process_32.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. /*
  2. * arch/sh/kernel/process.c
  3. *
  4. * This file handles the architecture-dependent parts of process handling..
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. *
  8. * SuperH version: Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  9. * Copyright (C) 2006 Lineo Solutions Inc. support SH4A UBC
  10. * Copyright (C) 2002 - 2007 Paul Mundt
  11. */
  12. #include <linux/module.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/pm.h>
  16. #include <linux/kallsyms.h>
  17. #include <linux/kexec.h>
  18. #include <linux/kdebug.h>
  19. #include <linux/tick.h>
  20. #include <linux/reboot.h>
  21. #include <linux/fs.h>
  22. #include <linux/preempt.h>
  23. #include <asm/uaccess.h>
  24. #include <asm/mmu_context.h>
  25. #include <asm/pgalloc.h>
  26. #include <asm/system.h>
  27. #include <asm/ubc.h>
  28. #include <asm/fpu.h>
  29. static int hlt_counter;
  30. int ubc_usercnt = 0;
  31. void (*pm_idle)(void);
  32. void (*pm_power_off)(void);
  33. EXPORT_SYMBOL(pm_power_off);
  34. static int __init nohlt_setup(char *__unused)
  35. {
  36. hlt_counter = 1;
  37. return 1;
  38. }
  39. __setup("nohlt", nohlt_setup);
  40. static int __init hlt_setup(char *__unused)
  41. {
  42. hlt_counter = 0;
  43. return 1;
  44. }
  45. __setup("hlt", hlt_setup);
  46. static void default_idle(void)
  47. {
  48. if (!hlt_counter) {
  49. clear_thread_flag(TIF_POLLING_NRFLAG);
  50. smp_mb__after_clear_bit();
  51. set_bl_bit();
  52. while (!need_resched())
  53. cpu_sleep();
  54. clear_bl_bit();
  55. set_thread_flag(TIF_POLLING_NRFLAG);
  56. } else
  57. while (!need_resched())
  58. cpu_relax();
  59. }
  60. void cpu_idle(void)
  61. {
  62. set_thread_flag(TIF_POLLING_NRFLAG);
  63. /* endless idle loop with no priority at all */
  64. while (1) {
  65. void (*idle)(void) = pm_idle;
  66. if (!idle)
  67. idle = default_idle;
  68. tick_nohz_stop_sched_tick(1);
  69. while (!need_resched())
  70. idle();
  71. tick_nohz_restart_sched_tick();
  72. preempt_enable_no_resched();
  73. schedule();
  74. preempt_disable();
  75. check_pgt_cache();
  76. }
  77. }
  78. void machine_restart(char * __unused)
  79. {
  80. /* SR.BL=1 and invoke address error to let CPU reset (manual reset) */
  81. asm volatile("ldc %0, sr\n\t"
  82. "mov.l @%1, %0" : : "r" (0x10000000), "r" (0x80000001));
  83. }
  84. void machine_halt(void)
  85. {
  86. local_irq_disable();
  87. while (1)
  88. cpu_sleep();
  89. }
  90. void machine_power_off(void)
  91. {
  92. if (pm_power_off)
  93. pm_power_off();
  94. }
  95. void show_regs(struct pt_regs * regs)
  96. {
  97. printk("\n");
  98. printk("Pid : %d, Comm: %20s\n", task_pid_nr(current), current->comm);
  99. print_symbol("PC is at %s\n", instruction_pointer(regs));
  100. printk("PC : %08lx SP : %08lx SR : %08lx ",
  101. regs->pc, regs->regs[15], regs->sr);
  102. #ifdef CONFIG_MMU
  103. printk("TEA : %08x ", ctrl_inl(MMU_TEA));
  104. #else
  105. printk(" ");
  106. #endif
  107. printk("%s\n", print_tainted());
  108. printk("R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
  109. regs->regs[0],regs->regs[1],
  110. regs->regs[2],regs->regs[3]);
  111. printk("R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
  112. regs->regs[4],regs->regs[5],
  113. regs->regs[6],regs->regs[7]);
  114. printk("R8 : %08lx R9 : %08lx R10 : %08lx R11 : %08lx\n",
  115. regs->regs[8],regs->regs[9],
  116. regs->regs[10],regs->regs[11]);
  117. printk("R12 : %08lx R13 : %08lx R14 : %08lx\n",
  118. regs->regs[12],regs->regs[13],
  119. regs->regs[14]);
  120. printk("MACH: %08lx MACL: %08lx GBR : %08lx PR : %08lx\n",
  121. regs->mach, regs->macl, regs->gbr, regs->pr);
  122. show_trace(NULL, (unsigned long *)regs->regs[15], regs);
  123. }
  124. /*
  125. * Create a kernel thread
  126. */
  127. /*
  128. * This is the mechanism for creating a new kernel thread.
