init_64.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222
  1. /*
  2. * linux/arch/x86_64/mm/init.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
  6. * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
  7. */
  8. #include <linux/signal.h>
  9. #include <linux/sched.h>
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/string.h>
  13. #include <linux/types.h>
  14. #include <linux/ptrace.h>
  15. #include <linux/mman.h>
  16. #include <linux/mm.h>
  17. #include <linux/swap.h>
  18. #include <linux/smp.h>
  19. #include <linux/init.h>
  20. #include <linux/initrd.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/pci.h>
  25. #include <linux/pfn.h>
  26. #include <linux/poison.h>
  27. #include <linux/dma-mapping.h>
  28. #include <linux/module.h>
  29. #include <linux/memory_hotplug.h>
  30. #include <linux/nmi.h>
  31. #include <asm/processor.h>
  32. #include <asm/bios_ebda.h>
  33. #include <asm/system.h>
  34. #include <asm/uaccess.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/pgalloc.h>
  37. #include <asm/dma.h>
  38. #include <asm/fixmap.h>
  39. #include <asm/e820.h>
  40. #include <asm/apic.h>
  41. #include <asm/tlb.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/proto.h>
  44. #include <asm/smp.h>
  45. #include <asm/sections.h>
  46. #include <asm/kdebug.h>
  47. #include <asm/numa.h>
  48. #include <asm/cacheflush.h>
  49. /*
  50. * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
  51. * The direct mapping extends to max_pfn_mapped, so that we can directly access
  52. * apertures, ACPI and other tables without having to play with fixmaps.
  53. */
  54. unsigned long max_low_pfn_mapped;
  55. unsigned long max_pfn_mapped;
  56. static unsigned long dma_reserve __initdata;
  57. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  58. int direct_gbpages
  59. #ifdef CONFIG_DIRECT_GBPAGES
  60. = 1
  61. #endif
  62. ;
  63. static int __init parse_direct_gbpages_off(char *arg)
  64. {
  65. direct_gbpages = 0;
  66. return 0;
  67. }
  68. early_param("nogbpages", parse_direct_gbpages_off);
  69. static int __init parse_direct_gbpages_on(char *arg)
  70. {
  71. direct_gbpages = 1;
  72. return 0;
  73. }
  74. early_param("gbpages", parse_direct_gbpages_on);
  75. /*
  76. * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
  77. * physical space so we can cache the place of the first one and move
  78. * around without checking the pgd every time.
  79. */
  80. int after_bootmem;
  81. pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
  82. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  83. static int do_not_nx __cpuinitdata;
  84. /*
  85. * noexec=on|off
  86. * Control non-executable mappings for 64-bit processes.
  87. *
  88. * on Enable (default)
  89. * off Disable
  90. */
  91. static int __init nonx_setup(char *str)
  92. {
  93. if (!str)
  94. return -EINVAL;
  95. if (!strncmp(str, "on", 2)) {
  96. __supported_pte_mask |= _PAGE_NX;
  97. do_not_nx = 0;
  98. } else if (!strncmp(str, "off", 3)) {
  99. do_not_nx = 1;
  100. __supported_pte_mask &= ~_PAGE_NX;
  101. }
  102. return 0;
  103. }
  104. early_param("noexec", nonx_setup);
  105. void __cpuinit check_efer(void)
  106. {
  107. unsigned long efer;
  108. rdmsrl(MSR_EFER, efer);
  109. if (!(efer & EFER_NX) || do_not_nx)
  110. __supported_pte_mask &= ~_PAGE_NX;
  111. }
  112. int force_personality32;
  113. /*
  114. * noexec32=on|off
  115. * Control non executable heap for 32bit processes.
