x86.c 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/intel-iommu.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/msr.h>
  38. #include <asm/desc.h>
  39. #define MAX_IO_MSRS 256
  40. #define CR0_RESERVED_BITS \
  41. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  42. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  43. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  44. #define CR4_RESERVED_BITS \
  45. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  46. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  47. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  48. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  49. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  50. /* EFER defaults:
  51. * - enable syscall per default because its emulated by KVM
  52. * - enable LME and LMA per default on 64 bit KVM
  53. */
  54. #ifdef CONFIG_X86_64
  55. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  56. #else
  57. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  58. #endif
  59. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  60. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  61. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  62. struct kvm_cpuid_entry2 __user *entries);
  63. struct kvm_x86_ops *kvm_x86_ops;
  64. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  65. struct kvm_stats_debugfs_item debugfs_entries[] = {
  66. { "pf_fixed", VCPU_STAT(pf_fixed) },
  67. { "pf_guest", VCPU_STAT(pf_guest) },
  68. { "tlb_flush", VCPU_STAT(tlb_flush) },
  69. { "invlpg", VCPU_STAT(invlpg) },
  70. { "exits", VCPU_STAT(exits) },
  71. { "io_exits", VCPU_STAT(io_exits) },
  72. { "mmio_exits", VCPU_STAT(mmio_exits) },
  73. { "signal_exits", VCPU_STAT(signal_exits) },
  74. { "irq_window", VCPU_STAT(irq_window_exits) },
  75. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  76. { "halt_exits", VCPU_STAT(halt_exits) },
  77. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  78. { "hypercalls", VCPU_STAT(hypercalls) },
  79. { "request_irq", VCPU_STAT(request_irq_exits) },
  80. { "irq_exits", VCPU_STAT(irq_exits) },
  81. { "host_state_reload", VCPU_STAT(host_state_reload) },
  82. { "efer_reload", VCPU_STAT(efer_reload) },
  83. { "fpu_reload", VCPU_STAT(fpu_reload) },
  84. { "insn_emulation", VCPU_STAT(insn_emulation) },
  85. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  86. { "irq_injections", VCPU_STAT(irq_injections) },
  87. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  88. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  89. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  90. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  91. { "mmu_flooded", VM_STAT(mmu_flooded) },
  92. { "mmu_recycled", VM_STAT(mmu_recycled) },
  93. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  94. { "mmu_unsync", VM_STAT(mmu_unsync) },
  95. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  96. { "largepages", VM_STAT(lpages) },
  97. { NULL }
  98. };
  99. unsigned long segment_base(u16 selector)
  100. {
  101. struct descriptor_table gdt;
  102. struct desc_struct *d;
  103. unsigned long table_base;
  104. unsigned long v;
  105. if (selector == 0)
  106. return 0;
  107. asm("sgdt %0" : "=m"(gdt));
  108. table_base = gdt.base;
  109. if (selector & 4) { /* from ldt */
  110. u16 ldt_selector;
  111. asm("sldt %0" : "=g"(ldt_selector));
  112. table_base = segment_base(ldt_selector);
  113. }
  114. d = (struct desc_struct *)(table_base + (selector & ~7));
  115. v = d->base0 | ((unsigned long)d->base1 << 16) |
  116. ((unsigned long)d->base2 << 24);
  117. #ifdef CONFIG_X86_64
  118. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  119. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  120. #endif
  121. return v;
  122. }
  123. EXPORT_SYMBOL_GPL(segment_base);
  124. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  125. {
  126. if (irqchip_in_kernel(vcpu->kvm))
  127. return vcpu->arch.apic_base;
  128. else
  129. return vcpu->arch.apic_base;
  130. }
  131. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  132. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  133. {
  134. /* TODO: reserve bits check */
  135. if (irqchip_in_kernel(vcpu->kvm))
  136. kvm_lapic_set_base(vcpu, data);
  137. else
  138. vcpu->arch.apic_base = data;
  139. }
  140. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  141. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  142. {
  143. WARN_ON(vcpu->arch.exception.pending);
  144. vcpu->arch.exception.pending = true;
  145. vcpu->arch.exception.has_error_code = false;
  146. vcpu->arch.exception.nr = nr;
  147. }
  148. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  149. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  150. u32 error_code)
  151. {
  152. ++vcpu->stat.pf_guest;
  153. if (vcpu->arch.exception.pending) {
  154. if (vcpu->arch.exception.nr == PF_VECTOR) {
  155. printk(KERN_DEBUG "kvm: inject_page_fault:"
  156. " double fault 0x%lx\n", addr);
  157. vcpu->arch.exception.nr = DF_VECTOR;
  158. vcpu->arch.exception.error_code = 0;
  159. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  160. /* triple fault -> shutdown */
  161. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  162. }
  163. return;
  164. }
  165. vcpu->arch.cr2 = addr;
  166. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  167. }
  168. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  169. {
  170. vcpu->arch.nmi_pending = 1;
  171. }
  172. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  173. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  174. {
  175. WARN_ON(vcpu->arch.exception.pending);
  176. vcpu->arch.exception.pending = true;
  177. vcpu->arch.exception.has_error_code = true;
  178. vcpu->arch.exception.nr = nr;
  179. vcpu->arch.exception.error_code = error_code;
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  182. static void __queue_exception(struct kvm_vcpu *vcpu)
  183. {
  184. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  185. vcpu->arch.exception.has_error_code,
  186. vcpu->arch.exception.error_code);
  187. }
  188. /*
  189. * Load the pae pdptrs. Return true is they are all valid.
  190. */
  191. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  192. {
  193. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  194. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  195. int i;
  196. int ret;
  197. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  198. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  199. offset * sizeof(u64), sizeof(pdpte));
  200. if (ret < 0) {
  201. ret = 0;
  202. goto out;
  203. }
  204. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  205. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  206. ret = 0;
  207. goto out;
  208. }
  209. }
  210. ret = 1;
  211. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  212. out:
  213. return ret;
  214. }
  215. EXPORT_SYMBOL_GPL(load_pdptrs);
  216. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  217. {
  218. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  219. bool changed = true;
  220. int r;
  221. if (is_long_mode(vcpu) || !is_pae(vcpu))
  222. return false;
  223. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  224. if (r < 0)
  225. goto out;
  226. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  227. out:
  228. return changed;
  229. }
  230. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  231. {
  232. if (cr0 & CR0_RESERVED_BITS) {
  233. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  234. cr0, vcpu->arch.cr0);
  235. kvm_inject_gp(vcpu, 0);
  236. return;
  237. }
  238. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  239. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  240. kvm_inject_gp(vcpu, 0);
  241. return;
  242. }
  243. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  244. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  245. "and a clear PE flag\n");
  246. kvm_inject_gp(vcpu, 0);
  247. return;
  248. }
  249. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  250. #ifdef CONFIG_X86_64
  251. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  252. int cs_db, cs_l;
  253. if (!is_pae(vcpu)) {
  254. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  255. "in long mode while PAE is disabled\n");
  256. kvm_inject_gp(vcpu, 0);
  257. return;
  258. }
  259. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  260. if (cs_l) {
  261. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  262. "in long mode while CS.L == 1\n");
  263. kvm_inject_gp(vcpu, 0);
  264. return;
  265. }
  266. } else
  267. #endif
  268. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  269. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  270. "reserved bits\n");
  271. kvm_inject_gp(vcpu, 0);
  272. return;
  273. }
  274. }
  275. kvm_x86_ops->set_cr0(vcpu, cr0);
  276. vcpu->arch.cr0 = cr0;
  277. kvm_mmu_reset_context(vcpu);
  278. return;
  279. }
  280. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  281. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  282. {
  283. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  284. KVMTRACE_1D(LMSW, vcpu,
  285. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  286. handler);
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_lmsw);
  289. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  290. {
  291. if (cr4 & CR4_RESERVED_BITS) {
  292. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  293. kvm_inject_gp(vcpu, 0);
  294. return;
  295. }
  296. if (is_long_mode(vcpu)) {
  297. if (!(cr4 & X86_CR4_PAE)) {
  298. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  299. "in long mode\n");
  300. kvm_inject_gp(vcpu, 0);
  301. return;
  302. }
  303. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  304. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  305. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  306. kvm_inject_gp(vcpu, 0);
  307. return;
  308. }
  309. if (cr4 & X86_CR4_VMXE) {
  310. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. kvm_x86_ops->set_cr4(vcpu, cr4);
  315. vcpu->arch.cr4 = cr4;
  316. kvm_mmu_reset_context(vcpu);
  317. }
  318. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  319. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  320. {
  321. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  322. kvm_mmu_sync_roots(vcpu);
  323. kvm_mmu_flush_tlb(vcpu);
  324. return;
  325. }
  326. if (is_long_mode(vcpu)) {
  327. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  328. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  329. kvm_inject_gp(vcpu, 0);
  330. return;
  331. }
  332. } else {
  333. if (is_pae(vcpu)) {
  334. if (cr3 & CR3_PAE_RESERVED_BITS) {
  335. printk(KERN_DEBUG
  336. "set_cr3: #GP, reserved bits\n");
  337. kvm_inject_gp(vcpu, 0);
  338. return;
  339. }
  340. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  341. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  342. "reserved bits\n");
  343. kvm_inject_gp(vcpu, 0);
  344. return;
  345. }
  346. }
  347. /*
  348. * We don't check reserved bits in nonpae mode, because
  349. * this isn't enforced, and VMware depends on this.
  350. */
  351. }
  352. /*
  353. * Does the new cr3 value map to physical memory? (Note, we
  354. * catch an invalid cr3 even in real-mode, because it would
  355. * cause trouble later on when we turn on paging anyway.)
  356. *
  357. * A real CPU would silently accept an invalid cr3 and would
  358. * attempt to use it - with largely undefined (and often hard
  359. * to debug) behavior on the guest side.
  360. */
  361. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  362. kvm_inject_gp(vcpu, 0);
  363. else {
  364. vcpu->arch.cr3 = cr3;
  365. vcpu->arch.mmu.new_cr3(vcpu);
  366. }
  367. }
  368. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  369. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  370. {
  371. if (cr8 & CR8_RESERVED_BITS) {
  372. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  373. kvm_inject_gp(vcpu, 0);
  374. return;
  375. }
  376. if (irqchip_in_kernel(vcpu->kvm))
  377. kvm_lapic_set_tpr(vcpu, cr8);
  378. else
  379. vcpu->arch.cr8 = cr8;
  380. }
  381. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  382. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  383. {
  384. if (irqchip_in_kernel(vcpu->kvm))
  385. return kvm_lapic_get_cr8(vcpu);
  386. else
  387. return vcpu->arch.cr8;
  388. }
  389. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  390. /*
  391. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  392. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  393. *
  394. * This list is modified at module load time to reflect the
  395. * capabilities of the host cpu.
  396. */
  397. static u32 msrs_to_save[] = {
  398. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  399. MSR_K6_STAR,
  400. #ifdef CONFIG_X86_64
  401. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  402. #endif
  403. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  404. MSR_IA32_PERF_STATUS,
  405. };
  406. static unsigned num_msrs_to_save;
  407. static u32 emulated_msrs[] = {
  408. MSR_IA32_MISC_ENABLE,
  409. };
  410. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  411. {
  412. if (efer & efer_reserved_bits) {
  413. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  414. efer);
  415. kvm_inject_gp(vcpu, 0);
  416. return;
  417. }
  418. if (is_paging(vcpu)
  419. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  420. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  421. kvm_inject_gp(vcpu, 0);
  422. return;
  423. }
  424. kvm_x86_ops->set_efer(vcpu, efer);
  425. efer &= ~EFER_LMA;
  426. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  427. vcpu->arch.shadow_efer = efer;
  428. }
  429. void kvm_enable_efer_bits(u64 mask)
  430. {
  431. efer_reserved_bits &= ~mask;
  432. }
  433. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  434. /*
  435. * Writes msr value into into the appropriate "register".
  436. * Returns 0 on success, non-0 otherwise.
  437. * Assumes vcpu_load() was already called.
  438. */
  439. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  440. {
  441. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  442. }
  443. /*
  444. * Adapt set_msr() to msr_io()'s calling convention
  445. */
  446. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  447. {
  448. return kvm_set_msr(vcpu, index, *data);
  449. }
  450. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  451. {
  452. static int version;
  453. struct pvclock_wall_clock wc;
  454. struct timespec now, sys, boot;
  455. if (!wall_clock)
  456. return;
  457. version++;
  458. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  459. /*
  460. * The guest calculates current wall clock time by adding
  461. * system time (updated by kvm_write_guest_time below) to the
  462. * wall clock specified here. guest system time equals host
  463. * system time for us, thus we must fill in host boot time here.
