. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  63. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  64. #define DEFINE_SSP_REG(reg, off) \
  65. static inline u32 read_##reg(void const __iomem *p) \
  66. { return __raw_readl(p + (off)); } \
  67. \
  68. static inline void write_##reg(u32 v, void __iomem *p) \
  69. { __raw_writel(v, p + (off)); }
  70. DEFINE_SSP_REG(SSCR0, 0x00)
  71. DEFINE_SSP_REG(SSCR1, 0x04)
  72. DEFINE_SSP_REG(SSSR, 0x08)
  73. DEFINE_SSP_REG(SSITR, 0x0c)
  74. DEFINE_SSP_REG(SSDR, 0x10)
  75. DEFINE_SSP_REG(SSTO, 0x28)
  76. DEFINE_SSP_REG(SSPSP, 0x2c)
  77. #define START_STATE ((void*)0)
  78. #define RUNNING_STATE ((void*)1)
  79. #define DONE_STATE ((void*)2)
  80. #define ERROR_STATE ((void*)-1)
  81. #define QUEUE_RUNNING 0
  82. #define QUEUE_STOPPED 1
  83. struct driver_data {
  84. /* Driver model hookup */
  85. struct platform_device *pdev;
  86. /* SSP Info */
  87. struct ssp_device *ssp;
  88. /* SPI framework hookup */
  89. enum pxa_ssp_type ssp_type;
  90. struct spi_master *master;
  91. /* PXA hookup */
  92. struct pxa2xx_spi_master *master_info;
  93. /* DMA setup stuff */
  94. int rx_channel;
  95. int tx_channel;
  96. u32 *null_dma_buf;
  97. /* SSP register addresses */
  98. void __iomem *ioaddr;
  99. u32 ssdr_physical;
  100. /* SSP masks*/
  101. u32 dma_cr1;
  102. u32 int_cr1;
  103. u32 clear_sr;
  104. u32 mask_sr;
  105. /* Driver message queue */
  106. struct workqueue_struct *workqueue;
  107. struct work_struct pump_messages;
  108. spinlock_t lock;
  109. struct list_head queue;
  110. int busy;
  111. int run;
  112. /* Message Transfer pump */
  113. struct tasklet_struct pump_transfers;
  114. /* Current message transfer state info */
  115. struct spi_message* cur_msg;
  116. struct spi_transfer* cur_transfer;
  117. struct chip_data *cur_chip;
  118. size_t len;
  119. void *tx;
  120. void *tx_end;
  121. void *rx;
  122. void *rx_end;
  123. int dma_mapped;
  124. dma_addr_t rx_dma;
  125. dma_addr_t tx_dma;
  126. size_t rx_map_len;
  127. size_t tx_map_len;
  128. u8 n_bytes;
  129. u32 dma_width;
  130. int (*write)(struct driver_data *drv_data);
  131. int (*read)(struct driver_data *drv_data);
  132. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  133. void (*cs_control)(u32 command);
  134. };
  135. struct chip_data {
  136. u32 cr0;
  137. u32 cr1;
  138. u32 psp;
  139. u32 timeout;
  140. u8 n_bytes;
  141. u32 dma_width;
  142. u32 dma_burst_size;
  143. u32 threshold;
  144. u32 dma_threshold;
  145. u8 enable_dma;
  146. u8 bits_per_word;
  147. u32 speed_hz;
  148. int (*write)(struct driver_data *drv_data);
  149. int (*read)(struct driver_data *drv_data);
  150. void (*cs_control)(u32 command);
  151. };
  152. static void pump_messages(struct work_struct *work);
  153. static int flush(struct driver_data *drv_data)
  154. {
  155. unsigned long limit = loops_per_jiffy << 1;
  156. void __iomem *reg = drv_data->ioaddr;
  157. do {
  158. while (read_SSSR(reg) & SSSR_RNE) {
  159. read_SSDR(reg);
  160. }
  161. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  162. write_SSSR(SSSR_ROR, reg);
  163. return limit;
  164. }
  165. static void null_cs_control(u32 command)
  166. {
  167. }
  168. static int null_writer(struct driver_data *drv_data)
  169. {
  170. void __iomem *reg = drv_data->ioaddr;
  171. u8 n_bytes = drv_data->n_bytes;
  172. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  173. || (drv_data->tx == drv_data->tx_end))
  174. return 0;
  175. write_SSDR(0, reg);
  176. drv_data->tx += n_bytes;
  177. return 1;
  178. }
  179. static int null_reader(struct driver_data *drv_data)
  180. {
  181. void __iomem *reg = drv_data->ioaddr;
  182. u8 n_bytes = drv_data->n_bytes;
  183. while ((read_SSSR(reg) & SSSR_RNE)
  184. && (drv_data->rx < drv_data->rx_end)) {
  185. read_SSDR(reg);
  186. drv_data->rx += n_bytes;
  187. }
  188. return drv_data->rx == drv_data->rx_end;
  189. }
  190. static int u8_writer(struct driver_data *drv_data)
  191. {
  192. void __iomem *reg = drv_data->ioaddr;
  193. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  194. || (drv_data->tx == drv_data->tx_end))
  195. return 0;
  196. write_SSDR(*(u8 *)(drv_data->tx), reg);
  197. ++drv_data->tx;
  198. return 1;
  199. }
  200. static int u8_reader(struct driver_data *drv_data)
  201. {
  202. void __iomem *reg = drv_data->ioaddr;
  203. while ((read_SSSR(reg) & SSSR_RNE)
  204. && (drv_data->rx < drv_data->rx_end)) {
  205. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  206. ++drv_data->rx;
  207. }
  208. return drv_data->rx == drv_data->rx_end;
  209. }
  210. static int u16_writer(struct driver_data *drv_data)
  211. {
  212. void __iomem *reg = drv_data->ioaddr;
  213. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  214. || (drv_data->tx == drv_data->tx_end))
  215. return 0;
  216. write_SSDR(*(u16 *)(drv_data->tx), reg);
  217. drv_data->tx += 2;
  218. return 1;
  219. }