  116. * To control the stack too use noexec=off
  117. *
  118. * on PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
  119. * off PROT_READ implies PROT_EXEC
  120. */
  121. static int __init nonx32_setup(char *str)
  122. {
  123. if (!strcmp(str, "on"))
  124. force_personality32 &= ~READ_IMPLIES_EXEC;
  125. else if (!strcmp(str, "off"))
  126. force_personality32 |= READ_IMPLIES_EXEC;
  127. return 1;
  128. }
  129. __setup("noexec32=", nonx32_setup);
  130. /*
  131. * NOTE: This function is marked __ref because it calls __init function
  132. * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
  133. */
  134. static __ref void *spp_getpage(void)
  135. {
  136. void *ptr;
  137. if (after_bootmem)
  138. ptr = (void *) get_zeroed_page(GFP_ATOMIC);
  139. else
  140. ptr = alloc_bootmem_pages(PAGE_SIZE);
  141. if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
  142. panic("set_pte_phys: cannot allocate page data %s\n",
  143. after_bootmem ? "after bootmem" : "");
  144. }
  145. pr_debug("spp_getpage %p\n", ptr);
  146. return ptr;
  147. }
  148. void
  149. set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
  150. {
  151. pud_t *pud;
  152. pmd_t *pmd;
  153. pte_t *pte;
  154. pud = pud_page + pud_index(vaddr);
  155. if (pud_none(*pud)) {
  156. pmd = (pmd_t *) spp_getpage();
  157. pud_populate(&init_mm, pud, pmd);
  158. if (pmd != pmd_offset(pud, 0)) {
  159. printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
  160. pmd, pmd_offset(pud, 0));
  161. return;
  162. }
  163. }
  164. pmd = pmd_offset(pud, vaddr);
  165. if (pmd_none(*pmd)) {
  166. pte = (pte_t *) spp_getpage();
  167. pmd_populate_kernel(&init_mm, pmd, pte);
  168. if (pte != pte_offset_kernel(pmd, 0)) {
  169. printk(KERN_ERR "PAGETABLE BUG #02!\n");
  170. return;
  171. }
  172. }
  173. pte = pte_offset_kernel(pmd, vaddr);
  174. set_pte(pte, new_pte);
  175. /*
  176. * It's enough to flush this one mapping.
  177. * (PGE mappings get flushed as well)
  178. */
  179. __flush_tlb_one(vaddr);
  180. }
  181. void
  182. set_pte_vaddr(unsigned long vaddr, pte_t pteval)
  183. {
  184. pgd_t *pgd;
  185. pud_t *pud_page;
  186. pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
  187. pgd = pgd_offset_k(vaddr);
  188. if (pgd_none(*pgd)) {
  189. printk(KERN_ERR
  190. "PGD FIXMAP MISSING, it should be setup in head.S!\n");
  191. return;
  192. }
  193. pud_page = (pud_t*)pgd_page_vaddr(*pgd);
  194. set_pte_vaddr_pud(pud_page, vaddr, pteval);
  195. }
  196. /*
  197. * Create large page table mappings for a range of physical addresses.
  198. */
  199. static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
  200. pgprot_t prot)
  201. {
  202. pgd_t *pgd;
  203. pud_t *pud;
  204. pmd_t *pmd;
  205. BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
  206. for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
  207. pgd = pgd_offset_k((unsigned long)__va(phys));
  208. if (pgd_none(*pgd)) {
  209. pud = (pud_t *) spp_getpage();
  210. set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
  211. _PAGE_USER));
  212. }
  213. pud = pud_offset(pgd, (unsigned long)__va(phys));
  214. if (pud_none(*pud)) {
  215. pmd = (pmd_t *) spp_getpage();
  216. set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
  217. _PAGE_USER));
  218. }
  219. pmd = pmd_offset(pud, phys);
  220. BUG_ON(!pmd_none(*pmd));
  221. set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
  222. }
  223. }
  224. void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
  225. {
  226. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
  227. }
  228. void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
  229. {
  230. __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
  231. }
  232. /*
  233. * The head.S code sets up the kernel high mapping:
  234. *
  235. * from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
  236. *
  237. * phys_addr holds the negative offset to the kernel, which is added
  238. * to the compile time generated pmds. This results in invalid pmds up
  239. * to the point where we hit the physaddr 0 mapping.
  240. *
  241. * We limit the mappings to the region from _text to _end. _end is
  242. * rounded up to the 2MB boundary. This catches the invalid pmds as
  243. * well, as they are located before _text:
  244. */
  245. void __init cleanup_highmap(void)
  246. {
  247. unsigned long vaddr = __START_KERNEL_map;
  248. unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
  249. pmd_t *pmd = level2_kernel_pgt;
  250. pmd_t *last_pmd = pmd + PTRS_PER_PMD;
  251. for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
  252. if (pmd_none(*pmd))
  253. continue;
  254. if (vaddr < (unsigned long) _text || vaddr > end)
  255. set_pmd(pmd, __pmd(0));
  256. }
  257. }
  258. static unsigned long __initdata table_start;
  259. static unsigned long __meminitdata table_end;
  260. static unsigned long __meminitdata table_top;
  261. static __ref void *alloc_low_page(unsigned long *phys)
  262. {
  263. unsigned long pfn = table_end++;
  264. void *adr;
  265. if (after_bootmem) {
  266. adr = (void *)get_zeroed_page(GFP_ATOMIC);
  267. *phys = __pa(adr);
  268. return adr;
  269. }
  270. if (pfn >= table_top)
  271. panic("alloc_low_page: ran out of memory");
  272. adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
  273. memset(adr, 0, PAGE_SIZE);
  274. *phys = pfn * PAGE_SIZE;
  275. return adr;
  276. }
  277. static __ref void unmap_low_page(void *adr)
  278. {
  279. if (after_bootmem)
  280. return;
  281. early_iounmap(adr, PAGE_SIZE);
  282. }
  283. static unsigned long __meminit
  284. phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
  285. pgprot_t prot)
  286. {
  287. unsigned pages = 0;
  288. unsigned long last_map_addr = end;
  289. int i;
  290. pte_t *pte = pte_page + pte_index(addr);
  291. for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
  292. if (addr >= end) {
  293. if (!after_bootmem) {
  294. for(; i < PTRS_PER_PTE; i++, pte++)
  295. set_pte(pte, __pte(0));
  296. }
  297. break;
  298. }
  299. /*
  300. * We will re-use the existing mapping.