  464. */
  465. now = current_kernel_time();
  466. ktime_get_ts(&sys);
  467. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  468. wc.sec = boot.tv_sec;
  469. wc.nsec = boot.tv_nsec;
  470. wc.version = version;
  471. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  472. version++;
  473. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  474. }
  475. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  476. {
  477. uint32_t quotient, remainder;
  478. /* Don't try to replace with do_div(), this one calculates
  479. * "(dividend << 32) / divisor" */
  480. __asm__ ( "divl %4"
  481. : "=a" (quotient), "=d" (remainder)
  482. : "0" (0), "1" (dividend), "r" (divisor) );
  483. return quotient;
  484. }
  485. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  486. {
  487. uint64_t nsecs = 1000000000LL;
  488. int32_t shift = 0;
  489. uint64_t tps64;
  490. uint32_t tps32;
  491. tps64 = tsc_khz * 1000LL;
  492. while (tps64 > nsecs*2) {
  493. tps64 >>= 1;
  494. shift--;
  495. }
  496. tps32 = (uint32_t)tps64;
  497. while (tps32 <= (uint32_t)nsecs) {
  498. tps32 <<= 1;
  499. shift++;
  500. }
  501. hv_clock->tsc_shift = shift;
  502. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  503. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  504. __func__, tsc_khz, hv_clock->tsc_shift,
  505. hv_clock->tsc_to_system_mul);
  506. }
  507. static void kvm_write_guest_time(struct kvm_vcpu *v)
  508. {
  509. struct timespec ts;
  510. unsigned long flags;
  511. struct kvm_vcpu_arch *vcpu = &v->arch;
  512. void *shared_kaddr;
  513. if ((!vcpu->time_page))
  514. return;
  515. if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
  516. kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
  517. vcpu->hv_clock_tsc_khz = tsc_khz;
  518. }
  519. /* Keep irq disabled to prevent changes to the clock */
  520. local_irq_save(flags);
  521. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  522. &vcpu->hv_clock.tsc_timestamp);
  523. ktime_get_ts(&ts);
  524. local_irq_restore(flags);
  525. /* With all the info we got, fill in the values */
  526. vcpu->hv_clock.system_time = ts.tv_nsec +
  527. (NSEC_PER_SEC * (u64)ts.tv_sec);
  528. /*
  529. * The interface expects us to write an even number signaling that the
  530. * update is finished. Since the guest won't see the intermediate
  531. * state, we just increase by 2 at the end.
  532. */
  533. vcpu->hv_clock.version += 2;
  534. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  535. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  536. sizeof(vcpu->hv_clock));
  537. kunmap_atomic(shared_kaddr, KM_USER0);
  538. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  539. }
  540. static bool msr_mtrr_valid(unsigned msr)
  541. {
  542. switch (msr) {
  543. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  544. case MSR_MTRRfix64K_00000:
  545. case MSR_MTRRfix16K_80000:
  546. case MSR_MTRRfix16K_A0000:
  547. case MSR_MTRRfix4K_C0000:
  548. case MSR_MTRRfix4K_C8000:
  549. case MSR_MTRRfix4K_D0000:
  550. case MSR_MTRRfix4K_D8000:
  551. case MSR_MTRRfix4K_E0000:
  552. case MSR_MTRRfix4K_E8000:
  553. case MSR_MTRRfix4K_F0000:
  554. case MSR_MTRRfix4K_F8000:
  555. case MSR_MTRRdefType:
  556. case MSR_IA32_CR_PAT:
  557. return true;
  558. case 0x2f8:
  559. return true;
  560. }
  561. return false;
  562. }
  563. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  564. {
  565. if (!msr_mtrr_valid(msr))
  566. return 1;
  567. vcpu->arch.mtrr[msr - 0x200] = data;
  568. return 0;
  569. }
  570. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  571. {
  572. switch (msr) {
  573. case MSR_EFER:
  574. set_efer(vcpu, data);
  575. break;
  576. case MSR_IA32_MC0_STATUS:
  577. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  578. __func__, data);
  579. break;
  580. case MSR_IA32_MCG_STATUS:
  581. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  582. __func__, data);
  583. break;
  584. case MSR_IA32_MCG_CTL:
  585. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  586. __func__, data);
  587. break;
  588. case MSR_IA32_DEBUGCTLMSR:
  589. if (!data) {
  590. /* We support the non-activated case already */
  591. break;
  592. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  593. /* Values other than LBR and BTF are vendor-specific,
  594. thus reserved and should throw a #GP */
  595. return 1;
  596. }
  597. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  598. __func__, data);
  599. break;
  600. case MSR_IA32_UCODE_REV:
  601. case MSR_IA32_UCODE_WRITE:
  602. break;
  603. case 0x200 ... 0x2ff:
  604. return set_msr_mtrr(vcpu, msr, data);
  605. case MSR_IA32_APICBASE:
  606. kvm_set_apic_base(vcpu, data);
  607. break;
  608. case MSR_IA32_MISC_ENABLE:
  609. vcpu->arch.ia32_misc_enable_msr = data;
  610. break;
  611. case MSR_KVM_WALL_CLOCK:
  612. vcpu->kvm->arch.wall_clock = data;
  613. kvm_write_wall_clock(vcpu->kvm, data);
  614. break;
  615. case MSR_KVM_SYSTEM_TIME: {
  616. if (vcpu->arch.time_page) {
  617. kvm_release_page_dirty(vcpu->arch.time_page);
  618. vcpu->arch.time_page = NULL;
  619. }
  620. vcpu->arch.time = data;
  621. /* we verify if the enable bit is set... */
  622. if (!(data & 1))
  623. break;
  624. /* ...but clean it before doing the actual write */
  625. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  626. vcpu->arch.time_page =
  627. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  628. if (is_error_page(vcpu->arch.time_page)) {
  629. kvm_release_page_clean(vcpu->arch.time_page);
  630. vcpu->arch.time_page = NULL;
  631. }
  632. kvm_write_guest_time(vcpu);
  633. break;
  634. }
  635. default:
  636. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  637. return 1;
  638. }
  639. return 0;
  640. }
  641. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  642. /*
  643. * Reads an msr value (of 'msr_index') into 'pdata'.
  644. * Returns 0 on success, non-0 otherwise.
  645. * Assumes vcpu_load() was already called.
  646. */
  647. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  648. {
  649. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  650. }
  651. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  652. {
  653. if (!msr_mtrr_valid(msr))
  654. return 1;
  655. *pdata = vcpu->arch.mtrr[msr - 0x200];
  656. return 0;
  657. }
  658. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  659. {
  660. u64 data;
  661. switch (msr) {
  662. case 0xc0010010: /* SYSCFG */
  663. case 0xc0010015: /* HWCR */
  664. case MSR_IA32_PLATFORM_ID:
  665. case MSR_IA32_P5_MC_ADDR:
  666. case MSR_IA32_P5_MC_TYPE:
  667. case MSR_IA32_MC0_CTL:
  668. case MSR_IA32_MCG_STATUS:
  669. case MSR_IA32_MCG_CAP:
  670. case MSR_IA32_MCG_CTL:
  671. case MSR_IA32_MC0_MISC:
  672. case MSR_IA32_MC0_MISC+4:
  673. case MSR_IA32_MC0_MISC+8:
  674. case MSR_IA32_MC0_MISC+12:
  675. case MSR_IA32_MC0_MISC+16:
  676. case MSR_IA32_MC0_MISC+20:
  677. case MSR_IA32_UCODE_REV:
  678. case MSR_IA32_EBL_CR_POWERON:
  679. case MSR_IA32_DEBUGCTLMSR:
  680. case MSR_IA32_LASTBRANCHFROMIP:
  681. case MSR_IA32_LASTBRANCHTOIP:
  682. case MSR_IA32_LASTINTFROMIP:
  683. case MSR_IA32_LASTINTTOIP:
  684. data = 0;
  685. break;
  686. case MSR_MTRRcap:
  687. data = 0x500 | KVM_NR_VAR_MTRR;
  688. break;
  689. case 0x200 ... 0x2ff:
  690. return get_msr_mtrr(vcpu, msr, pdata);
  691. case 0xcd: /* fsb frequency */
  692. data = 3;
  693. break;
  694. case MSR_IA32_APICBASE:
  695. data = kvm_get_apic_base(vcpu);
  696. break;
  697. case MSR_IA32_MISC_ENABLE:
  698. data = vcpu->arch.ia32_misc_enable_msr;
  699. break;
  700. case MSR_IA32_PERF_STATUS:
  701. /* TSC increment by tick */
  702. data = 1000ULL;
  703. /* CPU multiplier */
  704. data |= (((uint64_t)4ULL) << 40);
  705. break;
  706. case MSR_EFER:
  707. data = vcpu->arch.shadow_efer;
  708. break;
  709. case MSR_KVM_WALL_CLOCK:
  710. data = vcpu->kvm->arch.wall_clock;
  711. break;
  712. case MSR_KVM_SYSTEM_TIME:
  713. data = vcpu->arch.time;
  714. break;
  715. default:
  716. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  717. return 1;
  718. }
  719. *pdata = data;
  720. return 0;
  721. }
  722. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  723. /*
  724. * Read or write a bunch of msrs. All parameters are kernel addresses.
  725. *
  726. * @return number of msrs set successfully.
  727. */
  728. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  729. struct kvm_msr_entry *entries,
  730. int (*do_msr)(struct kvm_vcpu *vcpu,
  731. unsigned index, u64 *data))
  732. {
  733. int i;
  734. vcpu_load(vcpu);
  735. down_read(&vcpu->kvm->slots_lock);
  736. for (i = 0; i < msrs->nmsrs; ++i)
  737. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  738. break;
  739. up_read(&vcpu->kvm->slots_lock);
  740. vcpu_put(vcpu);
  741. return i;
  742. }
  743. /*
  744. * Read or write a bunch of msrs. Parameters are user addresses.
  745. *
  746. * @return number of msrs set successfully.
  747. */
  748. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  749. int (*do_msr)(struct kvm_vcpu *vcpu,
  750. unsigned index, u64 *data),
  751. int writeback)
  752. {
  753. struct kvm_msrs msrs;
  754. struct kvm_msr_entry *entries;
  755. int r, n;
  756. unsigned size;
  757. r = -EFAULT;
  758. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  759. goto out;
  760. r = -E2BIG;
  761. if (msrs.nmsrs >= MAX_IO_MSRS)
  762. goto out;
  763. r = -ENOMEM;
  764. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  765. entries = vmalloc(size);
  766. if (!entries)
  767. goto out;
  768. r = -EFAULT;
  769. if (copy_from_user(entries, user_msrs->entries, size))
  770. goto out_free;
  771. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  772. if (r < 0)
  773. goto out_free;
  774. r = -EFAULT;
  775. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  776. goto out_free;
  777. r = n;
  778. out_free:
  779. vfree(entries);
  780. out:
  781. return r;
  782. }
  783. int kvm_dev_ioctl_check_extension(long ext)
  784. {
  785. int r;
  786. switch (ext) {
  787. case KVM_CAP_IRQCHIP:
  788. case KVM_CAP_HLT:
  789. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  790. case KVM_CAP_USER_MEMORY:
  791. case KVM_CAP_SET_TSS_ADDR:
  792. case KVM_CAP_EXT_CPUID:
  793. case KVM_CAP_CLOCKSOURCE:
  794. case KVM_CAP_PIT:
  795. case KVM_CAP_NOP_IO_DELAY:
  796. case KVM_CAP_MP_STATE:
  797. case KVM_CAP_SYNC_MMU:
  798. r = 1;
  799. break;
  800. case KVM_CAP_COALESCED_MMIO:
  801. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  802. break;
  803. case KVM_CAP_VAPIC:
  804. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  805. break;
  806. case KVM_CAP_NR_VCPUS:
  807. r = KVM_MAX_VCPUS;
  808. break;
  809. case KVM_CAP_NR_MEMSLOTS:
  810. r = KVM_MEMORY_SLOTS;
  811. break;
  812. case KVM_CAP_PV_MMU:
  813. r = !tdp_enabled;
  814. break;
  815. case KVM_CAP_IOMMU:
  816. r = intel_iommu_found();
  817. break;
  818. default:
  819. r = 0;
  820. break;
  821. }
  822. return r;
  823. }
  824. long kvm_arch_dev_ioctl(struct file *filp,
  825. unsigned int ioctl, unsigned long arg)
  826. {
  827. void __user *argp = (void __user *)arg;
  828. long r;
  829. switch (ioctl) {
  830. case KVM_GET_MSR_INDEX_LIST: {
  831. struct kvm_msr_list __user *user_msr_list = argp;
  832. struct kvm_msr_list msr_list;
  833. unsigned n;
  834. r = -EFAULT;
  835. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  836. goto out;
  837. n = msr_list.nmsrs;
  838. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  839. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  840. goto out;
  841. r = -E2BIG;
  842. if (n < num_msrs_to_save)
  843. goto out;
  844. r = -EFAULT;
  845. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  846. num_msrs_to_save * sizeof(u32)))
  847. goto out;
  848. if (copy_to_user(user_msr_list->indices
  849. + num_msrs_to_save * sizeof(u32),
  850. &emulated_msrs,
  851. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  852. goto out;
  853. r = 0;
  854. break;
  855. }
  856. case KVM_GET_SUPPORTED_CPUID: {
  857. struct kvm_cpuid2 __user *cpuid_arg = argp;
  858. struct kvm_cpuid2 cpuid;
  859. r = -EFAULT;
  860. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  861. goto out;
  862. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  863. cpuid_arg->entries);
  864. if (r)
  865. goto out;
  866. r = -EFAULT;
  867. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  868. goto out;
  869. r = 0;
  870. break;
  871. }
  872. default:
  873. r = -EINVAL;
  874. }
  875. out:
  876. return r;
  877. }
  878. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  879. {
  880. kvm_x86_ops->vcpu_load(vcpu, cpu);
  881. kvm_write_guest_time(vcpu);
  882. }
  883. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  884. {
  885. kvm_x86_ops->vcpu_put(vcpu);
  886. kvm_put_guest_fpu(vcpu);
  887. }
  888. static int is_efer_nx(void)
  889. {
  890. u64 efer;
  891. rdmsrl(MSR_EFER, efer);
  892. return efer & EFER_NX;
  893. }
  894. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  895. {
  896. int i;
  897. struct kvm_cpuid_entry2 *e, *entry;
  898. entry = NULL;
  899. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  900. e = &vcpu->arch.cpuid_entries[i];
  901. if (e->function == 0x80000001) {
  902. entry = e;
  903. break;
  904. }
  905. }
  906. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  907. entry->edx &= ~(1 << 20);
  908. printk(KERN_INFO "kvm: guest NX capability removed\n");
  909. }
  910. }
  911. /* when an old userspace process fills a new kernel module */
  912. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  913. struct kvm_cpuid *cpuid,
  914. struct kvm_cpuid_entry __user *entries)
  915. {