  129. *
  130. */
  131. extern void kernel_thread_helper(void);
  132. __asm__(".align 5\n"
  133. "kernel_thread_helper:\n\t"
  134. "jsr @r5\n\t"
  135. " nop\n\t"
  136. "mov.l 1f, r1\n\t"
  137. "jsr @r1\n\t"
  138. " mov r0, r4\n\t"
  139. ".align 2\n\t"
  140. "1:.long do_exit");
  141. /* Don't use this in BL=1(cli). Or else, CPU resets! */
  142. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  143. {
  144. struct pt_regs regs;
  145. memset(&regs, 0, sizeof(regs));
  146. regs.regs[4] = (unsigned long)arg;
  147. regs.regs[5] = (unsigned long)fn;
  148. regs.pc = (unsigned long)kernel_thread_helper;
  149. regs.sr = (1 << 30);
  150. /* Ok, create the new process.. */
  151. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  152. &regs, 0, NULL, NULL);
  153. }
  154. /*
  155. * Free current thread data structures etc..
  156. */
  157. void exit_thread(void)
  158. {
  159. if (current->thread.ubc_pc) {
  160. current->thread.ubc_pc = 0;
  161. ubc_usercnt -= 1;
  162. }
  163. }
  164. void flush_thread(void)
  165. {
  166. #if defined(CONFIG_SH_FPU)
  167. struct task_struct *tsk = current;
  168. /* Forget lazy FPU state */
  169. clear_fpu(tsk, task_pt_regs(tsk));
  170. clear_used_math();
  171. #endif
  172. }
  173. void release_thread(struct task_struct *dead_task)
  174. {
  175. /* do nothing */
  176. }
  177. /* Fill in the fpu structure for a core dump.. */
  178. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  179. {
  180. int fpvalid = 0;
  181. #if defined(CONFIG_SH_FPU)
  182. struct task_struct *tsk = current;
  183. fpvalid = !!tsk_used_math(tsk);
  184. if (fpvalid) {
  185. unlazy_fpu(tsk, regs);
  186. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  187. }
  188. #endif
  189. return fpvalid;
  190. }
  191. asmlinkage void ret_from_fork(void);
  192. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  193. unsigned long unused,
  194. struct task_struct *p, struct pt_regs *regs)
  195. {
  196. struct thread_info *ti = task_thread_info(p);
  197. struct pt_regs *childregs;
  198. #if defined(CONFIG_SH_FPU)
  199. struct task_struct *tsk = current;
  200. unlazy_fpu(tsk, regs);
  201. p->thread.fpu = tsk->thread.fpu;
  202. copy_to_stopped_child_used_math(p);
  203. #endif
  204. childregs = task_pt_regs(p);
  205. *childregs = *regs;
  206. if (user_mode(regs)) {
  207. childregs->regs[15] = usp;
  208. ti->addr_limit = USER_DS;
  209. } else {
  210. childregs->regs[15] = (unsigned long)childregs;
  211. ti->addr_limit = KERNEL_DS;
  212. }
  213. if (clone_flags & CLONE_SETTLS)
  214. childregs->gbr = childregs->regs[0];
  215. childregs->regs[0] = 0; /* Set return value for child */
  216. p->thread.sp = (unsigned long) childregs;
  217. p->thread.pc = (unsigned long) ret_from_fork;
  218. p->thread.ubc_pc = 0;
  219. return 0;
  220. }
  221. /* Tracing by user break controller. */
  222. static void ubc_set_tracing(int asid, unsigned long pc)
  223. {
  224. #if defined(CONFIG_CPU_SH4A)
  225. unsigned long val;
  226. val = (UBC_CBR_ID_INST | UBC_CBR_RW_READ | UBC_CBR_CE);
  227. val |= (UBC_CBR_AIE | UBC_CBR_AIV_SET(asid));
  228. ctrl_outl(val, UBC_CBR0);
  229. ctrl_outl(pc, UBC_CAR0);
  230. ctrl_outl(0x0, UBC_CAMR0);
  231. ctrl_outl(0x0, UBC_CBCR);
  232. val = (UBC_CRR_RES | UBC_CRR_PCB | UBC_CRR_BIE);
  233. ctrl_outl(val, UBC_CRR0);
  234. /* Read UBC register that we wrote last, for checking update */
  235. val = ctrl_inl(UBC_CRR0);
  236. #else /* CONFIG_CPU_SH4A */
  237. ctrl_outl(pc, UBC_BARA);
  238. #ifdef CONFIG_MMU
  239. ctrl_outb(asid, UBC_BASRA);
  240. #endif
  241. ctrl_outl(0, UBC_BAMRA);
  242. if (current_cpu_data.type == CPU_SH7729 ||
  243. current_cpu_data.type == CPU_SH7710 ||
  244. current_cpu_data.type == CPU_SH7712) {
  245. ctrl_outw(BBR_INST | BBR_READ | BBR_CPU, UBC_BBRA);
  246. ctrl_outl(BRCR_PCBA | BRCR_PCTE, UBC_BRCR);
  247. } else {
  248. ctrl_outw(BBR_INST | BBR_READ, UBC_BBRA);
  249. ctrl_outw(BRCR_PCBA, UBC_BRCR);
  250. }
  251. #endif /* CONFIG_CPU_SH4A */
  252. }
  253. /*
  254. * switch_to(x,y) should switch tasks from x to y.