  220. static int u16_reader(struct driver_data *drv_data)
  221. {
  222. void __iomem *reg = drv_data->ioaddr;
  223. while ((read_SSSR(reg) & SSSR_RNE)
  224. && (drv_data->rx < drv_data->rx_end)) {
  225. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  226. drv_data->rx += 2;
  227. }
  228. return drv_data->rx == drv_data->rx_end;
  229. }
  230. static int u32_writer(struct driver_data *drv_data)
  231. {
  232. void __iomem *reg = drv_data->ioaddr;
  233. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  234. || (drv_data->tx == drv_data->tx_end))
  235. return 0;
  236. write_SSDR(*(u32 *)(drv_data->tx), reg);
  237. drv_data->tx += 4;
  238. return 1;
  239. }
  240. static int u32_reader(struct driver_data *drv_data)
  241. {
  242. void __iomem *reg = drv_data->ioaddr;
  243. while ((read_SSSR(reg) & SSSR_RNE)
  244. && (drv_data->rx < drv_data->rx_end)) {
  245. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  246. drv_data->rx += 4;
  247. }
  248. return drv_data->rx == drv_data->rx_end;
  249. }
  250. static void *next_transfer(struct driver_data *drv_data)
  251. {
  252. struct spi_message *msg = drv_data->cur_msg;
  253. struct spi_transfer *trans = drv_data->cur_transfer;
  254. /* Move to next transfer */
  255. if (trans->transfer_list.next != &msg->transfers) {
  256. drv_data->cur_transfer =
  257. list_entry(trans->transfer_list.next,
  258. struct spi_transfer,
  259. transfer_list);
  260. return RUNNING_STATE;
  261. } else
  262. return DONE_STATE;
  263. }
  264. static int map_dma_buffers(struct driver_data *drv_data)
  265. {
  266. struct spi_message *msg = drv_data->cur_msg;
  267. struct device *dev = &msg->spi->dev;
  268. if (!drv_data->cur_chip->enable_dma)
  269. return 0;
  270. if (msg->is_dma_mapped)
  271. return drv_data->rx_dma && drv_data->tx_dma;
  272. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  273. return 0;
  274. /* Modify setup if rx buffer is null */
  275. if (drv_data->rx == NULL) {
  276. *drv_data->null_dma_buf = 0;
  277. drv_data->rx = drv_data->null_dma_buf;
  278. drv_data->rx_map_len = 4;
  279. } else
  280. drv_data->rx_map_len = drv_data->len;
  281. /* Modify setup if tx buffer is null */
  282. if (drv_data->tx == NULL) {
  283. *drv_data->null_dma_buf = 0;
  284. drv_data->tx = drv_data->null_dma_buf;
  285. drv_data->tx_map_len = 4;
  286. } else
  287. drv_data->tx_map_len = drv_data->len;
  288. /* Stream map the rx buffer */
  289. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  290. drv_data->rx_map_len,
  291. DMA_FROM_DEVICE);
  292. if (dma_mapping_error(dev, drv_data->rx_dma))
  293. return 0;
  294. /* Stream map the tx buffer */
  295. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  296. drv_data->tx_map_len,
  297. DMA_TO_DEVICE);
  298. if (dma_mapping_error(dev, drv_data->tx_dma)) {
  299. dma_unmap_single(dev, drv_data->rx_dma,
  300. drv_data->rx_map_len, DMA_FROM_DEVICE);
  301. return 0;
  302. }
  303. return 1;
  304. }
  305. static void unmap_dma_buffers(struct driver_data *drv_data)
  306. {
  307. struct device *dev;
  308. if (!drv_data->dma_mapped)
  309. return;
  310. if (!drv_data->cur_msg->is_dma_mapped) {
  311. dev = &drv_data->cur_msg->spi->dev;
  312. dma_unmap_single(dev, drv_data->rx_dma,
  313. drv_data->rx_map_len, DMA_FROM_DEVICE);
  314. dma_unmap_single(dev, drv_data->tx_dma,
  315. drv_data->tx_map_len, DMA_TO_DEVICE);
  316. }
  317. drv_data->dma_mapped = 0;
  318. }
  319. /* caller already set message->status; dma and pio irqs are blocked */
  320. static void giveback(struct driver_data *drv_data)
  321. {
  322. struct spi_transfer* last_transfer;
  323. unsigned long flags;
  324. struct spi_message *msg;
  325. spin_lock_irqsave(&drv_data->lock, flags);
  326. msg = drv_data->cur_msg;
  327. drv_data->cur_msg = NULL;
  328. drv_data->cur_transfer = NULL;
  329. drv_data->cur_chip = NULL;
  330. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  331. spin_unlock_irqrestore(&drv_data->lock, flags);
  332. last_transfer = list_entry(msg->transfers.prev,
  333. struct spi_transfer,
  334. transfer_list);
  335. /* Delay if requested before any change in chip select */
  336. if (last_transfer->delay_usecs)
  337. udelay(last_transfer->delay_usecs);
  338. /* Drop chip select UNLESS cs_change is true or we are returning
  339. * a message with an error, or next message is for another chip
  340. */
  341. if (!last_transfer->cs_change)
  342. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  343. else {
  344. struct spi_message *next_msg;
  345. /* Holding of cs was hinted, but we need to make sure
  346. * the next message is for the same chip. Don't waste
  347. * time with the following tests unless this was hinted.
  348. *
  349. * We cannot postpone this until pump_messages, because
  350. * after calling msg->complete (below) the driver that
  351. * sent the current message could be unloaded, which
  352. * could invalidate the cs_control() callback...