  916. int r, i;
  917. struct kvm_cpuid_entry *cpuid_entries;
  918. r = -E2BIG;
  919. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  920. goto out;
  921. r = -ENOMEM;
  922. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  923. if (!cpuid_entries)
  924. goto out;
  925. r = -EFAULT;
  926. if (copy_from_user(cpuid_entries, entries,
  927. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  928. goto out_free;
  929. for (i = 0; i < cpuid->nent; i++) {
  930. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  931. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  932. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  933. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  934. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  935. vcpu->arch.cpuid_entries[i].index = 0;
  936. vcpu->arch.cpuid_entries[i].flags = 0;
  937. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  938. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  939. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  940. }
  941. vcpu->arch.cpuid_nent = cpuid->nent;
  942. cpuid_fix_nx_cap(vcpu);
  943. r = 0;
  944. out_free:
  945. vfree(cpuid_entries);
  946. out:
  947. return r;
  948. }
  949. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  950. struct kvm_cpuid2 *cpuid,
  951. struct kvm_cpuid_entry2 __user *entries)
  952. {
  953. int r;
  954. r = -E2BIG;
  955. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  956. goto out;
  957. r = -EFAULT;
  958. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  959. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  960. goto out;
  961. vcpu->arch.cpuid_nent = cpuid->nent;
  962. return 0;
  963. out:
  964. return r;
  965. }
  966. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  967. struct kvm_cpuid2 *cpuid,
  968. struct kvm_cpuid_entry2 __user *entries)
  969. {
  970. int r;
  971. r = -E2BIG;
  972. if (cpuid->nent < vcpu->arch.cpuid_nent)
  973. goto out;
  974. r = -EFAULT;
  975. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  976. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  977. goto out;
  978. return 0;
  979. out:
  980. cpuid->nent = vcpu->arch.cpuid_nent;
  981. return r;
  982. }
  983. static inline u32 bit(int bitno)
  984. {
  985. return 1 << (bitno & 31);
  986. }
  987. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  988. u32 index)
  989. {
  990. entry->function = function;
  991. entry->index = index;
  992. cpuid_count(entry->function, entry->index,
  993. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  994. entry->flags = 0;
  995. }
  996. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  997. u32 index, int *nent, int maxnent)
  998. {
  999. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1000. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1001. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1002. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1003. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1004. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1005. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1006. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1007. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1008. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1009. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1010. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1011. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1012. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1013. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1014. bit(X86_FEATURE_PGE) |
  1015. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1016. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1017. bit(X86_FEATURE_SYSCALL) |
  1018. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  1019. #ifdef CONFIG_X86_64
  1020. bit(X86_FEATURE_LM) |
  1021. #endif
  1022. bit(X86_FEATURE_MMXEXT) |
  1023. bit(X86_FEATURE_3DNOWEXT) |
  1024. bit(X86_FEATURE_3DNOW);
  1025. const u32 kvm_supported_word3_x86_features =
  1026. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1027. const u32 kvm_supported_word6_x86_features =
  1028. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  1029. /* all func 2 cpuid_count() should be called on the same cpu */
  1030. get_cpu();
  1031. do_cpuid_1_ent(entry, function, index);
  1032. ++*nent;
  1033. switch (function) {
  1034. case 0:
  1035. entry->eax = min(entry->eax, (u32)0xb);
  1036. break;
  1037. case 1:
  1038. entry->edx &= kvm_supported_word0_x86_features;
  1039. entry->ecx &= kvm_supported_word3_x86_features;
  1040. break;
  1041. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1042. * may return different values. This forces us to get_cpu() before
  1043. * issuing the first command, and also to emulate this annoying behavior
  1044. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1045. case 2: {
  1046. int t, times = entry->eax & 0xff;
  1047. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1048. for (t = 1; t < times && *nent < maxnent; ++t) {
  1049. do_cpuid_1_ent(&entry[t], function, 0);
  1050. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1051. ++*nent;
  1052. }
  1053. break;
  1054. }
  1055. /* function 4 and 0xb have additional index. */
  1056. case 4: {
  1057. int i, cache_type;
  1058. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1059. /* read more entries until cache_type is zero */
  1060. for (i = 1; *nent < maxnent; ++i) {
  1061. cache_type = entry[i - 1].eax & 0x1f;
  1062. if (!cache_type)
  1063. break;
  1064. do_cpuid_1_ent(&entry[i], function, i);
  1065. entry[i].flags |=
  1066. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1067. ++*nent;
  1068. }
  1069. break;
  1070. }
  1071. case 0xb: {
  1072. int i, level_type;
  1073. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1074. /* read more entries until level_type is zero */
  1075. for (i = 1; *nent < maxnent; ++i) {
  1076. level_type = entry[i - 1].ecx & 0xff;
  1077. if (!level_type)
  1078. break;
  1079. do_cpuid_1_ent(&entry[i], function, i);
  1080. entry[i].flags |=
  1081. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1082. ++*nent;
  1083. }
  1084. break;
  1085. }
  1086. case 0x80000000:
  1087. entry->eax = min(entry->eax, 0x8000001a);
  1088. break;
  1089. case 0x80000001:
  1090. entry->edx &= kvm_supported_word1_x86_features;
  1091. entry->ecx &= kvm_supported_word6_x86_features;
  1092. break;
  1093. }
  1094. put_cpu();
  1095. }
  1096. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1097. struct kvm_cpuid_entry2 __user *entries)
  1098. {
  1099. struct kvm_cpuid_entry2 *cpuid_entries;
  1100. int limit, nent = 0, r = -E2BIG;
  1101. u32 func;
  1102. if (cpuid->nent < 1)
  1103. goto out;
  1104. r = -ENOMEM;
  1105. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1106. if (!cpuid_entries)
  1107. goto out;
  1108. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1109. limit = cpuid_entries[0].eax;
  1110. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1111. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1112. &nent, cpuid->nent);
  1113. r = -E2BIG;
  1114. if (nent >= cpuid->nent)
  1115. goto out_free;
  1116. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1117. limit = cpuid_entries[nent - 1].eax;
  1118. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1119. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1120. &nent, cpuid->nent);
  1121. r = -EFAULT;
  1122. if (copy_to_user(entries, cpuid_entries,
  1123. nent * sizeof(struct kvm_cpuid_entry2)))
  1124. goto out_free;
  1125. cpuid->nent = nent;
  1126. r = 0;
  1127. out_free:
  1128. vfree(cpuid_entries);
  1129. out:
  1130. return r;
  1131. }
  1132. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1133. struct kvm_lapic_state *s)
  1134. {
  1135. vcpu_load(vcpu);
  1136. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1137. vcpu_put(vcpu);
  1138. return 0;
  1139. }
  1140. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1141. struct kvm_lapic_state *s)
  1142. {
  1143. vcpu_load(vcpu);
  1144. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1145. kvm_apic_post_state_restore(vcpu);
  1146. vcpu_put(vcpu);
  1147. return 0;
  1148. }
  1149. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1150. struct kvm_interrupt *irq)
  1151. {
  1152. if (irq->irq < 0 || irq->irq >= 256)
  1153. return -EINVAL;
  1154. if (irqchip_in_kernel(vcpu->kvm))
  1155. return -ENXIO;
  1156. vcpu_load(vcpu);
  1157. set_bit(irq->irq, vcpu->arch.irq_pending);
  1158. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1159. vcpu_put(vcpu);
  1160. return 0;
  1161. }
  1162. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1163. struct kvm_tpr_access_ctl *tac)
  1164. {
  1165. if (tac->flags)
  1166. return -EINVAL;
  1167. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1168. return 0;
  1169. }
  1170. long kvm_arch_vcpu_ioctl(struct file *filp,
  1171. unsigned int ioctl, unsigned long arg)
  1172. {
  1173. struct kvm_vcpu *vcpu = filp->private_data;
  1174. void __user *argp = (void __user *)arg;
  1175. int r;
  1176. struct kvm_lapic_state *lapic = NULL;
  1177. switch (ioctl) {
  1178. case KVM_GET_LAPIC: {
  1179. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1180. r = -ENOMEM;
  1181. if (!lapic)
  1182. goto out;
  1183. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1184. if (r)
  1185. goto out;
  1186. r = -EFAULT;
  1187. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1188. goto out;
  1189. r = 0;
  1190. break;
  1191. }
  1192. case KVM_SET_LAPIC: {
  1193. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1194. r = -ENOMEM;
  1195. if (!lapic)
  1196. goto out;
  1197. r = -EFAULT;
  1198. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1199. goto out;
  1200. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1201. if (r)
  1202. goto out;
  1203. r = 0;
  1204. break;
  1205. }
  1206. case KVM_INTERRUPT: {
  1207. struct kvm_interrupt irq;
  1208. r = -EFAULT;
  1209. if (copy_from_user(&irq, argp, sizeof irq))
  1210. goto out;
  1211. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1212. if (r)
  1213. goto out;
  1214. r = 0;
  1215. break;
  1216. }
  1217. case KVM_SET_CPUID: {
  1218. struct kvm_cpuid __user *cpuid_arg = argp;
  1219. struct kvm_cpuid cpuid;
  1220. r = -EFAULT;
  1221. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1222. goto out;
  1223. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1224. if (r)
  1225. goto out;
  1226. break;
  1227. }
  1228. case KVM_SET_CPUID2: {
  1229. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1230. struct kvm_cpuid2 cpuid;
  1231. r = -EFAULT;
  1232. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1233. goto out;
  1234. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1235. cpuid_arg->entries);
  1236. if (r)
  1237. goto out;
  1238. break;
  1239. }
  1240. case KVM_GET_CPUID2: {
  1241. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1242. struct kvm_cpuid2 cpuid;
  1243. r = -EFAULT;
  1244. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1245. goto out;
  1246. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1247. cpuid_arg->entries);
  1248. if (r)
  1249. goto out;
  1250. r = -EFAULT;
  1251. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1252. goto out;
  1253. r = 0;
  1254. break;
  1255. }
  1256. case KVM_GET_MSRS:
  1257. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1258. break;
  1259. case KVM_SET_MSRS:
  1260. r = msr_io(vcpu, argp, do_set_msr, 0);
  1261. break;
  1262. case KVM_TPR_ACCESS_REPORTING: {
  1263. struct kvm_tpr_access_ctl tac;
  1264. r = -EFAULT;
  1265. if (copy_from_user(&tac, argp, sizeof tac))
  1266. goto out;
  1267. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1268. if (r)
  1269. goto out;
  1270. r = -EFAULT;
  1271. if (copy_to_user(argp, &tac, sizeof tac))
  1272. goto out;
  1273. r = 0;
  1274. break;
  1275. };
  1276. case KVM_SET_VAPIC_ADDR: {
  1277. struct kvm_vapic_addr va;
  1278. r = -EINVAL;
  1279. if (!irqchip_in_kernel(vcpu->kvm))
  1280. goto out;
  1281. r = -EFAULT;
  1282. if (copy_from_user(&va, argp, sizeof va))
  1283. goto out;
  1284. r = 0;
  1285. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1286. break;
  1287. }
  1288. default:
  1289. r = -EINVAL;
  1290. }
  1291. out:
  1292. if (lapic)
  1293. kfree(lapic);
  1294. return r;
  1295. }
  1296. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1297. {
  1298. int ret;
  1299. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1300. return -1;
  1301. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1302. return ret;
  1303. }
  1304. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1305. u32 kvm_nr_mmu_pages)
  1306. {
  1307. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1308. return -EINVAL;
  1309. down_write(&kvm->slots_lock);
  1310. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1311. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1312. up_write(&kvm->slots_lock);
  1313. return 0;
  1314. }
  1315. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1316. {
  1317. return kvm->arch.n_alloc_mmu_pages;
  1318. }
  1319. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1320. {
  1321. int i;
  1322. struct kvm_mem_alias *alias;
  1323. for (i = 0; i < kvm->arch.naliases; ++i) {
  1324. alias = &kvm->arch.aliases[i];
  1325. if (gfn >= alias->base_gfn
  1326. && gfn < alias->base_gfn + alias->npages)
  1327. return alias->target_gfn + gfn - alias->base_gfn;
  1328. }
  1329. return gfn;
  1330. }
  1331. /*
  1332. * Set a new alias region. Aliases map a portion of physical memory into
  1333. * another portion. This is useful for memory windows, for example the PC
  1334. * VGA region.
