kvm-ia64.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/intel-iommu.h>
  34. #include <asm/pgtable.h>
  35. #include <asm/gcc_intrin.h>
  36. #include <asm/pal.h>
  37. #include <asm/cacheflush.h>
  38. #include <asm/div64.h>
  39. #include <asm/tlb.h>
  40. #include <asm/elf.h>
  41. #include "misc.h"
  42. #include "vti.h"
  43. #include "iodev.h"
  44. #include "ioapic.h"
  45. #include "lapic.h"
  46. #include "irq.h"
  47. static unsigned long kvm_vmm_base;
  48. static unsigned long kvm_vsa_base;
  49. static unsigned long kvm_vm_buffer;
  50. static unsigned long kvm_vm_buffer_size;
  51. unsigned long kvm_vmm_gp;
  52. static long vp_env_info;
  53. static struct kvm_vmm_info *kvm_vmm_info;
  54. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  55. struct kvm_stats_debugfs_item debugfs_entries[] = {
  56. { NULL }
  57. };
  58. static void kvm_flush_icache(unsigned long start, unsigned long len)
  59. {
  60. int l;
  61. for (l = 0; l < (len + 32); l += 32)
  62. ia64_fc(start + l);
  63. ia64_sync_i();
  64. ia64_srlz_i();
  65. }
  66. static void kvm_flush_tlb_all(void)
  67. {
  68. unsigned long i, j, count0, count1, stride0, stride1, addr;
  69. long flags;
  70. addr = local_cpu_data->ptce_base;
  71. count0 = local_cpu_data->ptce_count[0];
  72. count1 = local_cpu_data->ptce_count[1];
  73. stride0 = local_cpu_data->ptce_stride[0];
  74. stride1 = local_cpu_data->ptce_stride[1];
  75. local_irq_save(flags);
  76. for (i = 0; i < count0; ++i) {
  77. for (j = 0; j < count1; ++j) {
  78. ia64_ptce(addr);
  79. addr += stride1;
  80. }
  81. addr += stride0;
  82. }
  83. local_irq_restore(flags);
  84. ia64_srlz_i(); /* srlz.i implies srlz.d */
  85. }
  86. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  87. {
  88. struct ia64_pal_retval iprv;
  89. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  90. (u64)opt_handler);
  91. return iprv.status;
  92. }
  93. static DEFINE_SPINLOCK(vp_lock);
  94. void kvm_arch_hardware_enable(void *garbage)
  95. {
  96. long status;
  97. long tmp_base;
  98. unsigned long pte;
  99. unsigned long saved_psr;
  100. int slot;
  101. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  102. PAGE_KERNEL));
  103. local_irq_save(saved_psr);
  104. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  105. local_irq_restore(saved_psr);
  106. if (slot < 0)
  107. return;
  108. spin_lock(&vp_lock);
  109. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  110. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  111. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  112. if (status != 0) {
  113. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  114. return ;
  115. }
  116. if (!kvm_vsa_base) {
  117. kvm_vsa_base = tmp_base;
  118. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  119. }
  120. spin_unlock(&vp_lock);
  121. ia64_ptr_entry(0x3, slot);
  122. }
  123. void kvm_arch_hardware_disable(void *garbage)
  124. {
  125. long status;
  126. int slot;
  127. unsigned long pte;
  128. unsigned long saved_psr;
  129. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  130. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  131. PAGE_KERNEL));
  132. local_irq_save(saved_psr);
  133. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  134. local_irq_restore(saved_psr);
  135. if (slot < 0)
  136. return;
  137. status = ia64_pal_vp_exit_env(host_iva);
  138. if (status)
  139. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  140. status);
  141. ia64_ptr_entry(0x3, slot);
  142. }
  143. void kvm_arch_check_processor_compat(void *rtn)
  144. {
  145. *(int *)rtn = 0;
  146. }
  147. int kvm_dev_ioctl_check_extension(long ext)
  148. {
  149. int r;
  150. switch (ext) {
  151. case KVM_CAP_IRQCHIP:
  152. case KVM_CAP_USER_MEMORY:
  153. case KVM_CAP_MP_STATE:
  154. r = 1;
  155. break;
  156. case KVM_CAP_COALESCED_MMIO:
  157. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  158. break;
  159. case KVM_CAP_IOMMU:
  160. r = intel_iommu_found();
  161. break;
  162. default:
  163. r = 0;
  164. }
  165. return r;
  166. }
  167. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  168. gpa_t addr, int len, int is_write)