  353. */
  354. /* get a pointer to the next message, if any */
  355. spin_lock_irqsave(&drv_data->lock, flags);
  356. if (list_empty(&drv_data->queue))
  357. next_msg = NULL;
  358. else
  359. next_msg = list_entry(drv_data->queue.next,
  360. struct spi_message, queue);
  361. spin_unlock_irqrestore(&drv_data->lock, flags);
  362. /* see if the next and current messages point
  363. * to the same chip
  364. */
  365. if (next_msg && next_msg->spi != msg->spi)
  366. next_msg = NULL;
  367. if (!next_msg || msg->state == ERROR_STATE)
  368. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  369. }
  370. msg->state = NULL;
  371. if (msg->complete)
  372. msg->complete(msg->context);
  373. }
  374. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  375. {
  376. unsigned long limit = loops_per_jiffy << 1;
  377. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  378. cpu_relax();
  379. return limit;
  380. }
  381. static int wait_dma_channel_stop(int channel)
  382. {
  383. unsigned long limit = loops_per_jiffy << 1;
  384. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  385. cpu_relax();
  386. return limit;
  387. }
  388. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  389. {
  390. void __iomem *reg = drv_data->ioaddr;
  391. /* Stop and reset */
  392. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  393. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  394. write_SSSR(drv_data->clear_sr, reg);
  395. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  396. if (drv_data->ssp_type != PXA25x_SSP)
  397. write_SSTO(0, reg);
  398. flush(drv_data);
  399. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  400. unmap_dma_buffers(drv_data);
  401. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  402. drv_data->cur_msg->state = ERROR_STATE;
  403. tasklet_schedule(&drv_data->pump_transfers);
  404. }
  405. static void dma_transfer_complete(struct driver_data *drv_data)
  406. {
  407. void __iomem *reg = drv_data->ioaddr;
  408. struct spi_message *msg = drv_data->cur_msg;
  409. /* Clear and disable interrupts on SSP and DMA channels*/
  410. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  411. write_SSSR(drv_data->clear_sr, reg);
  412. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  413. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  414. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  415. dev_err(&drv_data->pdev->dev,
  416. "dma_handler: dma rx channel stop failed\n");
  417. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  418. dev_err(&drv_data->pdev->dev,
  419. "dma_transfer: ssp rx stall failed\n");
  420. unmap_dma_buffers(drv_data);
  421. /* update the buffer pointer for the amount completed in dma */
  422. drv_data->rx += drv_data->len -
  423. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  424. /* read trailing data from fifo, it does not matter how many
  425. * bytes are in the fifo just read until buffer is full
  426. * or fifo is empty, which ever occurs first */
  427. drv_data->read(drv_data);
  428. /* return count of what was actually read */
  429. msg->actual_length += drv_data->len -
  430. (drv_data->rx_end - drv_data->rx);
  431. /* Transfer delays and chip select release are
  432. * handled in pump_transfers or giveback
  433. */
  434. /* Move to next transfer */
  435. msg->state = next_transfer(drv_data);
  436. /* Schedule transfer tasklet */
  437. tasklet_schedule(&drv_data->pump_transfers);
  438. }
  439. static void dma_handler(int channel, void *data)
  440. {
  441. struct driver_data *drv_data = data;
  442. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  443. if (irq_status & DCSR_BUSERR) {
  444. if (channel == drv_data->tx_channel)
  445. dma_error_stop(drv_data,
  446. "dma_handler: "
  447. "bad bus address on tx channel");
  448. else
  449. dma_error_stop(drv_data,
  450. "dma_handler: "
  451. "bad bus address on rx channel");
  452. return;
  453. }
  454. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  455. if ((channel == drv_data->tx_channel)
  456. && (irq_status & DCSR_ENDINTR)
  457. && (drv_data->ssp_type == PXA25x_SSP)) {
  458. /* Wait for rx to stall */
  459. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  460. dev_err(&drv_data->pdev->dev,
  461. "dma_handler: ssp rx stall failed\n");
  462. /* finish this transfer, start the next */
  463. dma_transfer_complete(drv_data);
  464. }
  465. }
  466. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  467. {
  468. u32 irq_status;
  469. void __iomem *reg = drv_data->ioaddr;
  470. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  471. if (irq_status & SSSR_ROR) {
  472. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  473. return IRQ_HANDLED;
  474. }
  475. /* Check for false positive timeout */
  476. if ((irq_status & SSSR_TINT)
  477. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  478. write_SSSR(SSSR_TINT, reg);
  479. return IRQ_HANDLED;
  480. }
  481. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  482. /* Clear and disable timeout interrupt, do the rest in