  1335. */
  1336. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1337. struct kvm_memory_alias *alias)
  1338. {
  1339. int r, n;
  1340. struct kvm_mem_alias *p;
  1341. r = -EINVAL;
  1342. /* General sanity checks */
  1343. if (alias->memory_size & (PAGE_SIZE - 1))
  1344. goto out;
  1345. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1346. goto out;
  1347. if (alias->slot >= KVM_ALIAS_SLOTS)
  1348. goto out;
  1349. if (alias->guest_phys_addr + alias->memory_size
  1350. < alias->guest_phys_addr)
  1351. goto out;
  1352. if (alias->target_phys_addr + alias->memory_size
  1353. < alias->target_phys_addr)
  1354. goto out;
  1355. down_write(&kvm->slots_lock);
  1356. spin_lock(&kvm->mmu_lock);
  1357. p = &kvm->arch.aliases[alias->slot];
  1358. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1359. p->npages = alias->memory_size >> PAGE_SHIFT;
  1360. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1361. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1362. if (kvm->arch.aliases[n - 1].npages)
  1363. break;
  1364. kvm->arch.naliases = n;
  1365. spin_unlock(&kvm->mmu_lock);
  1366. kvm_mmu_zap_all(kvm);
  1367. up_write(&kvm->slots_lock);
  1368. return 0;
  1369. out:
  1370. return r;
  1371. }
  1372. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1373. {
  1374. int r;
  1375. r = 0;
  1376. switch (chip->chip_id) {
  1377. case KVM_IRQCHIP_PIC_MASTER:
  1378. memcpy(&chip->chip.pic,
  1379. &pic_irqchip(kvm)->pics[0],
  1380. sizeof(struct kvm_pic_state));
  1381. break;
  1382. case KVM_IRQCHIP_PIC_SLAVE:
  1383. memcpy(&chip->chip.pic,
  1384. &pic_irqchip(kvm)->pics[1],
  1385. sizeof(struct kvm_pic_state));
  1386. break;
  1387. case KVM_IRQCHIP_IOAPIC:
  1388. memcpy(&chip->chip.ioapic,
  1389. ioapic_irqchip(kvm),
  1390. sizeof(struct kvm_ioapic_state));
  1391. break;
  1392. default:
  1393. r = -EINVAL;
  1394. break;
  1395. }
  1396. return r;
  1397. }
  1398. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1399. {
  1400. int r;
  1401. r = 0;
  1402. switch (chip->chip_id) {
  1403. case KVM_IRQCHIP_PIC_MASTER:
  1404. memcpy(&pic_irqchip(kvm)->pics[0],
  1405. &chip->chip.pic,
  1406. sizeof(struct kvm_pic_state));
  1407. break;
  1408. case KVM_IRQCHIP_PIC_SLAVE:
  1409. memcpy(&pic_irqchip(kvm)->pics[1],
  1410. &chip->chip.pic,
  1411. sizeof(struct kvm_pic_state));
  1412. break;
  1413. case KVM_IRQCHIP_IOAPIC:
  1414. memcpy(ioapic_irqchip(kvm),
  1415. &chip->chip.ioapic,
  1416. sizeof(struct kvm_ioapic_state));
  1417. break;
  1418. default:
  1419. r = -EINVAL;
  1420. break;
  1421. }
  1422. kvm_pic_update_irq(pic_irqchip(kvm));
  1423. return r;
  1424. }
  1425. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1426. {
  1427. int r = 0;
  1428. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1429. return r;
  1430. }
  1431. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1432. {
  1433. int r = 0;
  1434. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1435. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1436. return r;
  1437. }
  1438. /*
  1439. * Get (and clear) the dirty memory log for a memory slot.
  1440. */
  1441. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1442. struct kvm_dirty_log *log)
  1443. {
  1444. int r;
  1445. int n;
  1446. struct kvm_memory_slot *memslot;
  1447. int is_dirty = 0;
  1448. down_write(&kvm->slots_lock);
  1449. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1450. if (r)
  1451. goto out;
  1452. /* If nothing is dirty, don't bother messing with page tables. */
  1453. if (is_dirty) {
  1454. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1455. kvm_flush_remote_tlbs(kvm);
  1456. memslot = &kvm->memslots[log->slot];
  1457. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1458. memset(memslot->dirty_bitmap, 0, n);
  1459. }
  1460. r = 0;
  1461. out:
  1462. up_write(&kvm->slots_lock);
  1463. return r;
  1464. }
  1465. long kvm_arch_vm_ioctl(struct file *filp,
  1466. unsigned int ioctl, unsigned long arg)
  1467. {
  1468. struct kvm *kvm = filp->private_data;
  1469. void __user *argp = (void __user *)arg;
  1470. int r = -EINVAL;
  1471. /*
  1472. * This union makes it completely explicit to gcc-3.x
  1473. * that these two variables' stack usage should be
  1474. * combined, not added together.
  1475. */
  1476. union {
  1477. struct kvm_pit_state ps;
  1478. struct kvm_memory_alias alias;
  1479. } u;
  1480. switch (ioctl) {
  1481. case KVM_SET_TSS_ADDR:
  1482. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1483. if (r < 0)
  1484. goto out;
  1485. break;
  1486. case KVM_SET_MEMORY_REGION: {
  1487. struct kvm_memory_region kvm_mem;
  1488. struct kvm_userspace_memory_region kvm_userspace_mem;
  1489. r = -EFAULT;
  1490. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1491. goto out;
  1492. kvm_userspace_mem.slot = kvm_mem.slot;
  1493. kvm_userspace_mem.flags = kvm_mem.flags;
  1494. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1495. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1496. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1497. if (r)
  1498. goto out;
  1499. break;
  1500. }
  1501. case KVM_SET_NR_MMU_PAGES:
  1502. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1503. if (r)
  1504. goto out;
  1505. break;
  1506. case KVM_GET_NR_MMU_PAGES:
  1507. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1508. break;
  1509. case KVM_SET_MEMORY_ALIAS:
  1510. r = -EFAULT;
  1511. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1512. goto out;
  1513. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1514. if (r)
  1515. goto out;
  1516. break;
  1517. case KVM_CREATE_IRQCHIP:
  1518. r = -ENOMEM;
  1519. kvm->arch.vpic = kvm_create_pic(kvm);
  1520. if (kvm->arch.vpic) {
  1521. r = kvm_ioapic_init(kvm);
  1522. if (r) {
  1523. kfree(kvm->arch.vpic);
  1524. kvm->arch.vpic = NULL;
  1525. goto out;
  1526. }
  1527. } else
  1528. goto out;
  1529. break;
  1530. case KVM_CREATE_PIT:
  1531. r = -ENOMEM;
  1532. kvm->arch.vpit = kvm_create_pit(kvm);
  1533. if (kvm->arch.vpit)
  1534. r = 0;
  1535. break;
  1536. case KVM_IRQ_LINE: {
  1537. struct kvm_irq_level irq_event;
  1538. r = -EFAULT;
  1539. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1540. goto out;
  1541. if (irqchip_in_kernel(kvm)) {
  1542. mutex_lock(&kvm->lock);
  1543. kvm_set_irq(kvm, irq_event.irq, irq_event.level);
  1544. mutex_unlock(&kvm->lock);
  1545. r = 0;
  1546. }
  1547. break;
  1548. }
  1549. case KVM_GET_IRQCHIP: {
  1550. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1551. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1552. r = -ENOMEM;
  1553. if (!chip)
  1554. goto out;
  1555. r = -EFAULT;
  1556. if (copy_from_user(chip, argp, sizeof *chip))
  1557. goto get_irqchip_out;
  1558. r = -ENXIO;
  1559. if (!irqchip_in_kernel(kvm))
  1560. goto get_irqchip_out;
  1561. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1562. if (r)
  1563. goto get_irqchip_out;
  1564. r = -EFAULT;
  1565. if (copy_to_user(argp, chip, sizeof *chip))
  1566. goto get_irqchip_out;
  1567. r = 0;
  1568. get_irqchip_out:
  1569. kfree(chip);
  1570. if (r)
  1571. goto out;
  1572. break;
  1573. }
  1574. case KVM_SET_IRQCHIP: {
  1575. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1576. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1577. r = -ENOMEM;
  1578. if (!chip)
  1579. goto out;
  1580. r = -EFAULT;
  1581. if (copy_from_user(chip, argp, sizeof *chip))
  1582. goto set_irqchip_out;
  1583. r = -ENXIO;
  1584. if (!irqchip_in_kernel(kvm))
  1585. goto set_irqchip_out;
  1586. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1587. if (r)
  1588. goto set_irqchip_out;
  1589. r = 0;
  1590. set_irqchip_out:
  1591. kfree(chip);
  1592. if (r)
  1593. goto out;
  1594. break;
  1595. }
  1596. case KVM_GET_PIT: {
  1597. r = -EFAULT;
  1598. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1599. goto out;
  1600. r = -ENXIO;
  1601. if (!kvm->arch.vpit)
  1602. goto out;
  1603. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1604. if (r)
  1605. goto out;
  1606. r = -EFAULT;
  1607. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1608. goto out;
  1609. r = 0;
  1610. break;
  1611. }
  1612. case KVM_SET_PIT: {
  1613. r = -EFAULT;
  1614. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1615. goto out;
  1616. r = -ENXIO;
  1617. if (!kvm->arch.vpit)
  1618. goto out;
  1619. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1620. if (r)
  1621. goto out;
  1622. r = 0;
  1623. break;
  1624. }
  1625. default:
  1626. ;
  1627. }
  1628. out:
  1629. return r;
  1630. }
  1631. static void kvm_init_msr_list(void)
  1632. {
  1633. u32 dummy[2];
  1634. unsigned i, j;
  1635. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1636. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1637. continue;
  1638. if (j < i)
  1639. msrs_to_save[j] = msrs_to_save[i];
  1640. j++;
  1641. }
  1642. num_msrs_to_save = j;
  1643. }
  1644. /*
  1645. * Only apic need an MMIO device hook, so shortcut now..
  1646. */
  1647. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1648. gpa_t addr, int len,
  1649. int is_write)
  1650. {
  1651. struct kvm_io_device *dev;
  1652. if (vcpu->arch.apic) {
  1653. dev = &vcpu->arch.apic->dev;
  1654. if (dev->in_range(dev, addr, len, is_write))
  1655. return dev;
  1656. }
  1657. return NULL;
  1658. }
  1659. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1660. gpa_t addr, int len,
  1661. int is_write)
  1662. {
  1663. struct kvm_io_device *dev;
  1664. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1665. if (dev == NULL)
  1666. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1667. is_write);
  1668. return dev;
  1669. }
  1670. int emulator_read_std(unsigned long addr,
  1671. void *val,
  1672. unsigned int bytes,
  1673. struct kvm_vcpu *vcpu)
  1674. {
  1675. void *data = val;
  1676. int r = X86EMUL_CONTINUE;
  1677. while (bytes) {
  1678. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1679. unsigned offset = addr & (PAGE_SIZE-1);
  1680. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1681. int ret;
  1682. if (gpa == UNMAPPED_GVA) {
  1683. r = X86EMUL_PROPAGATE_FAULT;
  1684. goto out;
  1685. }
  1686. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1687. if (ret < 0) {
  1688. r = X86EMUL_UNHANDLEABLE;
  1689. goto out;
  1690. }
  1691. bytes -= tocopy;
  1692. data += tocopy;
  1693. addr += tocopy;
  1694. }
  1695. out:
  1696. return r;
  1697. }
  1698. EXPORT_SYMBOL_GPL(emulator_read_std);
  1699. static int emulator_read_emulated(unsigned long addr,
  1700. void *val,
  1701. unsigned int bytes,
  1702. struct kvm_vcpu *vcpu)
  1703. {
  1704. struct kvm_io_device *mmio_dev;
  1705. gpa_t gpa;
  1706. if (vcpu->mmio_read_completed) {
  1707. memcpy(val, vcpu->mmio_data, bytes);
  1708. vcpu->mmio_read_completed = 0;
  1709. return X86EMUL_CONTINUE;
  1710. }
  1711. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1712. /* For APIC access vmexit */
  1713. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1714. goto mmio;
  1715. if (emulator_read_std(addr, val, bytes, vcpu)
  1716. == X86EMUL_CONTINUE)
  1717. return X86EMUL_CONTINUE;
  1718. if (gpa == UNMAPPED_GVA)
  1719. return X86EMUL_PROPAGATE_FAULT;
  1720. mmio:
  1721. /*
  1722. * Is this MMIO handled locally?
  1723. */
  1724. mutex_lock(&vcpu->kvm->lock);
  1725. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1726. if (mmio_dev) {
  1727. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1728. mutex_unlock(&vcpu->kvm->lock);
  1729. return X86EMUL_CONTINUE;
  1730. }
  1731. mutex_unlock(&vcpu->kvm->lock);
  1732. vcpu->mmio_needed = 1;
  1733. vcpu->mmio_phys_addr = gpa;
  1734. vcpu->mmio_size = bytes;
  1735. vcpu->mmio_is_write = 0;
  1736. return X86EMUL_UNHANDLEABLE;
  1737. }
  1738. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1739. const void *val, int bytes)
  1740. {
  1741. int ret;
  1742. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1743. if (ret < 0)
  1744. return 0;
  1745. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1746. return 1;
  1747. }
  1748. static int emulator_write_emulated_onepage(unsigned long addr,
  1749. const void *val,
  1750. unsigned int bytes,
  1751. struct kvm_vcpu *vcpu)
  1752. {
  1753. struct kvm_io_device *mmio_dev;
  1754. gpa_t gpa;
  1755. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1756. if (gpa == UNMAPPED_GVA) {
  1757. kvm_inject_page_fault(vcpu, addr, 2);
  1758. return X86EMUL_PROPAGATE_FAULT;
  1759. }
  1760. /* For APIC access vmexit */
  1761. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1762. goto mmio;
  1763. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1764. return X86EMUL_CONTINUE;
  1765. mmio:
  1766. /*
  1767. * Is this MMIO handled locally?