  169. {
  170. struct kvm_io_device *dev;
  171. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
  172. return dev;
  173. }
  174. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  175. {
  176. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  177. kvm_run->hw.hardware_exit_reason = 1;
  178. return 0;
  179. }
  180. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  181. {
  182. struct kvm_mmio_req *p;
  183. struct kvm_io_device *mmio_dev;
  184. p = kvm_get_vcpu_ioreq(vcpu);
  185. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  186. goto mmio;
  187. vcpu->mmio_needed = 1;
  188. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  189. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  190. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  191. if (vcpu->mmio_is_write)
  192. memcpy(vcpu->mmio_data, &p->data, p->size);
  193. memcpy(kvm_run->mmio.data, &p->data, p->size);
  194. kvm_run->exit_reason = KVM_EXIT_MMIO;
  195. return 0;
  196. mmio:
  197. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
  198. if (mmio_dev) {
  199. if (!p->dir)
  200. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  201. &p->data);
  202. else
  203. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  204. &p->data);
  205. } else
  206. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  207. p->state = STATE_IORESP_READY;
  208. return 1;
  209. }
  210. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  211. {
  212. struct exit_ctl_data *p;
  213. p = kvm_get_exit_data(vcpu);
  214. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  215. return kvm_pal_emul(vcpu, kvm_run);
  216. else {
  217. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  218. kvm_run->hw.hardware_exit_reason = 2;
  219. return 0;
  220. }
  221. }
  222. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  223. {
  224. struct exit_ctl_data *p;
  225. p = kvm_get_exit_data(vcpu);
  226. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  227. kvm_sal_emul(vcpu);
  228. return 1;
  229. } else {
  230. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  231. kvm_run->hw.hardware_exit_reason = 3;
  232. return 0;
  233. }
  234. }
  235. /*
  236. * offset: address offset to IPI space.
  237. * value: deliver value.
  238. */
  239. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  240. uint64_t vector)
  241. {
  242. switch (dm) {
  243. case SAPIC_FIXED:
  244. kvm_apic_set_irq(vcpu, vector, 0);
  245. break;
  246. case SAPIC_NMI:
  247. kvm_apic_set_irq(vcpu, 2, 0);
  248. break;
  249. case SAPIC_EXTINT:
  250. kvm_apic_set_irq(vcpu, 0, 0);
  251. break;
  252. case SAPIC_INIT:
  253. case SAPIC_PMI:
  254. default:
  255. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  256. break;
  257. }
  258. }
  259. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  260. unsigned long eid)
  261. {
  262. union ia64_lid lid;
  263. int i;
  264. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  265. if (kvm->vcpus[i]) {
  266. lid.val = VCPU_LID(kvm->vcpus[i]);
  267. if (lid.id == id && lid.eid == eid)
  268. return kvm->vcpus[i];
  269. }
  270. }
  271. return NULL;
  272. }
  273. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  274. {
  275. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  276. struct kvm_vcpu *target_vcpu;
  277. struct kvm_pt_regs *regs;
  278. union ia64_ipi_a addr = p->u.ipi_data.addr;
  279. union ia64_ipi_d data = p->u.ipi_data.data;
  280. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  281. if (!target_vcpu)
  282. return handle_vm_error(vcpu, kvm_run);
  283. if (!target_vcpu->arch.launched) {
  284. regs = vcpu_regs(target_vcpu);
  285. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  286. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  287. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  288. if (waitqueue_active(&target_vcpu->wq))
  289. wake_up_interruptible(&target_vcpu->wq);
  290. } else {
  291. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  292. if (target_vcpu != vcpu)
  293. kvm_vcpu_kick(target_vcpu);
  294. }
  295. return 1;
  296. }
  297. struct call_data {
  298. struct kvm_ptc_g ptc_g_data;