  483. * dma_transfer_complete */
  484. if (drv_data->ssp_type != PXA25x_SSP)
  485. write_SSTO(0, reg);
  486. /* finish this transfer, start the next */
  487. dma_transfer_complete(drv_data);
  488. return IRQ_HANDLED;
  489. }
  490. /* Opps problem detected */
  491. return IRQ_NONE;
  492. }
  493. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  494. {
  495. void __iomem *reg = drv_data->ioaddr;
  496. /* Stop and reset SSP */
  497. write_SSSR(drv_data->clear_sr, reg);
  498. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  499. if (drv_data->ssp_type != PXA25x_SSP)
  500. write_SSTO(0, reg);
  501. flush(drv_data);
  502. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  503. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  504. drv_data->cur_msg->state = ERROR_STATE;
  505. tasklet_schedule(&drv_data->pump_transfers);
  506. }
  507. static void int_transfer_complete(struct driver_data *drv_data)
  508. {
  509. void __iomem *reg = drv_data->ioaddr;
  510. /* Stop SSP */
  511. write_SSSR(drv_data->clear_sr, reg);
  512. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  513. if (drv_data->ssp_type != PXA25x_SSP)
  514. write_SSTO(0, reg);
  515. /* Update total byte transfered return count actual bytes read */
  516. drv_data->cur_msg->actual_length += drv_data->len -
  517. (drv_data->rx_end - drv_data->rx);
  518. /* Transfer delays and chip select release are
  519. * handled in pump_transfers or giveback
  520. */
  521. /* Move to next transfer */
  522. drv_data->cur_msg->state = next_transfer(drv_data);
  523. /* Schedule transfer tasklet */
  524. tasklet_schedule(&drv_data->pump_transfers);
  525. }
  526. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  527. {
  528. void __iomem *reg = drv_data->ioaddr;
  529. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  530. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  531. u32 irq_status = read_SSSR(reg) & irq_mask;
  532. if (irq_status & SSSR_ROR) {
  533. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  534. return IRQ_HANDLED;
  535. }
  536. if (irq_status & SSSR_TINT) {
  537. write_SSSR(SSSR_TINT, reg);
  538. if (drv_data->read(drv_data)) {
  539. int_transfer_complete(drv_data);
  540. return IRQ_HANDLED;
  541. }
  542. }
  543. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  544. do {
  545. if (drv_data->read(drv_data)) {
  546. int_transfer_complete(drv_data);
  547. return IRQ_HANDLED;
  548. }
  549. } while (drv_data->write(drv_data));
  550. if (drv_data->read(drv_data)) {
  551. int_transfer_complete(drv_data);
  552. return IRQ_HANDLED;
  553. }
  554. if (drv_data->tx == drv_data->tx_end) {
  555. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  556. /* PXA25x_SSP has no timeout, read trailing bytes */
  557. if (drv_data->ssp_type == PXA25x_SSP) {
  558. if (!wait_ssp_rx_stall(reg))
  559. {
  560. int_error_stop(drv_data, "interrupt_transfer: "
  561. "rx stall failed");
  562. return IRQ_HANDLED;
  563. }
  564. if (!drv_data->read(drv_data))
  565. {
  566. int_error_stop(drv_data,
  567. "interrupt_transfer: "
  568. "trailing byte read failed");
  569. return IRQ_HANDLED;
  570. }
  571. int_transfer_complete(drv_data);
  572. }
  573. }
  574. /* We did something */
  575. return IRQ_HANDLED;
  576. }
  577. static irqreturn_t ssp_int(int irq, void *dev_id)
  578. {
  579. struct driver_data *drv_data = dev_id;
  580. void __iomem *reg = drv_data->ioaddr;
  581. if (!drv_data->cur_msg) {
  582. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  583. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  584. if (drv_data->ssp_type != PXA25x_SSP)
  585. write_SSTO(0, reg);
  586. write_SSSR(drv_data->clear_sr, reg);
  587. dev_err(&drv_data->pdev->dev, "bad message state "
  588. "in interrupt handler\n");
  589. /* Never fail */
  590. return IRQ_HANDLED;
  591. }
  592. return drv_data->transfer_handler(drv_data);
  593. }
  594. static int set_dma_burst_and_threshold(struct chip_data *chip,
  595. struct spi_device *spi,
  596. u8 bits_per_word, u32 *burst_code,
  597. u32 *threshold)
  598. {
  599. struct pxa2xx_spi_chip *chip_info =
  600. (struct pxa2xx_spi_chip *)spi->controller_data;
  601. int bytes_per_word;
  602. int burst_bytes;
  603. int thresh_words;
  604. int req_burst_size;
  605. int retval = 0;
  606. /* Set the threshold (in registers) to equal the same amount of data
  607. * as represented by burst size (in bytes). The computation below
  608. * is (burst_size rounded up to nearest 8 byte, word or long word)
  609. * divided by (bytes/register); the tx threshold is the inverse of
  610. * the rx, so that there will always be enough data in the rx fifo
  611. * to satisfy a burst, and there will always be enough space in the
  612. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  613. * there is not enough space), there must always remain enough empty
  614. * space in the rx fifo for any data loaded to the tx fifo.