  1768. */
  1769. mutex_lock(&vcpu->kvm->lock);
  1770. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1771. if (mmio_dev) {
  1772. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1773. mutex_unlock(&vcpu->kvm->lock);
  1774. return X86EMUL_CONTINUE;
  1775. }
  1776. mutex_unlock(&vcpu->kvm->lock);
  1777. vcpu->mmio_needed = 1;
  1778. vcpu->mmio_phys_addr = gpa;
  1779. vcpu->mmio_size = bytes;
  1780. vcpu->mmio_is_write = 1;
  1781. memcpy(vcpu->mmio_data, val, bytes);
  1782. return X86EMUL_CONTINUE;
  1783. }
  1784. int emulator_write_emulated(unsigned long addr,
  1785. const void *val,
  1786. unsigned int bytes,
  1787. struct kvm_vcpu *vcpu)
  1788. {
  1789. /* Crossing a page boundary? */
  1790. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1791. int rc, now;
  1792. now = -addr & ~PAGE_MASK;
  1793. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1794. if (rc != X86EMUL_CONTINUE)
  1795. return rc;
  1796. addr += now;
  1797. val += now;
  1798. bytes -= now;
  1799. }
  1800. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1801. }
  1802. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1803. static int emulator_cmpxchg_emulated(unsigned long addr,
  1804. const void *old,
  1805. const void *new,
  1806. unsigned int bytes,
  1807. struct kvm_vcpu *vcpu)
  1808. {
  1809. static int reported;
  1810. if (!reported) {
  1811. reported = 1;
  1812. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1813. }
  1814. #ifndef CONFIG_X86_64
  1815. /* guests cmpxchg8b have to be emulated atomically */
  1816. if (bytes == 8) {
  1817. gpa_t gpa;
  1818. struct page *page;
  1819. char *kaddr;
  1820. u64 val;
  1821. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1822. if (gpa == UNMAPPED_GVA ||
  1823. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1824. goto emul_write;
  1825. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1826. goto emul_write;
  1827. val = *(u64 *)new;
  1828. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1829. kaddr = kmap_atomic(page, KM_USER0);
  1830. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1831. kunmap_atomic(kaddr, KM_USER0);
  1832. kvm_release_page_dirty(page);
  1833. }
  1834. emul_write:
  1835. #endif
  1836. return emulator_write_emulated(addr, new, bytes, vcpu);
  1837. }
  1838. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1839. {
  1840. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1841. }
  1842. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1843. {
  1844. kvm_mmu_invlpg(vcpu, address);
  1845. return X86EMUL_CONTINUE;
  1846. }
  1847. int emulate_clts(struct kvm_vcpu *vcpu)
  1848. {
  1849. KVMTRACE_0D(CLTS, vcpu, handler);
  1850. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1851. return X86EMUL_CONTINUE;
  1852. }
  1853. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1854. {
  1855. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1856. switch (dr) {
  1857. case 0 ... 3:
  1858. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1859. return X86EMUL_CONTINUE;
  1860. default:
  1861. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1862. return X86EMUL_UNHANDLEABLE;
  1863. }
  1864. }
  1865. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1866. {
  1867. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1868. int exception;
  1869. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1870. if (exception) {
  1871. /* FIXME: better handling */
  1872. return X86EMUL_UNHANDLEABLE;
  1873. }
  1874. return X86EMUL_CONTINUE;
  1875. }
  1876. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1877. {
  1878. u8 opcodes[4];
  1879. unsigned long rip = kvm_rip_read(vcpu);
  1880. unsigned long rip_linear;
  1881. if (!printk_ratelimit())
  1882. return;
  1883. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1884. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1885. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1886. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1887. }
  1888. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1889. static struct x86_emulate_ops emulate_ops = {
  1890. .read_std = emulator_read_std,
  1891. .read_emulated = emulator_read_emulated,
  1892. .write_emulated = emulator_write_emulated,
  1893. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1894. };
  1895. static void cache_all_regs(struct kvm_vcpu *vcpu)
  1896. {
  1897. kvm_register_read(vcpu, VCPU_REGS_RAX);
  1898. kvm_register_read(vcpu, VCPU_REGS_RSP);
  1899. kvm_register_read(vcpu, VCPU_REGS_RIP);
  1900. vcpu->arch.regs_dirty = ~0;
  1901. }
  1902. int emulate_instruction(struct kvm_vcpu *vcpu,
  1903. struct kvm_run *run,
  1904. unsigned long cr2,
  1905. u16 error_code,
  1906. int emulation_type)
  1907. {
  1908. int r;
  1909. struct decode_cache *c;
  1910. kvm_clear_exception_queue(vcpu);
  1911. vcpu->arch.mmio_fault_cr2 = cr2;
  1912. /*
  1913. * TODO: fix x86_emulate.c to use guest_read/write_register
  1914. * instead of direct ->regs accesses, can save hundred cycles
  1915. * on Intel for instructions that don't read/change RSP, for
  1916. * for example.
  1917. */
  1918. cache_all_regs(vcpu);
  1919. vcpu->mmio_is_write = 0;
  1920. vcpu->arch.pio.string = 0;
  1921. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1922. int cs_db, cs_l;
  1923. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1924. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1925. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1926. vcpu->arch.emulate_ctxt.mode =
  1927. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1928. ? X86EMUL_MODE_REAL : cs_l
  1929. ? X86EMUL_MODE_PROT64 : cs_db
  1930. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1931. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1932. /* Reject the instructions other than VMCALL/VMMCALL when
  1933. * try to emulate invalid opcode */
  1934. c = &vcpu->arch.emulate_ctxt.decode;
  1935. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1936. (!(c->twobyte && c->b == 0x01 &&
  1937. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1938. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1939. return EMULATE_FAIL;
  1940. ++vcpu->stat.insn_emulation;
  1941. if (r) {
  1942. ++vcpu->stat.insn_emulation_fail;
  1943. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1944. return EMULATE_DONE;
  1945. return EMULATE_FAIL;
  1946. }
  1947. }
  1948. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1949. if (vcpu->arch.pio.string)
  1950. return EMULATE_DO_MMIO;
  1951. if ((r || vcpu->mmio_is_write) && run) {
  1952. run->exit_reason = KVM_EXIT_MMIO;
  1953. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1954. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1955. run->mmio.len = vcpu->mmio_size;
  1956. run->mmio.is_write = vcpu->mmio_is_write;
  1957. }
  1958. if (r) {
  1959. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1960. return EMULATE_DONE;
  1961. if (!vcpu->mmio_needed) {
  1962. kvm_report_emulation_failure(vcpu, "mmio");
  1963. return EMULATE_FAIL;
  1964. }
  1965. return EMULATE_DO_MMIO;
  1966. }
  1967. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1968. if (vcpu->mmio_is_write) {
  1969. vcpu->mmio_needed = 0;
  1970. return EMULATE_DO_MMIO;
  1971. }
  1972. return EMULATE_DONE;
  1973. }
  1974. EXPORT_SYMBOL_GPL(emulate_instruction);
  1975. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1976. {
  1977. int i;
  1978. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1979. if (vcpu->arch.pio.guest_pages[i]) {
  1980. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1981. vcpu->arch.pio.guest_pages[i] = NULL;
  1982. }
  1983. }
  1984. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1985. {
  1986. void *p = vcpu->arch.pio_data;
  1987. void *q;
  1988. unsigned bytes;
  1989. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1990. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1991. PAGE_KERNEL);
  1992. if (!q) {
  1993. free_pio_guest_pages(vcpu);
  1994. return -ENOMEM;
  1995. }
  1996. q += vcpu->arch.pio.guest_page_offset;
  1997. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1998. if (vcpu->arch.pio.in)
  1999. memcpy(q, p, bytes);
  2000. else
  2001. memcpy(p, q, bytes);
  2002. q -= vcpu->arch.pio.guest_page_offset;
  2003. vunmap(q);
  2004. free_pio_guest_pages(vcpu);
  2005. return 0;
  2006. }
  2007. int complete_pio(struct kvm_vcpu *vcpu)
  2008. {
  2009. struct kvm_pio_request *io = &vcpu->arch.pio;
  2010. long delta;
  2011. int r;
  2012. unsigned long val;
  2013. if (!io->string) {
  2014. if (io->in) {
  2015. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2016. memcpy(&val, vcpu->arch.pio_data, io->size);
  2017. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2018. }
  2019. } else {
  2020. if (io->in) {
  2021. r = pio_copy_data(vcpu);
  2022. if (r)
  2023. return r;
  2024. }
  2025. delta = 1;
  2026. if (io->rep) {
  2027. delta *= io->cur_count;
  2028. /*
  2029. * The size of the register should really depend on
  2030. * current address size.
  2031. */
  2032. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2033. val -= delta;
  2034. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2035. }
  2036. if (io->down)
  2037. delta = -delta;
  2038. delta *= io->size;
  2039. if (io->in) {
  2040. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2041. val += delta;
  2042. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2043. } else {
  2044. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2045. val += delta;
  2046. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2047. }
  2048. }
  2049. io->count -= io->cur_count;
  2050. io->cur_count = 0;
  2051. return 0;
  2052. }
  2053. static void kernel_pio(struct kvm_io_device *pio_dev,
  2054. struct kvm_vcpu *vcpu,
  2055. void *pd)
  2056. {
  2057. /* TODO: String I/O for in kernel device */
  2058. mutex_lock(&vcpu->kvm->lock);
  2059. if (vcpu->arch.pio.in)
  2060. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2061. vcpu->arch.pio.size,
  2062. pd);
  2063. else
  2064. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2065. vcpu->arch.pio.size,
  2066. pd);
  2067. mutex_unlock(&vcpu->kvm->lock);
  2068. }
  2069. static void pio_string_write(struct kvm_io_device *pio_dev,
  2070. struct kvm_vcpu *vcpu)
  2071. {
  2072. struct kvm_pio_request *io = &vcpu->arch.pio;
  2073. void *pd = vcpu->arch.pio_data;
  2074. int i;
  2075. mutex_lock(&vcpu->kvm->lock);
  2076. for (i = 0; i < io->cur_count; i++) {
  2077. kvm_iodevice_write(pio_dev, io->port,
  2078. io->size,
  2079. pd);
  2080. pd += io->size;
  2081. }
  2082. mutex_unlock(&vcpu->kvm->lock);
  2083. }
  2084. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2085. gpa_t addr, int len,
  2086. int is_write)
  2087. {
  2088. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2089. }
  2090. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2091. int size, unsigned port)
  2092. {
  2093. struct kvm_io_device *pio_dev;
  2094. unsigned long val;
  2095. vcpu->run->exit_reason = KVM_EXIT_IO;
  2096. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2097. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2098. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2099. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2100. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2101. vcpu->arch.pio.in = in;
  2102. vcpu->arch.pio.string = 0;
  2103. vcpu->arch.pio.down = 0;
  2104. vcpu->arch.pio.guest_page_offset = 0;
  2105. vcpu->arch.pio.rep = 0;
  2106. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2107. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2108. handler);
  2109. else
  2110. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2111. handler);
  2112. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2113. memcpy(vcpu->arch.pio_data, &val, 4);
  2114. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2115. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2116. if (pio_dev) {
  2117. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2118. complete_pio(vcpu);
  2119. return 1;
  2120. }
  2121. return 0;
  2122. }
  2123. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2124. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2125. int size, unsigned long count, int down,
  2126. gva_t address, int rep, unsigned port)
  2127. {
  2128. unsigned now, in_page;
  2129. int i, ret = 0;
  2130. int nr_pages = 1;
  2131. struct page *page;
  2132. struct kvm_io_device *pio_dev;
  2133. vcpu->run->exit_reason = KVM_EXIT_IO;
  2134. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2135. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2136. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2137. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2138. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2139. vcpu->arch.pio.in = in;
  2140. vcpu->arch.pio.string = 1;
  2141. vcpu->arch.pio.down = down;
  2142. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2143. vcpu->arch.pio.rep = rep;
  2144. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2145. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2146. handler);
  2147. else
  2148. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2149. handler);
  2150. if (!count) {
  2151. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2152. return 1;
  2153. }
  2154. if (!down)
  2155. in_page = PAGE_SIZE - offset_in_page(address);
  2156. else
  2157. in_page = offset_in_page(address) + size;
  2158. now = min(count, (unsigned long)in_page / size);
  2159. if (!now) {
  2160. /*
  2161. * String I/O straddles page boundary. Pin two guest pages
  2162. * so that we satisfy atomicity constraints. Do just one
  2163. * transaction to avoid complexity.