  301. * Xen for example has some special requirements, like mapping
  302. * pagetable pages as RO. So assume someone who pre-setup
  303. * these mappings are more intelligent.
  304. */
  305. if (pte_val(*pte))
  306. continue;
  307. if (0)
  308. printk(" pte=%p addr=%lx pte=%016lx\n",
  309. pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
  310. pages++;
  311. set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
  312. last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
  313. }
  314. update_page_count(PG_LEVEL_4K, pages);
  315. return last_map_addr;
  316. }
  317. static unsigned long __meminit
  318. phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
  319. pgprot_t prot)
  320. {
  321. pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
  322. return phys_pte_init(pte, address, end, prot);
  323. }
  324. static unsigned long __meminit
  325. phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
  326. unsigned long page_size_mask, pgprot_t prot)
  327. {
  328. unsigned long pages = 0;
  329. unsigned long last_map_addr = end;
  330. int i = pmd_index(address);
  331. for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
  332. unsigned long pte_phys;
  333. pmd_t *pmd = pmd_page + pmd_index(address);
  334. pte_t *pte;
  335. pgprot_t new_prot = prot;
  336. if (address >= end) {
  337. if (!after_bootmem) {
  338. for (; i < PTRS_PER_PMD; i++, pmd++)
  339. set_pmd(pmd, __pmd(0));
  340. }
  341. break;
  342. }
  343. if (pmd_val(*pmd)) {
  344. if (!pmd_large(*pmd)) {
  345. spin_lock(&init_mm.page_table_lock);
  346. last_map_addr = phys_pte_update(pmd, address,
  347. end, prot);
  348. spin_unlock(&init_mm.page_table_lock);
  349. continue;
  350. }
  351. /*
  352. * If we are ok with PG_LEVEL_2M mapping, then we will
  353. * use the existing mapping,
  354. *
  355. * Otherwise, we will split the large page mapping but
  356. * use the same existing protection bits except for
  357. * large page, so that we don't violate Intel's TLB
  358. * Application note (317080) which says, while changing
  359. * the page sizes, new and old translations should
  360. * not differ with respect to page frame and
  361. * attributes.
  362. */
  363. if (page_size_mask & (1 << PG_LEVEL_2M))
  364. continue;
  365. new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
  366. }
  367. if (page_size_mask & (1<<PG_LEVEL_2M)) {
  368. pages++;
  369. spin_lock(&init_mm.page_table_lock);
  370. set_pte((pte_t *)pmd,
  371. pfn_pte(address >> PAGE_SHIFT,
  372. __pgprot(pgprot_val(prot) | _PAGE_PSE)));
  373. spin_unlock(&init_mm.page_table_lock);
  374. last_map_addr = (address & PMD_MASK) + PMD_SIZE;
  375. continue;
  376. }
  377. pte = alloc_low_page(&pte_phys);
  378. last_map_addr = phys_pte_init(pte, address, end, new_prot);
  379. unmap_low_page(pte);
  380. spin_lock(&init_mm.page_table_lock);
  381. pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
  382. spin_unlock(&init_mm.page_table_lock);
  383. }
  384. update_page_count(PG_LEVEL_2M, pages);
  385. return last_map_addr;
  386. }
  387. static unsigned long __meminit
  388. phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
  389. unsigned long page_size_mask, pgprot_t prot)
  390. {
  391. pmd_t *pmd = pmd_offset(pud, 0);
  392. unsigned long last_map_addr;
  393. last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
  394. __flush_tlb_all();
  395. return last_map_addr;
  396. }
  397. static unsigned long __meminit
  398. phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
  399. unsigned long page_size_mask)
  400. {
  401. unsigned long pages = 0;
  402. unsigned long last_map_addr = end;
  403. int i = pud_index(addr);
  404. for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
  405. unsigned long pmd_phys;
  406. pud_t *pud = pud_page + pud_index(addr);
  407. pmd_t *pmd;
  408. pgprot_t prot = PAGE_KERNEL;
  409. if (addr >= end)
  410. break;
  411. if (!after_bootmem &&
  412. !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
  413. set_pud(pud, __pud(0));
  414. continue;
  415. }
  416. if (pud_val(*pud)) {
  417. if (!pud_large(*pud)) {
  418. last_map_addr = phys_pmd_update(pud, addr, end,
  419. page_size_mask, prot);
  420. continue;
  421. }
  422. /*
  423. * If we are ok with PG_LEVEL_1G mapping, then we will
  424. * use the existing mapping.