  615. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  616. * will be 8, or half the fifo;
  617. * The threshold can only be set to 2, 4 or 8, but not 16, because
  618. * to burst 16 to the tx fifo, the fifo would have to be empty;
  619. * however, the minimum fifo trigger level is 1, and the tx will
  620. * request service when the fifo is at this level, with only 15 spaces.
  621. */
  622. /* find bytes/word */
  623. if (bits_per_word <= 8)
  624. bytes_per_word = 1;
  625. else if (bits_per_word <= 16)
  626. bytes_per_word = 2;
  627. else
  628. bytes_per_word = 4;
  629. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  630. if (chip_info)
  631. req_burst_size = chip_info->dma_burst_size;
  632. else {
  633. switch (chip->dma_burst_size) {
  634. default:
  635. /* if the default burst size is not set,
  636. * do it now */
  637. chip->dma_burst_size = DCMD_BURST8;
  638. case DCMD_BURST8:
  639. req_burst_size = 8;
  640. break;
  641. case DCMD_BURST16:
  642. req_burst_size = 16;
  643. break;
  644. case DCMD_BURST32:
  645. req_burst_size = 32;
  646. break;
  647. }
  648. }
  649. if (req_burst_size <= 8) {
  650. *burst_code = DCMD_BURST8;
  651. burst_bytes = 8;
  652. } else if (req_burst_size <= 16) {
  653. if (bytes_per_word == 1) {
  654. /* don't burst more than 1/2 the fifo */
  655. *burst_code = DCMD_BURST8;
  656. burst_bytes = 8;
  657. retval = 1;
  658. } else {
  659. *burst_code = DCMD_BURST16;
  660. burst_bytes = 16;
  661. }
  662. } else {
  663. if (bytes_per_word == 1) {
  664. /* don't burst more than 1/2 the fifo */
  665. *burst_code = DCMD_BURST8;
  666. burst_bytes = 8;
  667. retval = 1;
  668. } else if (bytes_per_word == 2) {
  669. /* don't burst more than 1/2 the fifo */
  670. *burst_code = DCMD_BURST16;
  671. burst_bytes = 16;
  672. retval = 1;
  673. } else {
  674. *burst_code = DCMD_BURST32;
  675. burst_bytes = 32;
  676. }
  677. }
  678. thresh_words = burst_bytes / bytes_per_word;
  679. /* thresh_words will be between 2 and 8 */
  680. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  681. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  682. return retval;
  683. }
  684. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  685. {
  686. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  687. if (ssp->type == PXA25x_SSP)
  688. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  689. else
  690. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  691. }
  692. static void pump_transfers(unsigned long data)
  693. {
  694. struct driver_data *drv_data = (struct driver_data *)data;
  695. struct spi_message *message = NULL;
  696. struct spi_transfer *transfer = NULL;
  697. struct spi_transfer *previous = NULL;
  698. struct chip_data *chip = NULL;
  699. struct ssp_device *ssp = drv_data->ssp;
  700. void __iomem *reg = drv_data->ioaddr;
  701. u32 clk_div = 0;
  702. u8 bits = 0;
  703. u32 speed = 0;
  704. u32 cr0;
  705. u32 cr1;
  706. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  707. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  708. /* Get current state information */
  709. message = drv_data->cur_msg;
  710. transfer = drv_data->cur_transfer;
  711. chip = drv_data->cur_chip;
  712. /* Handle for abort */
  713. if (message->state == ERROR_STATE) {
  714. message->status = -EIO;
  715. giveback(drv_data);
  716. return;
  717. }
  718. /* Handle end of message */
  719. if (message->state == DONE_STATE) {
  720. message->status = 0;
  721. giveback(drv_data);
  722. return;
  723. }
  724. /* Delay if requested at end of transfer before CS change */
  725. if (message->state == RUNNING_STATE) {
  726. previous = list_entry(transfer->transfer_list.prev,
  727. struct spi_transfer,
  728. transfer_list);
  729. if (previous->delay_usecs)
  730. udelay(previous->delay_usecs);
  731. /* Drop chip select only if cs_change is requested */
  732. if (previous->cs_change)
  733. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  734. }
  735. /* Check for transfers that need multiple DMA segments */
  736. if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
  737. /* reject already-mapped transfers; PIO won't always work */
  738. if (message->is_dma_mapped
  739. || transfer->rx_dma || transfer->tx_dma) {
  740. dev_err(&drv_data->pdev->dev,
  741. "pump_transfers: mapped transfer length "
  742. "of %u is greater than %d\n",
  743. transfer->len, MAX_DMA_LEN);
  744. message->status = -EINVAL;
  745. giveback(drv_data);
  746. return;
  747. }
  748. /* warn ... we force this to PIO mode */
  749. if (printk_ratelimit())
  750. dev_warn(&message->spi->dev, "pump_transfers: "
  751. "DMA disabled for transfer length %ld "
  752. "greater than %d\n",
  753. (long)drv_data->len, MAX_DMA_LEN);
  754. }
  755. /* Setup the transfer state based on the type of transfer */
  756. if (flush(drv_data) == 0) {
  757. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  758. message->status = -EIO;
  759. giveback(drv_data);
  760. return;
  761. }
  762. drv_data->n_bytes = chip->n_bytes;
  763. drv_data->dma_width = chip->dma_width;
  764. drv_data->cs_control = chip->cs_control;
  765. drv_data->tx = (void *)transfer->tx_buf;
  766. drv_data->tx_end = drv_data->tx + transfer->len;
  767. drv_data->rx = transfer->rx_buf;
  768. drv_data->rx_end = drv_data->rx + transfer->len;
  769. drv_data->rx_dma = transfer->rx_dma;
  770. drv_data->tx_dma = transfer->tx_dma;
  771. drv_data->len = transfer->len & DCMD_LENGTH;
  772. drv_data->write = drv_data->tx ? chip->write : null_writer;
  773. drv_data->read = drv_data->rx ? chip->read : null_reader;
  774. /* Change speed and bit per word on a per transfer */
  775. cr0 = chip->cr0;
  776. if (transfer->speed_hz || transfer->bits_per_word) {
  777. bits = chip->bits_per_word;
  778. speed = chip->speed_hz;
  779. if (transfer->speed_hz)
  780. speed = transfer->speed_hz;
  781. if (transfer->bits_per_word)
  782. bits = transfer->bits_per_word;
  783. clk_div = ssp_get_clk_div(ssp, speed);
  784. if (bits <= 8) {
  785. drv_data->n_bytes = 1;
  786. drv_data->dma_width = DCMD_WIDTH1;
  787. drv_data->read = drv_data->read != null_reader ?
  788. u8_reader : null_reader;
  789. drv_data->write = drv_data->write != null_writer ?
  790. u8_writer : null_writer;
  791. } else if (bits <= 16) {
  792. drv_data->n_bytes = 2;
  793. drv_data->dma_width = DCMD_WIDTH2;
  794. drv_data->read = drv_data->read != null_reader ?
  795. u16_reader : null_reader;
  796. drv_data->write = drv_data->write != null_writer ?
  797. u16_writer : null_writer;
  798. } else if (bits <= 32) {
  799. drv_data->n_bytes = 4;
  800. drv_data->dma_width = DCMD_WIDTH4;
  801. drv_data->read = drv_data->read != null_reader ?
  802. u32_reader : null_reader;
  803. drv_data->write = drv_data->write != null_writer ?
  804. u32_writer : null_writer;
  805. }
  806. /* if bits/word is changed in dma mode, then must check the
  807. * thresholds and burst also */
  808. if (chip->enable_dma) {
  809. if (set_dma_burst_and_threshold(chip, message->spi,
  810. bits, &dma_burst,
  811. &dma_thresh))
  812. if (printk_ratelimit())
  813. dev_warn(&message->spi->dev,
  814. "pump_transfers: "
  815. "DMA burst size reduced to "
  816. "match bits_per_word\n");
  817. }
  818. cr0 = clk_div
  819. | SSCR0_Motorola
  820. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  821. | SSCR0_SSE
  822. | (bits > 16 ? SSCR0_EDSS : 0);
  823. }
  824. message->state = RUNNING_STATE;
  825. /* Try to map dma buffer and do a dma transfer if successful, but
  826. * only if the length is non-zero and less than MAX_DMA_LEN.
  827. *
  828. * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