  2164. */
  2165. nr_pages = 2;
  2166. now = 1;
  2167. }
  2168. if (down) {
  2169. /*
  2170. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2171. */
  2172. pr_unimpl(vcpu, "guest string pio down\n");
  2173. kvm_inject_gp(vcpu, 0);
  2174. return 1;
  2175. }
  2176. vcpu->run->io.count = now;
  2177. vcpu->arch.pio.cur_count = now;
  2178. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2179. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2180. for (i = 0; i < nr_pages; ++i) {
  2181. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2182. vcpu->arch.pio.guest_pages[i] = page;
  2183. if (!page) {
  2184. kvm_inject_gp(vcpu, 0);
  2185. free_pio_guest_pages(vcpu);
  2186. return 1;
  2187. }
  2188. }
  2189. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2190. vcpu->arch.pio.cur_count,
  2191. !vcpu->arch.pio.in);
  2192. if (!vcpu->arch.pio.in) {
  2193. /* string PIO write */
  2194. ret = pio_copy_data(vcpu);
  2195. if (ret >= 0 && pio_dev) {
  2196. pio_string_write(pio_dev, vcpu);
  2197. complete_pio(vcpu);
  2198. if (vcpu->arch.pio.count == 0)
  2199. ret = 1;
  2200. }
  2201. } else if (pio_dev)
  2202. pr_unimpl(vcpu, "no string pio read support yet, "
  2203. "port %x size %d count %ld\n",
  2204. port, size, count);
  2205. return ret;
  2206. }
  2207. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2208. int kvm_arch_init(void *opaque)
  2209. {
  2210. int r;
  2211. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2212. if (kvm_x86_ops) {
  2213. printk(KERN_ERR "kvm: already loaded the other module\n");
  2214. r = -EEXIST;
  2215. goto out;
  2216. }
  2217. if (!ops->cpu_has_kvm_support()) {
  2218. printk(KERN_ERR "kvm: no hardware support\n");
  2219. r = -EOPNOTSUPP;
  2220. goto out;
  2221. }
  2222. if (ops->disabled_by_bios()) {
  2223. printk(KERN_ERR "kvm: disabled by bios\n");
  2224. r = -EOPNOTSUPP;
  2225. goto out;
  2226. }
  2227. r = kvm_mmu_module_init();
  2228. if (r)
  2229. goto out;
  2230. kvm_init_msr_list();
  2231. kvm_x86_ops = ops;
  2232. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2233. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2234. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2235. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2236. return 0;
  2237. out:
  2238. return r;
  2239. }
  2240. void kvm_arch_exit(void)
  2241. {
  2242. kvm_x86_ops = NULL;
  2243. kvm_mmu_module_exit();
  2244. }
  2245. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2246. {
  2247. ++vcpu->stat.halt_exits;
  2248. KVMTRACE_0D(HLT, vcpu, handler);
  2249. if (irqchip_in_kernel(vcpu->kvm)) {
  2250. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2251. return 1;
  2252. } else {
  2253. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2254. return 0;
  2255. }
  2256. }
  2257. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2258. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2259. unsigned long a1)
  2260. {
  2261. if (is_long_mode(vcpu))
  2262. return a0;
  2263. else
  2264. return a0 | ((gpa_t)a1 << 32);
  2265. }
  2266. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2267. {
  2268. unsigned long nr, a0, a1, a2, a3, ret;
  2269. int r = 1;
  2270. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2271. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2272. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2273. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2274. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2275. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2276. if (!is_long_mode(vcpu)) {
  2277. nr &= 0xFFFFFFFF;
  2278. a0 &= 0xFFFFFFFF;
  2279. a1 &= 0xFFFFFFFF;
  2280. a2 &= 0xFFFFFFFF;
  2281. a3 &= 0xFFFFFFFF;
  2282. }
  2283. switch (nr) {
  2284. case KVM_HC_VAPIC_POLL_IRQ:
  2285. ret = 0;
  2286. break;
  2287. case KVM_HC_MMU_OP:
  2288. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2289. break;
  2290. default:
  2291. ret = -KVM_ENOSYS;
  2292. break;
  2293. }
  2294. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2295. ++vcpu->stat.hypercalls;
  2296. return r;
  2297. }
  2298. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2299. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2300. {
  2301. char instruction[3];
  2302. int ret = 0;
  2303. unsigned long rip = kvm_rip_read(vcpu);
  2304. /*
  2305. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2306. * to ensure that the updated hypercall appears atomically across all
  2307. * VCPUs.
  2308. */
  2309. kvm_mmu_zap_all(vcpu->kvm);
  2310. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2311. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2312. != X86EMUL_CONTINUE)
  2313. ret = -EFAULT;
  2314. return ret;
  2315. }
  2316. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2317. {
  2318. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2319. }
  2320. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2321. {
  2322. struct descriptor_table dt = { limit, base };
  2323. kvm_x86_ops->set_gdt(vcpu, &dt);
  2324. }
  2325. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2326. {
  2327. struct descriptor_table dt = { limit, base };
  2328. kvm_x86_ops->set_idt(vcpu, &dt);
  2329. }
  2330. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2331. unsigned long *rflags)
  2332. {
  2333. kvm_lmsw(vcpu, msw);
  2334. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2335. }
  2336. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2337. {
  2338. unsigned long value;
  2339. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2340. switch (cr) {
  2341. case 0:
  2342. value = vcpu->arch.cr0;
  2343. break;
  2344. case 2:
  2345. value = vcpu->arch.cr2;
  2346. break;
  2347. case 3:
  2348. value = vcpu->arch.cr3;
  2349. break;
  2350. case 4:
  2351. value = vcpu->arch.cr4;
  2352. break;
  2353. case 8:
  2354. value = kvm_get_cr8(vcpu);
  2355. break;
  2356. default:
  2357. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2358. return 0;
  2359. }
  2360. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2361. (u32)((u64)value >> 32), handler);
  2362. return value;
  2363. }
  2364. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2365. unsigned long *rflags)
  2366. {
  2367. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2368. (u32)((u64)val >> 32), handler);
  2369. switch (cr) {
  2370. case 0:
  2371. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2372. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2373. break;
  2374. case 2:
  2375. vcpu->arch.cr2 = val;
  2376. break;
  2377. case 3:
  2378. kvm_set_cr3(vcpu, val);
  2379. break;
  2380. case 4:
  2381. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2382. break;
  2383. case 8:
  2384. kvm_set_cr8(vcpu, val & 0xfUL);
  2385. break;
  2386. default:
  2387. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2388. }
  2389. }
  2390. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2391. {
  2392. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2393. int j, nent = vcpu->arch.cpuid_nent;
  2394. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2395. /* when no next entry is found, the current entry[i] is reselected */
  2396. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2397. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2398. if (ej->function == e->function) {
  2399. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2400. return j;
  2401. }
  2402. }
  2403. return 0; /* silence gcc, even though control never reaches here */
  2404. }
  2405. /* find an entry with matching function, matching index (if needed), and that
  2406. * should be read next (if it's stateful) */
  2407. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2408. u32 function, u32 index)
  2409. {
  2410. if (e->function != function)
  2411. return 0;
  2412. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2413. return 0;
  2414. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2415. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2416. return 0;
  2417. return 1;
  2418. }
  2419. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2420. {
  2421. int i;
  2422. u32 function, index;
  2423. struct kvm_cpuid_entry2 *e, *best;
  2424. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2425. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2426. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2427. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2428. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2429. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2430. best = NULL;
  2431. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2432. e = &vcpu->arch.cpuid_entries[i];
  2433. if (is_matching_cpuid_entry(e, function, index)) {
  2434. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2435. move_to_next_stateful_cpuid_entry(vcpu, i);
  2436. best = e;
  2437. break;
  2438. }
  2439. /*
  2440. * Both basic or both extended?
  2441. */
  2442. if (((e->function ^ function) & 0x80000000) == 0)
  2443. if (!best || e->function > best->function)
  2444. best = e;
  2445. }
  2446. if (best) {
  2447. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2448. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2449. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2450. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2451. }
  2452. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2453. KVMTRACE_5D(CPUID, vcpu, function,
  2454. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2455. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2456. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2457. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2458. }
  2459. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2460. /*
  2461. * Check if userspace requested an interrupt window, and that the
  2462. * interrupt window is open.
  2463. *
  2464. * No need to exit to userspace if we already have an interrupt queued.
  2465. */
  2466. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2467. struct kvm_run *kvm_run)
  2468. {
  2469. return (!vcpu->arch.irq_summary &&
  2470. kvm_run->request_interrupt_window &&
  2471. vcpu->arch.interrupt_window_open &&
  2472. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2473. }
  2474. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2475. struct kvm_run *kvm_run)
  2476. {
  2477. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2478. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2479. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2480. if (irqchip_in_kernel(vcpu->kvm))
  2481. kvm_run->ready_for_interrupt_injection = 1;
  2482. else
  2483. kvm_run->ready_for_interrupt_injection =
  2484. (vcpu->arch.interrupt_window_open &&
  2485. vcpu->arch.irq_summary == 0);
  2486. }
  2487. static void vapic_enter(struct kvm_vcpu *vcpu)
  2488. {
  2489. struct kvm_lapic *apic = vcpu->arch.apic;
  2490. struct page *page;
  2491. if (!apic || !apic->vapic_addr)
  2492. return;
  2493. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2494. vcpu->arch.apic->vapic_page = page;
  2495. }
  2496. static void vapic_exit(struct kvm_vcpu *vcpu)
  2497. {
  2498. struct kvm_lapic *apic = vcpu->arch.apic;
  2499. if (!apic || !apic->vapic_addr)
  2500. return;
  2501. down_read(&vcpu->kvm->slots_lock);
  2502. kvm_release_page_dirty(apic->vapic_page);
  2503. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2504. up_read(&vcpu->kvm->slots_lock);
  2505. }
  2506. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2507. {
  2508. int r;
  2509. if (vcpu->requests)
  2510. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2511. kvm_mmu_unload(vcpu);
  2512. r = kvm_mmu_reload(vcpu);
  2513. if (unlikely(r))
  2514. goto out;
  2515. if (vcpu->requests) {
  2516. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2517. __kvm_migrate_timers(vcpu);
  2518. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2519. kvm_mmu_sync_roots(vcpu);
  2520. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2521. kvm_x86_ops->tlb_flush(vcpu);
  2522. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2523. &vcpu->requests)) {
  2524. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2525. r = 0;
  2526. goto out;
  2527. }
  2528. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2529. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2530. r = 0;
  2531. goto out;
  2532. }
  2533. }
  2534. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2535. kvm_inject_pending_timer_irqs(vcpu);
  2536. preempt_disable();
  2537. kvm_x86_ops->prepare_guest_switch(vcpu);
  2538. kvm_load_guest_fpu(vcpu);
  2539. local_irq_disable();
  2540. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2541. local_irq_enable();
  2542. preempt_enable();
  2543. r = 1;
  2544. goto out;
  2545. }
  2546. if (vcpu->guest_debug.enabled)
  2547. kvm_x86_ops->guest_debug_pre(vcpu);
  2548. vcpu->guest_mode = 1;
  2549. /*
  2550. * Make sure that guest_mode assignment won't happen after
  2551. * testing the pending IRQ vector bitmap.
  2552. */
  2553. smp_wmb();
  2554. if (vcpu->arch.exception.pending)
  2555. __queue_exception(vcpu);
  2556. else if (irqchip_in_kernel(vcpu->kvm))
  2557. kvm_x86_ops->inject_pending_irq(vcpu);
  2558. else
  2559. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2560. kvm_lapic_sync_to_vapic(vcpu);
  2561. up_read(&vcpu->kvm->slots_lock);
  2562. kvm_guest_enter();
  2563. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2564. kvm_x86_ops->run(vcpu, kvm_run);
  2565. vcpu->guest_mode = 0;
  2566. local_irq_enable();
  2567. ++vcpu->stat.exits;
  2568. /*
  2569. * We must have an instruction between local_irq_enable() and
  2570. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2571. * the interrupt shadow. The stat.exits increment will do nicely.
  2572. * But we need to prevent reordering, hence this barrier():
  2573. */
  2574. barrier();
  2575. kvm_guest_exit();
  2576. preempt_enable();
  2577. down_read(&vcpu->kvm->slots_lock);
  2578. /*
  2579. * Profile KVM exit RIPs:
  2580. */
  2581. if (unlikely(prof_on == KVM_PROFILING)) {
  2582. unsigned long rip = kvm_rip_read(vcpu);
  2583. profile_hit(KVM_PROFILING, (void *)rip);
  2584. }
  2585. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2586. vcpu->arch.exception.pending = false;
  2587. kvm_lapic_sync_from_vapic(vcpu);
  2588. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2589. out:
  2590. return r;
  2591. }
  2592. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2593. {
  2594. int r;
  2595. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2596. pr_debug("vcpu %d received sipi with vector # %x\n",
  2597. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2598. kvm_lapic_reset(vcpu);
  2599. r = kvm_x86_ops->vcpu_reset(vcpu);
  2600. if (r)
  2601. return r;
  2602. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2603. }
  2604. down_read(&vcpu->kvm->slots_lock);
  2605. vapic_enter(vcpu);
  2606. r = 1;
  2607. while (r > 0) {
  2608. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2609. r = vcpu_enter_guest(vcpu, kvm_run);
  2610. else {
  2611. up_read(&vcpu->kvm->slots_lock);
  2612. kvm_vcpu_block(vcpu);
  2613. down_read(&vcpu->kvm->slots_lock);
  2614. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2615. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  2616. vcpu->arch.mp_state =
  2617. KVM_MP_STATE_RUNNABLE;
  2618. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2619. r = -EINTR;
  2620. }
  2621. if (r > 0) {
  2622. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2623. r = -EINTR;
  2624. kvm_run->exit_reason = KVM_EXIT_INTR;
  2625. ++vcpu->stat.request_irq_exits;
  2626. }
  2627. if (signal_pending(current)) {
  2628. r = -EINTR;
  2629. kvm_run->exit_reason = KVM_EXIT_INTR;
  2630. ++vcpu->stat.signal_exits;
  2631. }
  2632. if (need_resched()) {
  2633. up_read(&vcpu->kvm->slots_lock);
  2634. kvm_resched(vcpu);
  2635. down_read(&vcpu->kvm->slots_lock);
  2636. }
  2637. }
  2638. }
  2639. up_read(&vcpu->kvm->slots_lock);
  2640. post_kvm_run_save(vcpu, kvm_run);
  2641. vapic_exit(vcpu);
  2642. return r;
  2643. }
  2644. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2645. {
  2646. int r;
  2647. sigset_t sigsaved;
  2648. vcpu_load(vcpu);
  2649. if (vcpu->sigset_active)
  2650. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2651. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2652. kvm_vcpu_block(vcpu);
  2653. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2654. r = -EAGAIN;
  2655. goto out;
  2656. }
  2657. /* re-sync apic's tpr */
  2658. if (!irqchip_in_kernel(vcpu->kvm))
  2659. kvm_set_cr8(vcpu, kvm_run->cr8);
  2660. if (vcpu->arch.pio.cur_count) {
  2661. r = complete_pio(vcpu);
  2662. if (r)
  2663. goto out;
  2664. }
  2665. #if CONFIG_HAS_IOMEM
  2666. if (vcpu->mmio_needed) {
  2667. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2668. vcpu->mmio_read_completed = 1;
  2669. vcpu->mmio_needed = 0;
  2670. down_read(&vcpu->kvm->slots_lock);
  2671. r = emulate_instruction(vcpu, kvm_run,
  2672. vcpu->arch.mmio_fault_cr2, 0,
  2673. EMULTYPE_NO_DECODE);
  2674. up_read(&vcpu->kvm->slots_lock);
  2675. if (r == EMULATE_DO_MMIO) {
  2676. /*
  2677. * Read-modify-write. Back to userspace.