  299. struct kvm_vcpu *vcpu;
  300. };
  301. static void vcpu_global_purge(void *info)
  302. {
  303. struct call_data *p = (struct call_data *)info;
  304. struct kvm_vcpu *vcpu = p->vcpu;
  305. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  306. return;
  307. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  308. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  309. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  310. p->ptc_g_data;
  311. } else {
  312. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  313. vcpu->arch.ptc_g_count = 0;
  314. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  315. }
  316. }
  317. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  318. {
  319. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  320. struct kvm *kvm = vcpu->kvm;
  321. struct call_data call_data;
  322. int i;
  323. call_data.ptc_g_data = p->u.ptc_g_data;
  324. for (i = 0; i < KVM_MAX_VCPUS; i++) {
  325. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  326. KVM_MP_STATE_UNINITIALIZED ||
  327. vcpu == kvm->vcpus[i])
  328. continue;
  329. if (waitqueue_active(&kvm->vcpus[i]->wq))
  330. wake_up_interruptible(&kvm->vcpus[i]->wq);
  331. if (kvm->vcpus[i]->cpu != -1) {
  332. call_data.vcpu = kvm->vcpus[i];
  333. smp_call_function_single(kvm->vcpus[i]->cpu,
  334. vcpu_global_purge, &call_data, 1);
  335. } else
  336. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  337. }
  338. return 1;
  339. }
  340. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  341. {
  342. return 1;
  343. }
  344. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  345. {
  346. ktime_t kt;
  347. long itc_diff;
  348. unsigned long vcpu_now_itc;
  349. unsigned long expires;
  350. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  351. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  352. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  353. vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
  354. if (time_after(vcpu_now_itc, vpd->itm)) {
  355. vcpu->arch.timer_check = 1;
  356. return 1;
  357. }
  358. itc_diff = vpd->itm - vcpu_now_itc;
  359. if (itc_diff < 0)
  360. itc_diff = -itc_diff;
  361. expires = div64_u64(itc_diff, cyc_per_usec);
  362. kt = ktime_set(0, 1000 * expires);
  363. vcpu->arch.ht_active = 1;
  364. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  365. if (irqchip_in_kernel(vcpu->kvm)) {
  366. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  367. kvm_vcpu_block(vcpu);
  368. hrtimer_cancel(p_ht);
  369. vcpu->arch.ht_active = 0;
  370. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  371. return -EINTR;
  372. return 1;
  373. } else {
  374. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  375. return 0;
  376. }
  377. }
  378. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  379. struct kvm_run *kvm_run)
  380. {
  381. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  382. return 0;
  383. }
  384. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  385. struct kvm_run *kvm_run)
  386. {
  387. return 1;
  388. }
  389. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  390. struct kvm_run *kvm_run) = {
  391. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  392. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  393. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  394. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  395. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  396. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  397. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  398. [EXIT_REASON_IPI] = handle_ipi,
  399. [EXIT_REASON_PTC_G] = handle_global_purge,
  400. };
  401. static const int kvm_vti_max_exit_handlers =
  402. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  403. static void kvm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  404. {
  405. }
  406. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  407. {
  408. struct exit_ctl_data *p_exit_data;
  409. p_exit_data = kvm_get_exit_data(vcpu);
  410. return p_exit_data->exit_reason;
  411. }
  412. /*
  413. * The guest has exited. See if we can fix it or if we need userspace
  414. * assistance.