  425. *
  426. * Otherwise, we will split the gbpage mapping but use
  427. * the same existing protection bits except for large
  428. * page, so that we don't violate Intel's TLB
  429. * Application note (317080) which says, while changing
  430. * the page sizes, new and old translations should
  431. * not differ with respect to page frame and
  432. * attributes.
  433. */
  434. if (page_size_mask & (1 << PG_LEVEL_1G))
  435. continue;
  436. prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
  437. }
  438. if (page_size_mask & (1<<PG_LEVEL_1G)) {
  439. pages++;
  440. spin_lock(&init_mm.page_table_lock);
  441. set_pte((pte_t *)pud,
  442. pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
  443. spin_unlock(&init_mm.page_table_lock);
  444. last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
  445. continue;
  446. }
  447. pmd = alloc_low_page(&pmd_phys);
  448. last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
  449. prot);
  450. unmap_low_page(pmd);
  451. spin_lock(&init_mm.page_table_lock);
  452. pud_populate(&init_mm, pud, __va(pmd_phys));
  453. spin_unlock(&init_mm.page_table_lock);
  454. }
  455. __flush_tlb_all();
  456. update_page_count(PG_LEVEL_1G, pages);
  457. return last_map_addr;
  458. }
  459. static unsigned long __meminit
  460. phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
  461. unsigned long page_size_mask)
  462. {
  463. pud_t *pud;
  464. pud = (pud_t *)pgd_page_vaddr(*pgd);
  465. return phys_pud_init(pud, addr, end, page_size_mask);
  466. }
  467. static void __init find_early_table_space(unsigned long end, int use_pse,
  468. int use_gbpages)
  469. {
  470. unsigned long puds, pmds, ptes, tables, start;
  471. puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
  472. tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
  473. if (use_gbpages) {
  474. unsigned long extra;
  475. extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
  476. pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
  477. } else
  478. pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
  479. tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
  480. if (use_pse) {
  481. unsigned long extra;
  482. extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
  483. ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
  484. } else
  485. ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
  486. tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
  487. /*
  488. * RED-PEN putting page tables only on node 0 could
  489. * cause a hotspot and fill up ZONE_DMA. The page tables
  490. * need roughly 0.5KB per GB.