  2678. */
  2679. r = 0;
  2680. goto out;
  2681. }
  2682. }
  2683. #endif
  2684. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2685. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2686. kvm_run->hypercall.ret);
  2687. r = __vcpu_run(vcpu, kvm_run);
  2688. out:
  2689. if (vcpu->sigset_active)
  2690. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2691. vcpu_put(vcpu);
  2692. return r;
  2693. }
  2694. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2695. {
  2696. vcpu_load(vcpu);
  2697. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2698. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2699. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2700. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2701. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2702. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2703. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2704. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2705. #ifdef CONFIG_X86_64
  2706. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2707. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2708. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2709. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2710. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2711. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2712. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2713. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2714. #endif
  2715. regs->rip = kvm_rip_read(vcpu);
  2716. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2717. /*
  2718. * Don't leak debug flags in case they were set for guest debugging
  2719. */
  2720. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2721. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2722. vcpu_put(vcpu);
  2723. return 0;
  2724. }
  2725. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2726. {
  2727. vcpu_load(vcpu);
  2728. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2729. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2730. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2731. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2732. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2733. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2734. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2735. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2736. #ifdef CONFIG_X86_64
  2737. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2738. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2739. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2740. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2741. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2742. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  2743. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  2744. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  2745. #endif
  2746. kvm_rip_write(vcpu, regs->rip);
  2747. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2748. vcpu->arch.exception.pending = false;
  2749. vcpu_put(vcpu);
  2750. return 0;
  2751. }
  2752. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2753. struct kvm_segment *var, int seg)
  2754. {
  2755. kvm_x86_ops->get_segment(vcpu, var, seg);
  2756. }
  2757. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2758. {
  2759. struct kvm_segment cs;
  2760. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2761. *db = cs.db;
  2762. *l = cs.l;
  2763. }
  2764. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2765. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2766. struct kvm_sregs *sregs)
  2767. {
  2768. struct descriptor_table dt;
  2769. int pending_vec;
  2770. vcpu_load(vcpu);
  2771. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2772. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2773. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2774. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2775. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2776. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2777. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2778. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2779. kvm_x86_ops->get_idt(vcpu, &dt);
  2780. sregs->idt.limit = dt.limit;
  2781. sregs->idt.base = dt.base;
  2782. kvm_x86_ops->get_gdt(vcpu, &dt);
  2783. sregs->gdt.limit = dt.limit;
  2784. sregs->gdt.base = dt.base;
  2785. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2786. sregs->cr0 = vcpu->arch.cr0;
  2787. sregs->cr2 = vcpu->arch.cr2;
  2788. sregs->cr3 = vcpu->arch.cr3;
  2789. sregs->cr4 = vcpu->arch.cr4;
  2790. sregs->cr8 = kvm_get_cr8(vcpu);
  2791. sregs->efer = vcpu->arch.shadow_efer;
  2792. sregs->apic_base = kvm_get_apic_base(vcpu);
  2793. if (irqchip_in_kernel(vcpu->kvm)) {
  2794. memset(sregs->interrupt_bitmap, 0,
  2795. sizeof sregs->interrupt_bitmap);
  2796. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2797. if (pending_vec >= 0)
  2798. set_bit(pending_vec,
  2799. (unsigned long *)sregs->interrupt_bitmap);
  2800. } else
  2801. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2802. sizeof sregs->interrupt_bitmap);
  2803. vcpu_put(vcpu);
  2804. return 0;
  2805. }
  2806. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2807. struct kvm_mp_state *mp_state)
  2808. {
  2809. vcpu_load(vcpu);
  2810. mp_state->mp_state = vcpu->arch.mp_state;
  2811. vcpu_put(vcpu);
  2812. return 0;
  2813. }
  2814. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2815. struct kvm_mp_state *mp_state)
  2816. {
  2817. vcpu_load(vcpu);
  2818. vcpu->arch.mp_state = mp_state->mp_state;
  2819. vcpu_put(vcpu);
  2820. return 0;
  2821. }
  2822. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2823. struct kvm_segment *var, int seg)
  2824. {
  2825. kvm_x86_ops->set_segment(vcpu, var, seg);
  2826. }
  2827. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2828. struct kvm_segment *kvm_desct)
  2829. {
  2830. kvm_desct->base = seg_desc->base0;
  2831. kvm_desct->base |= seg_desc->base1 << 16;
  2832. kvm_desct->base |= seg_desc->base2 << 24;
  2833. kvm_desct->limit = seg_desc->limit0;
  2834. kvm_desct->limit |= seg_desc->limit << 16;
  2835. if (seg_desc->g) {
  2836. kvm_desct->limit <<= 12;
  2837. kvm_desct->limit |= 0xfff;
  2838. }
  2839. kvm_desct->selector = selector;
  2840. kvm_desct->type = seg_desc->type;
  2841. kvm_desct->present = seg_desc->p;
  2842. kvm_desct->dpl = seg_desc->dpl;
  2843. kvm_desct->db = seg_desc->d;
  2844. kvm_desct->s = seg_desc->s;
  2845. kvm_desct->l = seg_desc->l;
  2846. kvm_desct->g = seg_desc->g;
  2847. kvm_desct->avl = seg_desc->avl;
  2848. if (!selector)
  2849. kvm_desct->unusable = 1;
  2850. else
  2851. kvm_desct->unusable = 0;
  2852. kvm_desct->padding = 0;
  2853. }
  2854. static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
  2855. u16 selector,
  2856. struct descriptor_table *dtable)
  2857. {
  2858. if (selector & 1 << 2) {
  2859. struct kvm_segment kvm_seg;
  2860. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2861. if (kvm_seg.unusable)
  2862. dtable->limit = 0;
  2863. else
  2864. dtable->limit = kvm_seg.limit;
  2865. dtable->base = kvm_seg.base;
  2866. }
  2867. else
  2868. kvm_x86_ops->get_gdt(vcpu, dtable);
  2869. }
  2870. /* allowed just for 8 bytes segments */
  2871. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2872. struct desc_struct *seg_desc)
  2873. {
  2874. gpa_t gpa;
  2875. struct descriptor_table dtable;
  2876. u16 index = selector >> 3;
  2877. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2878. if (dtable.limit < index * 8 + 7) {
  2879. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2880. return 1;
  2881. }
  2882. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2883. gpa += index * 8;
  2884. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  2885. }
  2886. /* allowed just for 8 bytes segments */
  2887. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2888. struct desc_struct *seg_desc)
  2889. {
  2890. gpa_t gpa;
  2891. struct descriptor_table dtable;
  2892. u16 index = selector >> 3;
  2893. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2894. if (dtable.limit < index * 8 + 7)
  2895. return 1;
  2896. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2897. gpa += index * 8;
  2898. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  2899. }
  2900. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2901. struct desc_struct *seg_desc)
  2902. {
  2903. u32 base_addr;
  2904. base_addr = seg_desc->base0;
  2905. base_addr |= (seg_desc->base1 << 16);
  2906. base_addr |= (seg_desc->base2 << 24);
  2907. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  2908. }
  2909. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  2910. {
  2911. struct kvm_segment kvm_seg;
  2912. kvm_get_segment(vcpu, &kvm_seg, seg);
  2913. return kvm_seg.selector;
  2914. }
  2915. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  2916. u16 selector,
  2917. struct kvm_segment *kvm_seg)
  2918. {
  2919. struct desc_struct seg_desc;
  2920. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  2921. return 1;
  2922. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  2923. return 0;
  2924. }
  2925. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  2926. {
  2927. struct kvm_segment segvar = {
  2928. .base = selector << 4,
  2929. .limit = 0xffff,
  2930. .selector = selector,
  2931. .type = 3,
  2932. .present = 1,
  2933. .dpl = 3,
  2934. .db = 0,
  2935. .s = 1,
  2936. .l = 0,
  2937. .g = 0,
  2938. .avl = 0,
  2939. .unusable = 0,
  2940. };
  2941. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  2942. return 0;
  2943. }
  2944. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2945. int type_bits, int seg)
  2946. {
  2947. struct kvm_segment kvm_seg;
  2948. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  2949. return kvm_load_realmode_segment(vcpu, selector, seg);
  2950. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  2951. return 1;
  2952. kvm_seg.type |= type_bits;
  2953. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  2954. seg != VCPU_SREG_LDTR)
  2955. if (!kvm_seg.s)
  2956. kvm_seg.unusable = 1;
  2957. kvm_set_segment(vcpu, &kvm_seg, seg);
  2958. return 0;
  2959. }
  2960. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  2961. struct tss_segment_32 *tss)
  2962. {
  2963. tss->cr3 = vcpu->arch.cr3;
  2964. tss->eip = kvm_rip_read(vcpu);
  2965. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  2966. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2967. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2968. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2969. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2970. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2971. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2972. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2973. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2974. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2975. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2976. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2977. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2978. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  2979. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  2980. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2981. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2982. }
  2983. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  2984. struct tss_segment_32 *tss)
  2985. {
  2986. kvm_set_cr3(vcpu, tss->cr3);
  2987. kvm_rip_write(vcpu, tss->eip);
  2988. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  2989. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  2990. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  2991. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  2992. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  2993. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  2994. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  2995. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  2996. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  2997. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  2998. return 1;
  2999. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3000. return 1;
  3001. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3002. return 1;
  3003. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3004. return 1;
  3005. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3006. return 1;
  3007. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3008. return 1;
  3009. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3010. return 1;
  3011. return 0;
  3012. }
  3013. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3014. struct tss_segment_16 *tss)
  3015. {
  3016. tss->ip = kvm_rip_read(vcpu);
  3017. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3018. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3019. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3020. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3021. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3022. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3023. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3024. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3025. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3026. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3027. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3028. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3029. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3030. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3031. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3032. }
  3033. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3034. struct tss_segment_16 *tss)
  3035. {
  3036. kvm_rip_write(vcpu, tss->ip);
  3037. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3038. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3039. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3040. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3041. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3042. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3043. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3044. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3045. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3046. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3047. return 1;
  3048. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3049. return 1;
  3050. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3051. return 1;
  3052. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3053. return 1;
  3054. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3055. return 1;
  3056. return 0;
  3057. }
  3058. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3059. u32 old_tss_base,
  3060. struct desc_struct *nseg_desc)
  3061. {
  3062. struct tss_segment_16 tss_segment_16;
  3063. int ret = 0;
  3064. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3065. sizeof tss_segment_16))
  3066. goto out;
  3067. save_state_to_tss16(vcpu, &tss_segment_16);
  3068. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3069. sizeof tss_segment_16))
  3070. goto out;
  3071. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3072. &tss_segment_16, sizeof tss_segment_16))
  3073. goto out;
  3074. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3075. goto out;
  3076. ret = 1;
  3077. out:
  3078. return ret;
  3079. }
  3080. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3081. u32 old_tss_base,
  3082. struct desc_struct *nseg_desc)
  3083. {
  3084. struct tss_segment_32 tss_segment_32;
  3085. int ret = 0;
  3086. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3087. sizeof tss_segment_32))
  3088. goto out;
  3089. save_state_to_tss32(vcpu, &tss_segment_32);
  3090. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3091. sizeof tss_segment_32))
  3092. goto out;
  3093. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3094. &tss_segment_32, sizeof tss_segment_32))
  3095. goto out;
  3096. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3097. goto out;
  3098. ret = 1;
  3099. out:
  3100. return ret;
  3101. }
  3102. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3103. {
  3104. struct kvm_segment tr_seg;
  3105. struct desc_struct cseg_desc;
  3106. struct desc_struct nseg_desc;
  3107. int ret = 0;
  3108. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3109. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3110. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3111. /* FIXME: Handle errors. Failure to read either TSS or their
  3112. * descriptors should generate a pagefault.