  415. */
  416. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  417. {
  418. u32 exit_reason = kvm_get_exit_reason(vcpu);
  419. vcpu->arch.last_exit = exit_reason;
  420. if (exit_reason < kvm_vti_max_exit_handlers
  421. && kvm_vti_exit_handlers[exit_reason])
  422. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  423. else {
  424. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  425. kvm_run->hw.hardware_exit_reason = exit_reason;
  426. }
  427. return 0;
  428. }
  429. static inline void vti_set_rr6(unsigned long rr6)
  430. {
  431. ia64_set_rr(RR6, rr6);
  432. ia64_srlz_i();
  433. }
  434. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  435. {
  436. unsigned long pte;
  437. struct kvm *kvm = vcpu->kvm;
  438. int r;
  439. /*Insert a pair of tr to map vmm*/
  440. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  441. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  442. if (r < 0)
  443. goto out;
  444. vcpu->arch.vmm_tr_slot = r;
  445. /*Insert a pairt of tr to map data of vm*/
  446. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  447. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  448. pte, KVM_VM_DATA_SHIFT);
  449. if (r < 0)
  450. goto out;
  451. vcpu->arch.vm_tr_slot = r;
  452. r = 0;
  453. out:
  454. return r;
  455. }
  456. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  457. {
  458. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  459. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  460. }
  461. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  462. {
  463. int cpu = smp_processor_id();
  464. if (vcpu->arch.last_run_cpu != cpu ||
  465. per_cpu(last_vcpu, cpu) != vcpu) {
  466. per_cpu(last_vcpu, cpu) = vcpu;
  467. vcpu->arch.last_run_cpu = cpu;
  468. kvm_flush_tlb_all();
  469. }
  470. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  471. vti_set_rr6(vcpu->arch.vmm_rr);
  472. return kvm_insert_vmm_mapping(vcpu);
  473. }
  474. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  475. {
  476. kvm_purge_vmm_mapping(vcpu);
  477. vti_set_rr6(vcpu->arch.host_rr6);
  478. }
  479. static int vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  480. {
  481. union context *host_ctx, *guest_ctx;
  482. int r;
  483. /*Get host and guest context with guest address space.*/
  484. host_ctx = kvm_get_host_context(vcpu);
  485. guest_ctx = kvm_get_guest_context(vcpu);
  486. r = kvm_vcpu_pre_transition(vcpu);
  487. if (r < 0)
  488. goto out;
  489. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  490. kvm_vcpu_post_transition(vcpu);
  491. r = 0;
  492. out:
  493. return r;
  494. }
  495. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  496. {
  497. int r;
  498. again:
  499. preempt_disable();
  500. kvm_prepare_guest_switch(vcpu);
  501. local_irq_disable();
  502. if (signal_pending(current)) {
  503. local_irq_enable();
  504. preempt_enable();
  505. r = -EINTR;
  506. kvm_run->exit_reason = KVM_EXIT_INTR;
  507. goto out;
  508. }
  509. vcpu->guest_mode = 1;
  510. kvm_guest_enter();
  511. r = vti_vcpu_run(vcpu, kvm_run);
  512. if (r < 0) {
  513. local_irq_enable();
  514. preempt_enable();
  515. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  516. goto out;
  517. }
  518. vcpu->arch.launched = 1;
  519. vcpu->guest_mode = 0;
  520. local_irq_enable();
  521. /*
  522. * We must have an instruction between local_irq_enable() and
  523. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  524. * the interrupt shadow. The stat.exits increment will do nicely.