  829. * of PIO instead. Care is needed above because the transfer may
  830. * have have been passed with buffers that are already dma mapped.
  831. * A zero-length transfer in PIO mode will not try to write/read
  832. * to/from the buffers
  833. *
  834. * REVISIT large transfers are exactly where we most want to be
  835. * using DMA. If this happens much, split those transfers into
  836. * multiple DMA segments rather than forcing PIO.
  837. */
  838. drv_data->dma_mapped = 0;
  839. if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
  840. drv_data->dma_mapped = map_dma_buffers(drv_data);
  841. if (drv_data->dma_mapped) {
  842. /* Ensure we have the correct interrupt handler */
  843. drv_data->transfer_handler = dma_transfer;
  844. /* Setup rx DMA Channel */
  845. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  846. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  847. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  848. if (drv_data->rx == drv_data->null_dma_buf)
  849. /* No target address increment */
  850. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  851. | drv_data->dma_width
  852. | dma_burst
  853. | drv_data->len;
  854. else
  855. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  856. | DCMD_FLOWSRC
  857. | drv_data->dma_width
  858. | dma_burst
  859. | drv_data->len;
  860. /* Setup tx DMA Channel */
  861. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  862. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  863. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  864. if (drv_data->tx == drv_data->null_dma_buf)
  865. /* No source address increment */
  866. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  867. | drv_data->dma_width
  868. | dma_burst
  869. | drv_data->len;
  870. else
  871. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  872. | DCMD_FLOWTRG
  873. | drv_data->dma_width
  874. | dma_burst
  875. | drv_data->len;
  876. /* Enable dma end irqs on SSP to detect end of transfer */
  877. if (drv_data->ssp_type == PXA25x_SSP)
  878. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  879. /* Clear status and start DMA engine */
  880. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  881. write_SSSR(drv_data->clear_sr, reg);
  882. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  883. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  884. } else {
  885. /* Ensure we have the correct interrupt handler */
  886. drv_data->transfer_handler = interrupt_transfer;
  887. /* Clear status */
  888. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  889. write_SSSR(drv_data->clear_sr, reg);
  890. }
  891. /* see if we need to reload the config registers */
  892. if ((read_SSCR0(reg) != cr0)
  893. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  894. (cr1 & SSCR1_CHANGE_MASK)) {
  895. /* stop the SSP, and update the other bits */
  896. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  897. if (drv_data->ssp_type != PXA25x_SSP)
  898. write_SSTO(chip->timeout, reg);
  899. /* first set CR1 without interrupt and service enables */
  900. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  901. /* restart the SSP */
  902. write_SSCR0(cr0, reg);
  903. } else {
  904. if (drv_data->ssp_type != PXA25x_SSP)
  905. write_SSTO(chip->timeout, reg);
  906. }
  907. /* FIXME, need to handle cs polarity,
  908. * this driver uses struct pxa2xx_spi_chip.cs_control to
  909. * specify a CS handling function, and it ignores most
  910. * struct spi_device.mode[s], including SPI_CS_HIGH */
  911. drv_data->cs_control(PXA2XX_CS_ASSERT);
  912. /* after chip select, release the data by enabling service
  913. * requests and interrupts, without changing any mode bits */
  914. write_SSCR1(cr1, reg);
  915. }
  916. static void pump_messages(struct work_struct *work)
  917. {
  918. struct driver_data *drv_data =
  919. container_of(work, struct driver_data, pump_messages);
  920. unsigned long flags;
  921. /* Lock queue and check for queue work */
  922. spin_lock_irqsave(&drv_data->lock, flags);
  923. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  924. drv_data->busy = 0;
  925. spin_unlock_irqrestore(&drv_data->lock, flags);
  926. return;
  927. }
  928. /* Make sure we are not already running a message */
  929. if (drv_data->cur_msg) {
  930. spin_unlock_irqrestore(&drv_data->lock, flags);
  931. return;
  932. }
  933. /* Extract head of queue */
  934. drv_data->cur_msg = list_entry(drv_data->queue.next,
  935. struct spi_message, queue);
  936. list_del_init(&drv_data->cur_msg->queue);
  937. /* Initial message state*/
  938. drv_data->cur_msg->state = START_STATE;
  939. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  940. struct spi_transfer,
  941. transfer_list);
  942. /* prepare to setup the SSP, in pump_transfers, using the per
  943. * chip configuration */
  944. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  945. /* Mark as busy and launch transfers */
  946. tasklet_schedule(&drv_data->pump_transfers);
  947. drv_data->busy = 1;
  948. spin_unlock_irqrestore(&drv_data->lock, flags);
  949. }
  950. static int transfer(struct spi_device *spi, struct spi_message *msg)
  951. {
  952. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  953. unsigned long flags;
  954. spin_lock_irqsave(&drv_data->lock, flags);
  955. if (drv_data->run == QUEUE_STOPPED) {
  956. spin_unlock_irqrestore(&drv_data->lock, flags);
  957. return -ESHUTDOWN;
  958. }
  959. msg->actual_length = 0;
  960. msg->status = -EINPROGRESS;
  961. msg->state = START_STATE;
  962. list_add_tail(&msg->queue, &drv_data->queue);
  963. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  964. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  965. spin_unlock_irqrestore(&drv_data->lock, flags);
  966. return 0;
  967. }
  968. /* the spi->mode bits understood by this driver: */
  969. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  970. static int setup(struct spi_device *spi)
  971. {
  972. struct pxa2xx_spi_chip *chip_info = NULL;
  973. struct chip_data *chip;
  974. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  975. struct ssp_device *ssp = drv_data->ssp;
  976. unsigned int clk_div;
  977. uint tx_thres = TX_THRESH_DFLT;
  978. uint rx_thres = RX_THRESH_DFLT;
  979. if (!spi->bits_per_word)
  980. spi->bits_per_word = 8;
  981. if (drv_data->ssp_type != PXA25x_SSP
  982. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  983. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  984. "b/w not 4-32 for type non-PXA25x_SSP\n",
  985. drv_data->ssp_type, spi->bits_per_word);
  986. return -EINVAL;
  987. }
  988. else if (drv_data->ssp_type == PXA25x_SSP
  989. && (spi->bits_per_word < 4
  990. || spi->bits_per_word > 16)) {
  991. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  992. "b/w not 4-16 for type PXA25x_SSP\n",
  993. drv_data->ssp_type, spi->bits_per_word);
  994. return -EINVAL;
  995. }
  996. if (spi->mode & ~MODEBITS) {
  997. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  998. spi->mode & ~MODEBITS);
  999. return -EINVAL;
  1000. }
  1001. /* Only alloc on first setup */
  1002. chip = spi_get_ctldata(spi);
  1003. if (!chip) {
  1004. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1005. if (!chip) {
  1006. dev_err(&spi->dev,
  1007. "failed setup: can't allocate chip data\n");
  1008. return -ENOMEM;
  1009. }
  1010. chip->cs_control = null_cs_control;
  1011. chip->enable_dma = 0;
  1012. chip->timeout = TIMOUT_DFLT;
  1013. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  1014. DCMD_BURST8 : 0;
  1015. }
  1016. /* protocol drivers may change the chip settings, so...