  491. */
  492. start = 0x8000;
  493. table_start = find_e820_area(start, end, tables, PAGE_SIZE);
  494. if (table_start == -1UL)
  495. panic("Cannot find space for the kernel page tables");
  496. table_start >>= PAGE_SHIFT;
  497. table_end = table_start;
  498. table_top = table_start + (tables >> PAGE_SHIFT);
  499. printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
  500. end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
  501. }
  502. static void __init init_gbpages(void)
  503. {
  504. if (direct_gbpages && cpu_has_gbpages)
  505. printk(KERN_INFO "Using GB pages for direct mapping\n");
  506. else
  507. direct_gbpages = 0;
  508. }
  509. static unsigned long __init kernel_physical_mapping_init(unsigned long start,
  510. unsigned long end,
  511. unsigned long page_size_mask)
  512. {
  513. unsigned long next, last_map_addr = end;
  514. start = (unsigned long)__va(start);
  515. end = (unsigned long)__va(end);
  516. for (; start < end; start = next) {
  517. pgd_t *pgd = pgd_offset_k(start);
  518. unsigned long pud_phys;
  519. pud_t *pud;
  520. next = (start + PGDIR_SIZE) & PGDIR_MASK;
  521. if (next > end)
  522. next = end;
  523. if (pgd_val(*pgd)) {
  524. last_map_addr = phys_pud_update(pgd, __pa(start),
  525. __pa(end), page_size_mask);
  526. continue;
  527. }
  528. pud = alloc_low_page(&pud_phys);
  529. last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
  530. page_size_mask);
  531. unmap_low_page(pud);
  532. spin_lock(&init_mm.page_table_lock);
  533. pgd_populate(&init_mm, pgd, __va(pud_phys));
  534. spin_unlock(&init_mm.page_table_lock);
  535. }
  536. __flush_tlb_all();
  537. return last_map_addr;
  538. }
  539. struct map_range {
  540. unsigned long start;
  541. unsigned long end;
  542. unsigned page_size_mask;
  543. };
  544. #define NR_RANGE_MR 5
  545. static int save_mr(struct map_range *mr, int nr_range,
  546. unsigned long start_pfn, unsigned long end_pfn,
  547. unsigned long page_size_mask)
  548. {
  549. if (start_pfn < end_pfn) {
  550. if (nr_range >= NR_RANGE_MR)
  551. panic("run out of range for init_memory_mapping\n");
  552. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  553. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  554. mr[nr_range].page_size_mask = page_size_mask;
  555. nr_range++;
  556. }
  557. return nr_range;
  558. }
  559. /*
  560. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  561. * This runs before bootmem is initialized and gets pages directly from
  562. * the physical memory. To access them they are temporarily mapped.
  563. */
  564. unsigned long __init_refok init_memory_mapping(unsigned long start,
  565. unsigned long end)
  566. {
  567. unsigned long last_map_addr = 0;
  568. unsigned long page_size_mask = 0;
  569. unsigned long start_pfn, end_pfn;
  570. struct map_range mr[NR_RANGE_MR];
  571. int nr_range, i;
  572. int use_pse, use_gbpages;
  573. printk(KERN_INFO "init_memory_mapping\n");
  574. /*
  575. * Find space for the kernel direct mapping tables.
  576. *
  577. * Later we should allocate these tables in the local node of the
  578. * memory mapped. Unfortunately this is done currently before the
  579. * nodes are discovered.
  580. */
  581. if (!after_bootmem)
  582. init_gbpages();
  583. #ifdef CONFIG_DEBUG_PAGEALLOC
  584. /*
  585. * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
  586. * This will simplify cpa(), which otherwise needs to support splitting
  587. * large pages into small in interrupt context, etc.
  588. */
  589. use_pse = use_gbpages = 0;
  590. #else
  591. use_pse = cpu_has_pse;
  592. use_gbpages = direct_gbpages;
  593. #endif
  594. if (use_gbpages)
  595. page_size_mask |= 1 << PG_LEVEL_1G;
  596. if (use_pse)
  597. page_size_mask |= 1 << PG_LEVEL_2M;
  598. memset(mr, 0, sizeof(mr));
  599. nr_range = 0;
  600. /* head if not big page alignment ?*/
  601. start_pfn = start >> PAGE_SHIFT;
  602. end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
  603. << (PMD_SHIFT - PAGE_SHIFT);
  604. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  605. /* big page (2M) range*/
  606. start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
  607. << (PMD_SHIFT - PAGE_SHIFT);
  608. end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
  609. << (PUD_SHIFT - PAGE_SHIFT);
  610. if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
  611. end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
  612. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  613. page_size_mask & (1<<PG_LEVEL_2M));
  614. /* big page (1G) range */
  615. start_pfn = end_pfn;
  616. end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