  3113. */
  3114. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3115. goto out;
  3116. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3117. goto out;
  3118. if (reason != TASK_SWITCH_IRET) {
  3119. int cpl;
  3120. cpl = kvm_x86_ops->get_cpl(vcpu);
  3121. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3122. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3123. return 1;
  3124. }
  3125. }
  3126. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3127. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3128. return 1;
  3129. }
  3130. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3131. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3132. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3133. }
  3134. if (reason == TASK_SWITCH_IRET) {
  3135. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3136. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3137. }
  3138. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3139. if (nseg_desc.type & 8)
  3140. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3141. &nseg_desc);
  3142. else
  3143. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3144. &nseg_desc);
  3145. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3146. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3147. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3148. }
  3149. if (reason != TASK_SWITCH_IRET) {
  3150. nseg_desc.type |= (1 << 1);
  3151. save_guest_segment_descriptor(vcpu, tss_selector,
  3152. &nseg_desc);
  3153. }
  3154. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3155. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3156. tr_seg.type = 11;
  3157. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3158. out:
  3159. return ret;
  3160. }
  3161. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3162. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3163. struct kvm_sregs *sregs)
  3164. {
  3165. int mmu_reset_needed = 0;
  3166. int i, pending_vec, max_bits;
  3167. struct descriptor_table dt;
  3168. vcpu_load(vcpu);
  3169. dt.limit = sregs->idt.limit;
  3170. dt.base = sregs->idt.base;
  3171. kvm_x86_ops->set_idt(vcpu, &dt);
  3172. dt.limit = sregs->gdt.limit;
  3173. dt.base = sregs->gdt.base;
  3174. kvm_x86_ops->set_gdt(vcpu, &dt);
  3175. vcpu->arch.cr2 = sregs->cr2;
  3176. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3177. vcpu->arch.cr3 = sregs->cr3;
  3178. kvm_set_cr8(vcpu, sregs->cr8);
  3179. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3180. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3181. kvm_set_apic_base(vcpu, sregs->apic_base);
  3182. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3183. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3184. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3185. vcpu->arch.cr0 = sregs->cr0;
  3186. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3187. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3188. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3189. load_pdptrs(vcpu, vcpu->arch.cr3);
  3190. if (mmu_reset_needed)
  3191. kvm_mmu_reset_context(vcpu);
  3192. if (!irqchip_in_kernel(vcpu->kvm)) {
  3193. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3194. sizeof vcpu->arch.irq_pending);
  3195. vcpu->arch.irq_summary = 0;
  3196. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3197. if (vcpu->arch.irq_pending[i])
  3198. __set_bit(i, &vcpu->arch.irq_summary);
  3199. } else {
  3200. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3201. pending_vec = find_first_bit(
  3202. (const unsigned long *)sregs->interrupt_bitmap,
  3203. max_bits);
  3204. /* Only pending external irq is handled here */
  3205. if (pending_vec < max_bits) {
  3206. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3207. pr_debug("Set back pending irq %d\n",
  3208. pending_vec);
  3209. }
  3210. kvm_pic_clear_isr_ack(vcpu->kvm);
  3211. }
  3212. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3213. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3214. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3215. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3216. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3217. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3218. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3219. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3220. /* Older userspace won't unhalt the vcpu on reset. */
  3221. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3222. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3223. !(vcpu->arch.cr0 & X86_CR0_PE))
  3224. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3225. vcpu_put(vcpu);
  3226. return 0;
  3227. }
  3228. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3229. struct kvm_debug_guest *dbg)
  3230. {
  3231. int r;
  3232. vcpu_load(vcpu);
  3233. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3234. vcpu_put(vcpu);
  3235. return r;
  3236. }
  3237. /*
  3238. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3239. * we have asm/x86/processor.h
  3240. */
  3241. struct fxsave {
  3242. u16 cwd;
  3243. u16 swd;
  3244. u16 twd;
  3245. u16 fop;
  3246. u64 rip;
  3247. u64 rdp;
  3248. u32 mxcsr;
  3249. u32 mxcsr_mask;
  3250. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3251. #ifdef CONFIG_X86_64
  3252. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3253. #else
  3254. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3255. #endif
  3256. };
  3257. /*
  3258. * Translate a guest virtual address to a guest physical address.
  3259. */
  3260. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3261. struct kvm_translation *tr)
  3262. {
  3263. unsigned long vaddr = tr->linear_address;
  3264. gpa_t gpa;
  3265. vcpu_load(vcpu);
  3266. down_read(&vcpu->kvm->slots_lock);
  3267. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3268. up_read(&vcpu->kvm->slots_lock);
  3269. tr->physical_address = gpa;
  3270. tr->valid = gpa != UNMAPPED_GVA;
  3271. tr->writeable = 1;
  3272. tr->usermode = 0;
  3273. vcpu_put(vcpu);
  3274. return 0;
  3275. }
  3276. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3277. {
  3278. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3279. vcpu_load(vcpu);
  3280. memcpy(fpu->fpr, fxsave->st_space, 128);
  3281. fpu->fcw = fxsave->cwd;
  3282. fpu->fsw = fxsave->swd;
  3283. fpu->ftwx = fxsave->twd;
  3284. fpu->last_opcode = fxsave->fop;
  3285. fpu->last_ip = fxsave->rip;
  3286. fpu->last_dp = fxsave->rdp;
  3287. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3288. vcpu_put(vcpu);
  3289. return 0;
  3290. }
  3291. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3292. {
  3293. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3294. vcpu_load(vcpu);
  3295. memcpy(fxsave->st_space, fpu->fpr, 128);
  3296. fxsave->cwd = fpu->fcw;
  3297. fxsave->swd = fpu->fsw;
  3298. fxsave->twd = fpu->ftwx;
  3299. fxsave->fop = fpu->last_opcode;
  3300. fxsave->rip = fpu->last_ip;
  3301. fxsave->rdp = fpu->last_dp;
  3302. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3303. vcpu_put(vcpu);
  3304. return 0;
  3305. }
  3306. void fx_init(struct kvm_vcpu *vcpu)
  3307. {
  3308. unsigned after_mxcsr_mask;
  3309. /*
  3310. * Touch the fpu the first time in non atomic context as if
  3311. * this is the first fpu instruction the exception handler
  3312. * will fire before the instruction returns and it'll have to
  3313. * allocate ram with GFP_KERNEL.
  3314. */
  3315. if (!used_math())
  3316. kvm_fx_save(&vcpu->arch.host_fx_image);
  3317. /* Initialize guest FPU by resetting ours and saving into guest's */
  3318. preempt_disable();
  3319. kvm_fx_save(&vcpu->arch.host_fx_image);
  3320. kvm_fx_finit();
  3321. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3322. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3323. preempt_enable();
  3324. vcpu->arch.cr0 |= X86_CR0_ET;
  3325. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3326. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3327. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3328. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3329. }
  3330. EXPORT_SYMBOL_GPL(fx_init);
  3331. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3332. {
  3333. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3334. return;
  3335. vcpu->guest_fpu_loaded = 1;
  3336. kvm_fx_save(&vcpu->arch.host_fx_image);
  3337. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3338. }
  3339. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3340. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3341. {
  3342. if (!vcpu->guest_fpu_loaded)
  3343. return;
  3344. vcpu->guest_fpu_loaded = 0;
  3345. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3346. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3347. ++vcpu->stat.fpu_reload;
  3348. }
  3349. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3350. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3351. {
  3352. kvm_x86_ops->vcpu_free(vcpu);
  3353. }
  3354. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3355. unsigned int id)
  3356. {
  3357. return kvm_x86_ops->vcpu_create(kvm, id);
  3358. }
  3359. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3360. {
  3361. int r;
  3362. /* We do fxsave: this must be aligned. */
  3363. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3364. vcpu_load(vcpu);
  3365. r = kvm_arch_vcpu_reset(vcpu);
  3366. if (r == 0)
  3367. r = kvm_mmu_setup(vcpu);
  3368. vcpu_put(vcpu);
  3369. if (r < 0)
  3370. goto free_vcpu;
  3371. return 0;
  3372. free_vcpu:
  3373. kvm_x86_ops->vcpu_free(vcpu);
  3374. return r;
  3375. }
  3376. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3377. {
  3378. vcpu_load(vcpu);
  3379. kvm_mmu_unload(vcpu);
  3380. vcpu_put(vcpu);
  3381. kvm_x86_ops->vcpu_free(vcpu);
  3382. }
  3383. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3384. {
  3385. return kvm_x86_ops->vcpu_reset(vcpu);
  3386. }
  3387. void kvm_arch_hardware_enable(void *garbage)
  3388. {
  3389. kvm_x86_ops->hardware_enable(garbage);
  3390. }
  3391. void kvm_arch_hardware_disable(void *garbage)
  3392. {
  3393. kvm_x86_ops->hardware_disable(garbage);
  3394. }
  3395. int kvm_arch_hardware_setup(void)
  3396. {
  3397. return kvm_x86_ops->hardware_setup();
  3398. }
  3399. void kvm_arch_hardware_unsetup(void)
  3400. {
  3401. kvm_x86_ops->hardware_unsetup();
  3402. }
  3403. void kvm_arch_check_processor_compat(void *rtn)
  3404. {
  3405. kvm_x86_ops->check_processor_compatibility(rtn);
  3406. }
  3407. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3408. {
  3409. struct page *page;
  3410. struct kvm *kvm;
  3411. int r;
  3412. BUG_ON(vcpu->kvm == NULL);
  3413. kvm = vcpu->kvm;
  3414. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3415. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3416. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3417. else
  3418. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3419. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3420. if (!page) {
  3421. r = -ENOMEM;
  3422. goto fail;
  3423. }
  3424. vcpu->arch.pio_data = page_address(page);
  3425. r = kvm_mmu_create(vcpu);
  3426. if (r < 0)
  3427. goto fail_free_pio_data;
  3428. if (irqchip_in_kernel(kvm)) {
  3429. r = kvm_create_lapic(vcpu);
  3430. if (r < 0)
  3431. goto fail_mmu_destroy;
  3432. }
  3433. return 0;
  3434. fail_mmu_destroy:
  3435. kvm_mmu_destroy(vcpu);
  3436. fail_free_pio_data:
  3437. free_page((unsigned long)vcpu->arch.pio_data);
  3438. fail:
  3439. return r;
  3440. }
  3441. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3442. {
  3443. kvm_free_lapic(vcpu);
  3444. down_read(&vcpu->kvm->slots_lock);
  3445. kvm_mmu_destroy(vcpu);
  3446. up_read(&vcpu->kvm->slots_lock);
  3447. free_page((unsigned long)vcpu->arch.pio_data);
  3448. }
  3449. struct kvm *kvm_arch_create_vm(void)
  3450. {
  3451. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3452. if (!kvm)
  3453. return ERR_PTR(-ENOMEM);
  3454. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3455. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3456. return kvm;
  3457. }
  3458. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3459. {
  3460. vcpu_load(vcpu);
  3461. kvm_mmu_unload(vcpu);
  3462. vcpu_put(vcpu);
  3463. }
  3464. static void kvm_free_vcpus(struct kvm *kvm)
  3465. {
  3466. unsigned int i;
  3467. /*
  3468. * Unpin any mmu pages first.
  3469. */
  3470. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3471. if (kvm->vcpus[i])
  3472. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3473. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3474. if (kvm->vcpus[i]) {
  3475. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3476. kvm->vcpus[i] = NULL;
  3477. }
  3478. }
  3479. }
  3480. void kvm_arch_destroy_vm(struct kvm *kvm)
  3481. {
  3482. kvm_iommu_unmap_guest(kvm);
  3483. kvm_free_all_assigned_devices(kvm);
  3484. kvm_free_pit(kvm);
  3485. kfree(kvm->arch.vpic);
  3486. kfree(kvm->arch.vioapic);
  3487. kvm_free_vcpus(kvm);
  3488. kvm_free_physmem(kvm);
  3489. if (kvm->arch.apic_access_page)
  3490. put_page(kvm->arch.apic_access_page);
  3491. if (kvm->arch.ept_identity_pagetable)
  3492. put_page(kvm->arch.ept_identity_pagetable);
  3493. kfree(kvm);
  3494. }
  3495. int kvm_arch_set_memory_region(struct kvm *kvm,
  3496. struct kvm_userspace_memory_region *mem,
  3497. struct kvm_memory_slot old,
  3498. int user_alloc)
  3499. {
  3500. int npages = mem->memory_size >> PAGE_SHIFT;
  3501. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3502. /*To keep backward compatibility with older userspace,
  3503. *x86 needs to hanlde !user_alloc case.
  3504. */
  3505. if (!user_alloc) {
  3506. if (npages && !old.rmap) {
  3507. unsigned long userspace_addr;
  3508. down_write(&current->mm->mmap_sem);
  3509. userspace_addr = do_mmap(NULL, 0,
  3510. npages * PAGE_SIZE,
  3511. PROT_READ | PROT_WRITE,
  3512. MAP_PRIVATE | MAP_ANONYMOUS,
  3513. 0);
  3514. up_write(&current->mm->mmap_sem);
  3515. if (IS_ERR((void *)userspace_addr))
  3516. return PTR_ERR((void *)userspace_addr);
  3517. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3518. spin_lock(&kvm->mmu_lock);
  3519. memslot->userspace_addr = userspace_addr;
  3520. spin_unlock(&kvm->mmu_lock);
  3521. } else {
  3522. if (!old.user_alloc && old.rmap) {
  3523. int ret;
  3524. down_write(&current->mm->mmap_sem);
  3525. ret = do_munmap(current->mm, old.userspace_addr,
  3526. old.npages * PAGE_SIZE);
  3527. up_write(&current->mm->mmap_sem);
  3528. if (ret < 0)
  3529. printk(KERN_WARNING
  3530. "kvm_vm_ioctl_set_memory_region: "
  3531. "failed to munmap memory\n");
  3532. }
  3533. }
  3534. }
  3535. if (!kvm->arch.n_requested_mmu_pages) {
  3536. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3537. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3538. }
  3539. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3540. kvm_flush_remote_tlbs(kvm);
  3541. return 0;
  3542. }
  3543. void kvm_arch_flush_shadow(struct kvm *kvm)
  3544. {
  3545. kvm_mmu_zap_all(kvm);
  3546. }
  3547. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3548. {
  3549. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3550. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
  3551. }
  3552. static void vcpu_kick_intr(void *info)
  3553. {
  3554. #ifdef DEBUG
  3555. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3556. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3557. #endif
  3558. }
  3559. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3560. {
  3561. int ipi_pcpu = vcpu->cpu;
  3562. int cpu = get_cpu();
  3563. if (waitqueue_active(&vcpu->wq)) {
  3564. wake_up_interruptible(&vcpu->wq);
  3565. ++vcpu->stat.halt_wakeup;
  3566. }
  3567. /*
  3568. * We may be called synchronously with irqs disabled in guest mode,
  3569. * So need not to call smp_call_function_single() in that case.
  3570. */
  3571. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3572. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3573. put_cpu();
  3574. }