  1017. * if chip_info exists, use it */
  1018. chip_info = spi->controller_data;
  1019. /* chip_info isn't always needed */
  1020. chip->cr1 = 0;
  1021. if (chip_info) {
  1022. if (chip_info->cs_control)
  1023. chip->cs_control = chip_info->cs_control;
  1024. if (chip_info->timeout)
  1025. chip->timeout = chip_info->timeout;
  1026. if (chip_info->tx_threshold)
  1027. tx_thres = chip_info->tx_threshold;
  1028. if (chip_info->rx_threshold)
  1029. rx_thres = chip_info->rx_threshold;
  1030. chip->enable_dma = drv_data->master_info->enable_dma;
  1031. chip->dma_threshold = 0;
  1032. if (chip_info->enable_loopback)
  1033. chip->cr1 = SSCR1_LBM;
  1034. }
  1035. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  1036. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  1037. /* set dma burst and threshold outside of chip_info path so that if
  1038. * chip_info goes away after setting chip->enable_dma, the
  1039. * burst and threshold can still respond to changes in bits_per_word */
  1040. if (chip->enable_dma) {
  1041. /* set up legal burst and threshold for dma */
  1042. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  1043. &chip->dma_burst_size,
  1044. &chip->dma_threshold)) {
  1045. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  1046. "to match bits_per_word\n");
  1047. }
  1048. }
  1049. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  1050. chip->speed_hz = spi->max_speed_hz;
  1051. chip->cr0 = clk_div
  1052. | SSCR0_Motorola
  1053. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  1054. spi->bits_per_word - 16 : spi->bits_per_word)
  1055. | SSCR0_SSE
  1056. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  1057. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  1058. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  1059. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  1060. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1061. if (drv_data->ssp_type != PXA25x_SSP)
  1062. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1063. spi->bits_per_word,
  1064. clk_get_rate(ssp->clk)
  1065. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1066. spi->mode & 0x3,
  1067. chip->enable_dma ? "DMA" : "PIO");
  1068. else
  1069. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d, %s\n",
  1070. spi->bits_per_word,
  1071. clk_get_rate(ssp->clk) / 2
  1072. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1073. spi->mode & 0x3,
  1074. chip->enable_dma ? "DMA" : "PIO");
  1075. if (spi->bits_per_word <= 8) {
  1076. chip->n_bytes = 1;
  1077. chip->dma_width = DCMD_WIDTH1;
  1078. chip->read = u8_reader;
  1079. chip->write = u8_writer;
  1080. } else if (spi->bits_per_word <= 16) {
  1081. chip->n_bytes = 2;
  1082. chip->dma_width = DCMD_WIDTH2;
  1083. chip->read = u16_reader;
  1084. chip->write = u16_writer;
  1085. } else if (spi->bits_per_word <= 32) {
  1086. chip->cr0 |= SSCR0_EDSS;
  1087. chip->n_bytes = 4;
  1088. chip->dma_width = DCMD_WIDTH4;
  1089. chip->read = u32_reader;
  1090. chip->write = u32_writer;
  1091. } else {
  1092. dev_err(&spi->dev, "invalid wordsize\n");
  1093. return -ENODEV;
  1094. }
  1095. chip->bits_per_word = spi->bits_per_word;
  1096. spi_set_ctldata(spi, chip);
  1097. return 0;
  1098. }
  1099. static void cleanup(struct spi_device *spi)
  1100. {
  1101. struct chip_data *chip = spi_get_ctldata(spi);
  1102. kfree(chip);
  1103. }
  1104. static int __init init_queue(struct driver_data *drv_data)
  1105. {
  1106. INIT_LIST_HEAD(&drv_data->queue);
  1107. spin_lock_init(&drv_data->lock);
  1108. drv_data->run = QUEUE_STOPPED;
  1109. drv_data->busy = 0;
  1110. tasklet_init(&drv_data->pump_transfers,
  1111. pump_transfers, (unsigned long)drv_data);
  1112. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1113. drv_data->workqueue = create_singlethread_workqueue(
  1114. drv_data->master->dev.parent->bus_id);
  1115. if (drv_data->workqueue == NULL)
  1116. return -EBUSY;
  1117. return 0;
  1118. }
  1119. static int start_queue(struct driver_data *drv_data)
  1120. {
  1121. unsigned long flags;
  1122. spin_lock_irqsave(&drv_data->lock, flags);
  1123. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1124. spin_unlock_irqrestore(&drv_data->lock, flags);
  1125. return -EBUSY;
  1126. }
  1127. drv_data->run = QUEUE_RUNNING;
  1128. drv_data->cur_msg = NULL;
  1129. drv_data->cur_transfer = NULL;
  1130. drv_data->cur_chip = NULL;
  1131. spin_unlock_irqrestore(&drv_data->lock, flags);
  1132. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1133. return 0;
  1134. }
  1135. static int stop_queue(struct driver_data *drv_data)
  1136. {
  1137. unsigned long flags;
  1138. unsigned limit = 500;
  1139. int status = 0;
  1140. spin_lock_irqsave(&drv_data->lock, flags);
  1141. /* This is a bit lame, but is optimized for the common execution path.
  1142. * A wait_queue on the drv_data->busy could be used, but then the common
  1143. * execution path (pump_messages) would be required to call wake_up or
  1144. * friends on every SPI message. Do this instead */
  1145. drv_data->run = QUEUE_STOPPED;
  1146. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1147. spin_unlock_irqrestore(&drv_data->lock, flags);
  1148. msleep(10);
  1149. spin_lock_irqsave(&drv_data->lock, flags);
  1150. }
  1151. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1152. status = -EBUSY;
  1153. spin_unlock_irqrestore(&drv_data->lock, flags);
  1154. return status;
  1155. }
  1156. static int destroy_queue(struct driver_data *drv_data)
  1157. {
  1158. int status;
  1159. status = stop_queue(drv_data);
  1160. /* we are unloading the module or failing to load (only two calls
  1161. * to this routine), and neither call can handle a return value.
  1162. * However, destroy_workqueue calls flush_workqueue, and that will
  1163. * block until all work is done. If the reason that stop_queue
  1164. * timed out is that the work will never finish, then it does no
  1165. * good to call destroy_workqueue, so return anyway. */
  1166. if (status != 0)
  1167. return status;
  1168. destroy_workqueue(drv_data->workqueue);
  1169. return 0;
  1170. }
  1171. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1172. {
  1173. struct device *dev = &pdev->dev;
  1174. struct pxa2xx_spi_master *platform_info;
  1175. struct spi_master *master;
  1176. struct driver_data *drv_data;
  1177. struct ssp_device *ssp;
  1178. int status;
  1179. platform_info = dev->platform_data;
  1180. ssp = ssp_request(pdev->id, pdev->name);
  1181. if (ssp == NULL) {
  1182. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1183. return -ENODEV;
  1184. }
  1185. /* Allocate master with space for drv_data and null dma buffer */
  1186. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1187. if (!master) {
  1188. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  1189. ssp_free(ssp);
  1190. return -ENOMEM;
  1191. }
  1192. drv_data = spi_master_get_devdata(master);
  1193. drv_data->master = master;
  1194. drv_data->master_info = platform_info;
  1195. drv_data->pdev = pdev;
  1196. drv_data->ssp = ssp;
  1197. master->bus_num = pdev->id;
  1198. master->num_chipselect = platform_info->num_chipselect;