  525. * But we need to prevent reordering, hence this barrier():
  526. */
  527. barrier();
  528. kvm_guest_exit();
  529. preempt_enable();
  530. r = kvm_handle_exit(kvm_run, vcpu);
  531. if (r > 0) {
  532. if (!need_resched())
  533. goto again;
  534. }
  535. out:
  536. if (r > 0) {
  537. kvm_resched(vcpu);
  538. goto again;
  539. }
  540. return r;
  541. }
  542. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  543. {
  544. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  545. if (!vcpu->mmio_is_write)
  546. memcpy(&p->data, vcpu->mmio_data, 8);
  547. p->state = STATE_IORESP_READY;
  548. }
  549. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  550. {
  551. int r;
  552. sigset_t sigsaved;
  553. vcpu_load(vcpu);
  554. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  555. kvm_vcpu_block(vcpu);
  556. vcpu_put(vcpu);
  557. return -EAGAIN;
  558. }
  559. if (vcpu->sigset_active)
  560. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  561. if (vcpu->mmio_needed) {
  562. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  563. kvm_set_mmio_data(vcpu);
  564. vcpu->mmio_read_completed = 1;
  565. vcpu->mmio_needed = 0;
  566. }
  567. r = __vcpu_run(vcpu, kvm_run);
  568. if (vcpu->sigset_active)
  569. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  570. vcpu_put(vcpu);
  571. return r;
  572. }
  573. /*
  574. * Allocate 16M memory for every vm to hold its specific data.
  575. * Its memory map is defined in kvm_host.h.
  576. */
  577. static struct kvm *kvm_alloc_kvm(void)
  578. {
  579. struct kvm *kvm;
  580. uint64_t vm_base;
  581. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  582. if (!vm_base)
  583. return ERR_PTR(-ENOMEM);
  584. printk(KERN_DEBUG"kvm: VM data's base Address:0x%lx\n", vm_base);
  585. /* Zero all pages before use! */
  586. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  587. kvm = (struct kvm *)(vm_base + KVM_VM_OFS);
  588. kvm->arch.vm_base = vm_base;
  589. return kvm;
  590. }
  591. struct kvm_io_range {
  592. unsigned long start;
  593. unsigned long size;
  594. unsigned long type;
  595. };
  596. static const struct kvm_io_range io_ranges[] = {
  597. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  598. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  599. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  600. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  601. {PIB_START, PIB_SIZE, GPFN_PIB},
  602. };
  603. static void kvm_build_io_pmt(struct kvm *kvm)
  604. {
  605. unsigned long i, j;
  606. /* Mark I/O ranges */
  607. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  608. i++) {
  609. for (j = io_ranges[i].start;
  610. j < io_ranges[i].start + io_ranges[i].size;
  611. j += PAGE_SIZE)
  612. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  613. io_ranges[i].type, 0);
  614. }
  615. }
  616. /*Use unused rids to virtualize guest rid.*/
  617. #define GUEST_PHYSICAL_RR0 0x1739
  618. #define GUEST_PHYSICAL_RR4 0x2739
  619. #define VMM_INIT_RR 0x1660
  620. static void kvm_init_vm(struct kvm *kvm)
  621. {
  622. long vm_base;
  623. BUG_ON(!kvm);
  624. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  625. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  626. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  627. vm_base = kvm->arch.vm_base;
  628. if (vm_base) {
  629. kvm->arch.vhpt_base = vm_base + KVM_VHPT_OFS;
  630. kvm->arch.vtlb_base = vm_base + KVM_VTLB_OFS;
  631. kvm->arch.vpd_base = vm_base + KVM_VPD_OFS;
  632. }
  633. /*
  634. *Fill P2M entries for MMIO/IO ranges
  635. */
  636. kvm_build_io_pmt(kvm);