  617. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  618. page_size_mask &
  619. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  620. /* tail is not big page (1G) alignment */
  621. start_pfn = end_pfn;
  622. end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
  623. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  624. page_size_mask & (1<<PG_LEVEL_2M));
  625. /* tail is not big page (2M) alignment */
  626. start_pfn = end_pfn;
  627. end_pfn = end>>PAGE_SHIFT;
  628. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  629. /* try to merge same page size and continuous */
  630. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  631. unsigned long old_start;
  632. if (mr[i].end != mr[i+1].start ||
  633. mr[i].page_size_mask != mr[i+1].page_size_mask)
  634. continue;
  635. /* move it */
  636. old_start = mr[i].start;
  637. memmove(&mr[i], &mr[i+1],
  638. (nr_range - 1 - i) * sizeof (struct map_range));
  639. mr[i--].start = old_start;
  640. nr_range--;
  641. }
  642. for (i = 0; i < nr_range; i++)
  643. printk(KERN_DEBUG " %010lx - %010lx page %s\n",
  644. mr[i].start, mr[i].end,
  645. (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
  646. (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
  647. if (!after_bootmem)
  648. find_early_table_space(end, use_pse, use_gbpages);
  649. for (i = 0; i < nr_range; i++)
  650. last_map_addr = kernel_physical_mapping_init(
  651. mr[i].start, mr[i].end,
  652. mr[i].page_size_mask);
  653. if (!after_bootmem)
  654. mmu_cr4_features = read_cr4();
  655. __flush_tlb_all();
  656. if (!after_bootmem && table_end > table_start)
  657. reserve_early(table_start << PAGE_SHIFT,
  658. table_end << PAGE_SHIFT, "PGTABLE");
  659. printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
  660. last_map_addr, end);
  661. if (!after_bootmem)
  662. early_memtest(start, end);
  663. return last_map_addr >> PAGE_SHIFT;
  664. }
  665. #ifndef CONFIG_NUMA
  666. void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  667. {
  668. unsigned long bootmap_size, bootmap;
  669. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  670. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
  671. PAGE_SIZE);
  672. if (bootmap == -1L)
  673. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  674. /* don't touch min_low_pfn */
  675. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
  676. 0, end_pfn);
  677. e820_register_active_regions(0, start_pfn, end_pfn);
  678. free_bootmem_with_active_regions(0, end_pfn);
  679. early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
  680. reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
  681. }
  682. void __init paging_init(void)
  683. {
  684. unsigned long max_zone_pfns[MAX_NR_ZONES];
  685. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  686. max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
  687. max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
  688. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  689. memory_present(0, 0, max_pfn);
  690. sparse_init();
  691. free_area_init_nodes(max_zone_pfns);
  692. }
  693. #endif
  694. /*
  695. * Memory hotplug specific functions
  696. */
  697. #ifdef CONFIG_MEMORY_HOTPLUG
  698. /*
  699. * Memory is added always to NORMAL zone. This means you will never get
  700. * additional DMA/DMA32 memory.
  701. */
  702. int arch_add_memory(int nid, u64 start, u64 size)
  703. {
  704. struct pglist_data *pgdat = NODE_DATA(nid);
  705. struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
  706. unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
  707. unsigned long nr_pages = size >> PAGE_SHIFT;
  708. int ret;
  709. last_mapped_pfn = init_memory_mapping(start, start + size-1);
  710. if (last_mapped_pfn > max_pfn_mapped)
  711. max_pfn_mapped = last_mapped_pfn;
  712. ret = __add_pages(zone, start_pfn, nr_pages);
  713. WARN_ON(1);
  714. return ret;
  715. }
  716. EXPORT_SYMBOL_GPL(arch_add_memory);
  717. #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
  718. int memory_add_physaddr_to_nid(u64 start)
  719. {
  720. return 0;
  721. }
  722. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  723. #endif
  724. #endif /* CONFIG_MEMORY_HOTPLUG */
  725. /*
  726. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  727. * is valid. The argument is a physical page number.
  728. *
  729. *
  730. * On x86, access has to be given to the first megabyte of ram because that area
  731. * contains bios code and data regions used by X and dosemu and similar apps.
  732. * Access has to be given to non-kernel-ram areas as well, these contain the PCI
  733. * mmio resources as well as potential bios/acpi data regions.