  1199. master->cleanup = cleanup;
  1200. master->setup = setup;
  1201. master->transfer = transfer;
  1202. drv_data->ssp_type = ssp->type;
  1203. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1204. sizeof(struct driver_data)), 8);
  1205. drv_data->ioaddr = ssp->mmio_base;
  1206. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1207. if (ssp->type == PXA25x_SSP) {
  1208. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1209. drv_data->dma_cr1 = 0;
  1210. drv_data->clear_sr = SSSR_ROR;
  1211. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1212. } else {
  1213. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1214. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1215. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1216. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1217. }
  1218. status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
  1219. if (status < 0) {
  1220. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  1221. goto out_error_master_alloc;
  1222. }
  1223. /* Setup DMA if requested */
  1224. drv_data->tx_channel = -1;
  1225. drv_data->rx_channel = -1;
  1226. if (platform_info->enable_dma) {
  1227. /* Get two DMA channels (rx and tx) */
  1228. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1229. DMA_PRIO_HIGH,
  1230. dma_handler,
  1231. drv_data);
  1232. if (drv_data->rx_channel < 0) {
  1233. dev_err(dev, "problem (%d) requesting rx channel\n",
  1234. drv_data->rx_channel);
  1235. status = -ENODEV;
  1236. goto out_error_irq_alloc;
  1237. }
  1238. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1239. DMA_PRIO_MEDIUM,
  1240. dma_handler,
  1241. drv_data);
  1242. if (drv_data->tx_channel < 0) {
  1243. dev_err(dev, "problem (%d) requesting tx channel\n",
  1244. drv_data->tx_channel);
  1245. status = -ENODEV;
  1246. goto out_error_dma_alloc;
  1247. }
  1248. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1249. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1250. }
  1251. /* Enable SOC clock */
  1252. clk_enable(ssp->clk);
  1253. /* Load default SSP configuration */
  1254. write_SSCR0(0, drv_data->ioaddr);
  1255. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  1256. SSCR1_TxTresh(TX_THRESH_DFLT),
  1257. drv_data->ioaddr);
  1258. write_SSCR0(SSCR0_SerClkDiv(2)
  1259. | SSCR0_Motorola
  1260. | SSCR0_DataSize(8),
  1261. drv_data->ioaddr);
  1262. if (drv_data->ssp_type != PXA25x_SSP)
  1263. write_SSTO(0, drv_data->ioaddr);
  1264. write_SSPSP(0, drv_data->ioaddr);
  1265. /* Initial and start queue */
  1266. status = init_queue(drv_data);
  1267. if (status != 0) {
  1268. dev_err(&pdev->dev, "problem initializing queue\n");
  1269. goto out_error_clock_enabled;
  1270. }
  1271. status = start_queue(drv_data);
  1272. if (status != 0) {
  1273. dev_err(&pdev->dev, "problem starting queue\n");
  1274. goto out_error_clock_enabled;
  1275. }
  1276. /* Register with the SPI framework */
  1277. platform_set_drvdata(pdev, drv_data);
  1278. status = spi_register_master(master);
  1279. if (status != 0) {
  1280. dev_err(&pdev->dev, "problem registering spi master\n");
  1281. goto out_error_queue_alloc;
  1282. }
  1283. return status;
  1284. out_error_queue_alloc:
  1285. destroy_queue(drv_data);
  1286. out_error_clock_enabled:
  1287. clk_disable(ssp->clk);
  1288. out_error_dma_alloc:
  1289. if (drv_data->tx_channel != -1)
  1290. pxa_free_dma(drv_data->tx_channel);
  1291. if (drv_data->rx_channel != -1)
  1292. pxa_free_dma(drv_data->rx_channel);
  1293. out_error_irq_alloc:
  1294. free_irq(ssp->irq, drv_data);
  1295. out_error_master_alloc:
  1296. spi_master_put(master);
  1297. ssp_free(ssp);
  1298. return status;
  1299. }
  1300. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1301. {
  1302. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1303. struct ssp_device *ssp = drv_data->ssp;
  1304. int status = 0;
  1305. if (!drv_data)
  1306. return 0;
  1307. /* Remove the queue */
  1308. status = destroy_queue(drv_data);
  1309. if (status != 0)
  1310. /* the kernel does not check the return status of this
  1311. * this routine (mod->exit, within the kernel). Therefore
  1312. * nothing is gained by returning from here, the module is
  1313. * going away regardless, and we should not leave any more
  1314. * resources allocated than necessary. We cannot free the
  1315. * message memory in drv_data->queue, but we can release the
  1316. * resources below. I think the kernel should honor -EBUSY
  1317. * returns but... */
  1318. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1319. "complete, message memory not freed\n");
  1320. /* Disable the SSP at the peripheral and SOC level */
  1321. write_SSCR0(0, drv_data->ioaddr);
  1322. clk_disable(ssp->clk);
  1323. /* Release DMA */
  1324. if (drv_data->master_info->enable_dma) {
  1325. DRCMR(ssp->drcmr_rx) = 0;
  1326. DRCMR(ssp->drcmr_tx) = 0;
  1327. pxa_free_dma(drv_data->tx_channel);
  1328. pxa_free_dma(drv_data->rx_channel);
  1329. }
  1330. /* Release IRQ */
  1331. free_irq(ssp->irq, drv_data);
  1332. /* Release SSP */
  1333. ssp_free(ssp);
  1334. /* Disconnect from the SPI framework */
  1335. spi_unregister_master(drv_data->master);
  1336. /* Prevent double remove */
  1337. platform_set_drvdata(pdev, NULL);
  1338. return 0;
  1339. }
  1340. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1341. {
  1342. int status = 0;
  1343. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1344. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1345. }
  1346. #ifdef CONFIG_PM
  1347. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1348. {
  1349. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1350. struct ssp_device *ssp = drv_data->ssp;
  1351. int status = 0;
  1352. status = stop_queue(drv_data);
  1353. if (status != 0)
  1354. return status;
  1355. write_SSCR0(0, drv_data->ioaddr);
  1356. clk_disable(ssp->clk);
  1357. return 0;
  1358. }
  1359. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1360. {
  1361. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1362. struct ssp_device *ssp = drv_data->ssp;
  1363. int status = 0;
  1364. /* Enable the SSP clock */
  1365. clk_enable(ssp->clk);
  1366. /* Start the queue running */
  1367. status = start_queue(drv_data);
  1368. if (status != 0) {
  1369. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1370. return status;
  1371. }
  1372. return 0;
  1373. }
  1374. #else
  1375. #define pxa2xx_spi_suspend NULL
  1376. #define pxa2xx_spi_resume NULL
  1377. #endif /* CONFIG_PM */
  1378. static struct platform_driver driver = {
  1379. .driver = {
  1380. .name = "pxa2xx-spi",
  1381. .owner = THIS_MODULE,
  1382. },
  1383. .remove = pxa2xx_spi_remove,
  1384. .shutdown = pxa2xx_spi_shutdown,
  1385. .suspend = pxa2xx_spi_suspend,
  1386. .resume = pxa2xx_spi_resume,
  1387. };
  1388. static int __init pxa2xx_spi_init(void)
  1389. {
  1390. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1391. }
  1392. module_init(pxa2xx_spi_init);
  1393. static void __exit pxa2xx_spi_exit(void)
  1394. {
  1395. platform_driver_unregister(&driver);
  1396. }
  1397. module_exit(pxa2xx_spi_exit);