  637. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  638. }
  639. struct kvm *kvm_arch_create_vm(void)
  640. {
  641. struct kvm *kvm = kvm_alloc_kvm();
  642. if (IS_ERR(kvm))
  643. return ERR_PTR(-ENOMEM);
  644. kvm_init_vm(kvm);
  645. return kvm;
  646. }
  647. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  648. struct kvm_irqchip *chip)
  649. {
  650. int r;
  651. r = 0;
  652. switch (chip->chip_id) {
  653. case KVM_IRQCHIP_IOAPIC:
  654. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  655. sizeof(struct kvm_ioapic_state));
  656. break;
  657. default:
  658. r = -EINVAL;
  659. break;
  660. }
  661. return r;
  662. }
  663. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  664. {
  665. int r;
  666. r = 0;
  667. switch (chip->chip_id) {
  668. case KVM_IRQCHIP_IOAPIC:
  669. memcpy(ioapic_irqchip(kvm),
  670. &chip->chip.ioapic,
  671. sizeof(struct kvm_ioapic_state));
  672. break;
  673. default:
  674. r = -EINVAL;
  675. break;
  676. }
  677. return r;
  678. }
  679. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  680. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  681. {
  682. int i;
  683. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  684. int r;
  685. vcpu_load(vcpu);
  686. for (i = 0; i < 16; i++) {
  687. vpd->vgr[i] = regs->vpd.vgr[i];
  688. vpd->vbgr[i] = regs->vpd.vbgr[i];
  689. }
  690. for (i = 0; i < 128; i++)
  691. vpd->vcr[i] = regs->vpd.vcr[i];
  692. vpd->vhpi = regs->vpd.vhpi;
  693. vpd->vnat = regs->vpd.vnat;
  694. vpd->vbnat = regs->vpd.vbnat;
  695. vpd->vpsr = regs->vpd.vpsr;
  696. vpd->vpr = regs->vpd.vpr;
  697. r = -EFAULT;
  698. r = copy_from_user(&vcpu->arch.guest, regs->saved_guest,
  699. sizeof(union context));
  700. if (r)
  701. goto out;
  702. r = copy_from_user(vcpu + 1, regs->saved_stack +
  703. sizeof(struct kvm_vcpu),
  704. IA64_STK_OFFSET - sizeof(struct kvm_vcpu));
  705. if (r)
  706. goto out;
  707. vcpu->arch.exit_data =
  708. ((struct kvm_vcpu *)(regs->saved_stack))->arch.exit_data;
  709. RESTORE_REGS(mp_state);
  710. RESTORE_REGS(vmm_rr);
  711. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  712. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  713. RESTORE_REGS(itr_regions);
  714. RESTORE_REGS(dtr_regions);
  715. RESTORE_REGS(tc_regions);
  716. RESTORE_REGS(irq_check);
  717. RESTORE_REGS(itc_check);
  718. RESTORE_REGS(timer_check);
  719. RESTORE_REGS(timer_pending);
  720. RESTORE_REGS(last_itc);
  721. for (i = 0; i < 8; i++) {
  722. vcpu->arch.vrr[i] = regs->vrr[i];
  723. vcpu->arch.ibr[i] = regs->ibr[i];
  724. vcpu->arch.dbr[i] = regs->dbr[i];
  725. }
  726. for (i = 0; i < 4; i++)
  727. vcpu->arch.insvc[i] = regs->insvc[i];
  728. RESTORE_REGS(xtp);
  729. RESTORE_REGS(metaphysical_rr0);
  730. RESTORE_REGS(metaphysical_rr4);
  731. RESTORE_REGS(metaphysical_saved_rr0);
  732. RESTORE_REGS(metaphysical_saved_rr4);
  733. RESTORE_REGS(fp_psr);
  734. RESTORE_REGS(saved_gp);
  735. vcpu->arch.irq_new_pending = 1;
  736. vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
  737. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  738. vcpu_put(vcpu);
  739. r = 0;
  740. out:
  741. return r;
  742. }
  743. long kvm_arch_vm_ioctl(struct file *filp,
  744. unsigned int ioctl, unsigned long arg)
  745. {
  746. struct kvm *kvm = filp->private_data;
  747. void __user *argp = (void __user *)arg;
  748. int r = -EINVAL;
  749. switch (ioctl) {
  750. case KVM_SET_MEMORY_REGION: {
  751. struct kvm_memory_region kvm_mem;
  752. struct kvm_userspace_memory_region kvm_userspace_mem;
  753. r = -EFAULT;
  754. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  755. goto out;