  734. */
  735. int devmem_is_allowed(unsigned long pagenr)
  736. {
  737. if (pagenr <= 256)
  738. return 1;
  739. if (!page_is_ram(pagenr))
  740. return 1;
  741. return 0;
  742. }
  743. static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
  744. kcore_modules, kcore_vsyscall;
  745. void __init mem_init(void)
  746. {
  747. long codesize, reservedpages, datasize, initsize;
  748. start_periodic_check_for_corruption();
  749. pci_iommu_alloc();
  750. /* clear_bss() already clear the empty_zero_page */
  751. reservedpages = 0;
  752. /* this will put all low memory onto the freelists */
  753. #ifdef CONFIG_NUMA
  754. totalram_pages = numa_free_all_bootmem();
  755. #else
  756. totalram_pages = free_all_bootmem();
  757. #endif
  758. reservedpages = max_pfn - totalram_pages -
  759. absent_pages_in_range(0, max_pfn);
  760. after_bootmem = 1;
  761. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  762. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  763. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  764. /* Register memory areas for /proc/kcore */
  765. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  766. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  767. VMALLOC_END-VMALLOC_START);
  768. kclist_add(&kcore_kernel, &_stext, _end - _stext);
  769. kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
  770. kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
  771. VSYSCALL_END - VSYSCALL_START);
  772. printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
  773. "%ldk reserved, %ldk data, %ldk init)\n",
  774. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  775. max_pfn << (PAGE_SHIFT-10),
  776. codesize >> 10,
  777. reservedpages << (PAGE_SHIFT-10),
  778. datasize >> 10,
  779. initsize >> 10);
  780. }
  781. void free_init_pages(char *what, unsigned long begin, unsigned long end)
  782. {
  783. unsigned long addr = begin;
  784. if (addr >= end)
  785. return;
  786. /*
  787. * If debugging page accesses then do not free this memory but
  788. * mark them not present - any buggy init-section access will
  789. * create a kernel page fault:
  790. */
  791. #ifdef CONFIG_DEBUG_PAGEALLOC
  792. printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
  793. begin, PAGE_ALIGN(end));
  794. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  795. #else
  796. printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
  797. for (; addr < end; addr += PAGE_SIZE) {
  798. ClearPageReserved(virt_to_page(addr));
  799. init_page_count(virt_to_page(addr));
  800. memset((void *)(addr & ~(PAGE_SIZE-1)),
  801. POISON_FREE_INITMEM, PAGE_SIZE);
  802. free_page(addr);
  803. totalram_pages++;
  804. }
  805. #endif
  806. }
  807. void free_initmem(void)
  808. {
  809. free_init_pages("unused kernel memory",
  810. (unsigned long)(&__init_begin),
  811. (unsigned long)(&__init_end));
  812. }
  813. #ifdef CONFIG_DEBUG_RODATA
  814. const int rodata_test_data = 0xC3;
  815. EXPORT_SYMBOL_GPL(rodata_test_data);
  816. void mark_rodata_ro(void)
  817. {
  818. unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
  819. unsigned long rodata_start =
  820. ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
  821. #ifdef CONFIG_DYNAMIC_FTRACE
  822. /* Dynamic tracing modifies the kernel text section */
  823. start = rodata_start;
  824. #endif
  825. printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
  826. (end - start) >> 10);
  827. set_memory_ro(start, (end - start) >> PAGE_SHIFT);
  828. /*
  829. * The rodata section (but not the kernel text!) should also be
  830. * not-executable.
  831. */
  832. set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
  833. rodata_test();
  834. #ifdef CONFIG_CPA_DEBUG
  835. printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
  836. set_memory_rw(start, (end-start) >> PAGE_SHIFT);
  837. printk(KERN_INFO "Testing CPA: again\n");
  838. set_memory_ro(start, (end-start) >> PAGE_SHIFT);
  839. #endif
  840. }
  841. #endif
  842. #ifdef CONFIG_BLK_DEV_INITRD
  843. void free_initrd_mem(unsigned long start, unsigned long end)
  844. {
  845. free_init_pages("initrd memory", start, end);
  846. }
  847. #endif
  848. int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
  849. int flags)
  850. {
  851. #ifdef CONFIG_NUMA
  852. int nid, next_nid;
  853. int ret;
  854. #endif
  855. unsigned long pfn = phys >> PAGE_SHIFT;
  856. if (pfn >= max_pfn) {
  857. /*
  858. * This can happen with kdump kernels when accessing
  859. * firmware tables:
  860. */
  861. if (pfn < max_pfn_mapped)
  862. return -EFAULT;
  863. printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
  864. phys, len);
  865. return -EFAULT;
  866. }
  867. /* Should check here against the e820 map to avoid double free */
  868. #ifdef CONFIG_NUMA
  869. nid = phys_to_nid(phys);
  870. next_nid = phys_to_nid(phys + len - 1);
  871. if (nid == next_nid)