  255. *
  256. */
  257. struct task_struct *__switch_to(struct task_struct *prev,
  258. struct task_struct *next)
  259. {
  260. #if defined(CONFIG_SH_FPU)
  261. unlazy_fpu(prev, task_pt_regs(prev));
  262. #endif
  263. #ifdef CONFIG_MMU
  264. /*
  265. * Restore the kernel mode register
  266. * k7 (r7_bank1)
  267. */
  268. asm volatile("ldc %0, r7_bank"
  269. : /* no output */
  270. : "r" (task_thread_info(next)));
  271. #endif
  272. /* If no tasks are using the UBC, we're done */
  273. if (ubc_usercnt == 0)
  274. /* If no tasks are using the UBC, we're done */;
  275. else if (next->thread.ubc_pc && next->mm) {
  276. int asid = 0;
  277. #ifdef CONFIG_MMU
  278. asid |= cpu_asid(smp_processor_id(), next->mm);
  279. #endif
  280. ubc_set_tracing(asid, next->thread.ubc_pc);
  281. } else {
  282. #if defined(CONFIG_CPU_SH4A)
  283. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  284. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  285. #else
  286. ctrl_outw(0, UBC_BBRA);
  287. ctrl_outw(0, UBC_BBRB);
  288. #endif
  289. }
  290. return prev;
  291. }
  292. asmlinkage int sys_fork(unsigned long r4, unsigned long r5,
  293. unsigned long r6, unsigned long r7,
  294. struct pt_regs __regs)
  295. {
  296. #ifdef CONFIG_MMU
  297. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  298. return do_fork(SIGCHLD, regs->regs[15], regs, 0, NULL, NULL);
  299. #else
  300. /* fork almost works, enough to trick you into looking elsewhere :-( */
  301. return -EINVAL;
  302. #endif
  303. }
  304. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  305. unsigned long parent_tidptr,
  306. unsigned long child_tidptr,
  307. struct pt_regs __regs)
  308. {
  309. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  310. if (!newsp)
  311. newsp = regs->regs[15];
  312. return do_fork(clone_flags, newsp, regs, 0,
  313. (int __user *)parent_tidptr,
  314. (int __user *)child_tidptr);
  315. }
  316. /*
  317. * This is trivial, and on the face of it looks like it
  318. * could equally well be done in user mode.
  319. *
  320. * Not so, for quite unobvious reasons - register pressure.
  321. * In user mode vfork() cannot have a stack frame, and if
  322. * done by calling the "clone()" system call directly, you
  323. * do not have enough call-clobbered registers to hold all
  324. * the information you need.
  325. */
  326. asmlinkage int sys_vfork(unsigned long r4, unsigned long r5,
  327. unsigned long r6, unsigned long r7,
  328. struct pt_regs __regs)
  329. {
  330. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  331. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->regs[15], regs,
  332. 0, NULL, NULL);
  333. }
  334. /*
  335. * sys_execve() executes a new program.
  336. */
  337. asmlinkage int sys_execve(char __user *ufilename, char __user * __user *uargv,
  338. char __user * __user *uenvp, unsigned long r7,
  339. struct pt_regs __regs)
  340. {
  341. struct pt_regs *regs = RELOC_HIDE(&__regs, 0);
  342. int error;
  343. char *filename;
  344. filename = getname(ufilename);
  345. error = PTR_ERR(filename);
  346. if (IS_ERR(filename))
  347. goto out;
  348. error = do_execve(filename, uargv, uenvp, regs);
  349. if (error == 0) {
  350. task_lock(current);
  351. current->ptrace &= ~PT_DTRACE;
  352. task_unlock(current);
  353. }
  354. putname(filename);
  355. out:
  356. return error;
  357. }
  358. unsigned long get_wchan(struct task_struct *p)
  359. {
  360. unsigned long pc;
  361. if (!p || p == current || p->state == TASK_RUNNING)
  362. return 0;
  363. /*
  364. * The same comment as on the Alpha applies here, too ...
  365. */
  366. pc = thread_saved_pc(p);
  367. #ifdef CONFIG_FRAME_POINTER
  368. if (in_sched_functions(pc)) {
  369. unsigned long schedule_frame = (unsigned long)p->thread.sp;
  370. return ((unsigned long *)schedule_frame)[21];
  371. }
  372. #endif
  373. return pc;
  374. }
  375. asmlinkage void break_point_trap(void)
  376. {
  377. /* Clear tracing. */
  378. #if defined(CONFIG_CPU_SH4A)
  379. ctrl_outl(UBC_CBR_INIT, UBC_CBR0);
  380. ctrl_outl(UBC_CRR_INIT, UBC_CRR0);
  381. #else
  382. ctrl_outw(0, UBC_BBRA);
  383. ctrl_outw(0, UBC_BBRB);
  384. #endif
  385. current->thread.ubc_pc = 0;
  386. ubc_usercnt -= 1;
  387. force_sig(SIGTRAP, current);
  388. }