  872. ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
  873. else
  874. ret = reserve_bootmem(phys, len, flags);
  875. if (ret != 0)
  876. return ret;
  877. #else
  878. reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
  879. #endif
  880. if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
  881. dma_reserve += len / PAGE_SIZE;
  882. set_dma_reserve(dma_reserve);
  883. }
  884. return 0;
  885. }
  886. int kern_addr_valid(unsigned long addr)
  887. {
  888. unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
  889. pgd_t *pgd;
  890. pud_t *pud;
  891. pmd_t *pmd;
  892. pte_t *pte;
  893. if (above != 0 && above != -1UL)
  894. return 0;
  895. pgd = pgd_offset_k(addr);
  896. if (pgd_none(*pgd))
  897. return 0;
  898. pud = pud_offset(pgd, addr);
  899. if (pud_none(*pud))
  900. return 0;
  901. pmd = pmd_offset(pud, addr);
  902. if (pmd_none(*pmd))
  903. return 0;
  904. if (pmd_large(*pmd))
  905. return pfn_valid(pmd_pfn(*pmd));
  906. pte = pte_offset_kernel(pmd, addr);
  907. if (pte_none(*pte))
  908. return 0;
  909. return pfn_valid(pte_pfn(*pte));
  910. }
  911. /*
  912. * A pseudo VMA to allow ptrace access for the vsyscall page. This only
  913. * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
  914. * not need special handling anymore:
  915. */
  916. static struct vm_area_struct gate_vma = {
  917. .vm_start = VSYSCALL_START,
  918. .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
  919. .vm_page_prot = PAGE_READONLY_EXEC,
  920. .vm_flags = VM_READ | VM_EXEC
  921. };
  922. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  923. {
  924. #ifdef CONFIG_IA32_EMULATION
  925. if (test_tsk_thread_flag(tsk, TIF_IA32))
  926. return NULL;
  927. #endif
  928. return &gate_vma;
  929. }
  930. int in_gate_area(struct task_struct *task, unsigned long addr)
  931. {
  932. struct vm_area_struct *vma = get_gate_vma(task);
  933. if (!vma)
  934. return 0;
  935. return (addr >= vma->vm_start) && (addr < vma->vm_end);
  936. }
  937. /*
  938. * Use this when you have no reliable task/vma, typically from interrupt
  939. * context. It is less reliable than using the task's vma and may give
  940. * false positives:
  941. */
  942. int in_gate_area_no_task(unsigned long addr)
  943. {
  944. return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
  945. }
  946. const char *arch_vma_name(struct vm_area_struct *vma)
  947. {
  948. if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
  949. return "[vdso]";
  950. if (vma == &gate_vma)
  951. return "[vsyscall]";
  952. return NULL;
  953. }
  954. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  955. /*
  956. * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
  957. */
  958. static long __meminitdata addr_start, addr_end;
  959. static void __meminitdata *p_start, *p_end;
  960. static int __meminitdata node_start;
  961. int __meminit
  962. vmemmap_populate(struct page *start_page, unsigned long size, int node)
  963. {
  964. unsigned long addr = (unsigned long)start_page;
  965. unsigned long end = (unsigned long)(start_page + size);
  966. unsigned long next;
  967. pgd_t *pgd;
  968. pud_t *pud;
  969. pmd_t *pmd;
  970. for (; addr < end; addr = next) {
  971. void *p = NULL;
  972. pgd = vmemmap_pgd_populate(addr, node);
  973. if (!pgd)
  974. return -ENOMEM;
  975. pud = vmemmap_pud_populate(pgd, addr, node);
  976. if (!pud)
  977. return -ENOMEM;
  978. if (!cpu_has_pse) {
  979. next = (addr + PAGE_SIZE) & PAGE_MASK;
  980. pmd = vmemmap_pmd_populate(pud, addr, node);
  981. if (!pmd)
  982. return -ENOMEM;
  983. p = vmemmap_pte_populate(pmd, addr, node);
  984. if (!p)
  985. return -ENOMEM;
  986. addr_end = addr + PAGE_SIZE;
  987. p_end = p + PAGE_SIZE;
  988. } else {
  989. next = pmd_addr_end(addr, end);
  990. pmd = pmd_offset(pud, addr);
  991. if (pmd_none(*pmd)) {
  992. pte_t entry;
  993. p = vmemmap_alloc_block(PMD_SIZE, node);
  994. if (!p)
  995. return -ENOMEM;
  996. entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
  997. PAGE_KERNEL_LARGE);
  998. set_pmd(pmd, __pmd(pte_val(entry)));
  999. /* check to see if we have contiguous blocks */
  1000. if (p_end != p || node_start != node) {
  1001. if (p_start)
  1002. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1003. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1004. addr_start = addr;
  1005. node_start = node;
  1006. p_start = p;
  1007. }
  1008. addr_end = addr + PMD_SIZE;
  1009. p_end = p + PMD_SIZE;
  1010. } else
  1011. vmemmap_verify((pte_t *)pmd, node, addr, next);
  1012. }
  1013. }
  1014. return 0;
  1015. }
  1016. void __meminit vmemmap_populate_print_last(void)
  1017. {
  1018. if (p_start) {
  1019. printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
  1020. addr_start, addr_end-1, p_start, p_end-1, node_start);
  1021. p_start = NULL;
  1022. p_end = NULL;
  1023. node_start = 0;
  1024. }
  1025. }
  1026. #endif