  756. kvm_userspace_mem.slot = kvm_mem.slot;
  757. kvm_userspace_mem.flags = kvm_mem.flags;
  758. kvm_userspace_mem.guest_phys_addr =
  759. kvm_mem.guest_phys_addr;
  760. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  761. r = kvm_vm_ioctl_set_memory_region(kvm,
  762. &kvm_userspace_mem, 0);
  763. if (r)
  764. goto out;
  765. break;
  766. }
  767. case KVM_CREATE_IRQCHIP:
  768. r = -EFAULT;
  769. r = kvm_ioapic_init(kvm);
  770. if (r)
  771. goto out;
  772. break;
  773. case KVM_IRQ_LINE: {
  774. struct kvm_irq_level irq_event;
  775. r = -EFAULT;
  776. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  777. goto out;
  778. if (irqchip_in_kernel(kvm)) {
  779. mutex_lock(&kvm->lock);
  780. kvm_ioapic_set_irq(kvm->arch.vioapic,
  781. irq_event.irq,
  782. irq_event.level);
  783. mutex_unlock(&kvm->lock);
  784. r = 0;
  785. }
  786. break;
  787. }
  788. case KVM_GET_IRQCHIP: {
  789. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  790. struct kvm_irqchip chip;
  791. r = -EFAULT;
  792. if (copy_from_user(&chip, argp, sizeof chip))
  793. goto out;
  794. r = -ENXIO;
  795. if (!irqchip_in_kernel(kvm))
  796. goto out;
  797. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  798. if (r)
  799. goto out;
  800. r = -EFAULT;
  801. if (copy_to_user(argp, &chip, sizeof chip))
  802. goto out;
  803. r = 0;
  804. break;
  805. }
  806. case KVM_SET_IRQCHIP: {
  807. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  808. struct kvm_irqchip chip;
  809. r = -EFAULT;
  810. if (copy_from_user(&chip, argp, sizeof chip))
  811. goto out;
  812. r = -ENXIO;
  813. if (!irqchip_in_kernel(kvm))
  814. goto out;
  815. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  816. if (r)
  817. goto out;
  818. r = 0;
  819. break;
  820. }
  821. default:
  822. ;
  823. }
  824. out:
  825. return r;
  826. }
  827. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  828. struct kvm_sregs *sregs)
  829. {
  830. return -EINVAL;
  831. }
  832. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  833. struct kvm_sregs *sregs)
  834. {
  835. return -EINVAL;
  836. }
  837. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  838. struct kvm_translation *tr)
  839. {
  840. return -EINVAL;
  841. }
  842. static int kvm_alloc_vmm_area(void)
  843. {
  844. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  845. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  846. get_order(KVM_VMM_SIZE));
  847. if (!kvm_vmm_base)
  848. return -ENOMEM;
  849. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  850. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  851. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  852. kvm_vmm_base, kvm_vm_buffer);
  853. }
  854. return 0;
  855. }
  856. static void kvm_free_vmm_area(void)
  857. {
  858. if (kvm_vmm_base) {
  859. /*Zero this area before free to avoid bits leak!!*/
  860. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  861. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  862. kvm_vmm_base = 0;
  863. kvm_vm_buffer = 0;
  864. kvm_vsa_base = 0;
  865. }
  866. }
  867. static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  868. {
  869. }
  870. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  871. {
  872. int i;
  873. union cpuid3_t cpuid3;
  874. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  875. if (IS_ERR(vpd))
  876. return PTR_ERR(vpd);
  877. /* CPUID init */
  878. for (i = 0; i < 5; i++)
  879. vpd->vcpuid[i] = ia64_get_cpuid(i);
  880. /* Limit the CPUID number to 5 */
  881. cpuid3.value = vpd->vcpuid[3];
  882. cpuid3.number = 4; /* 5 - 1 */
  883. vpd->vcpuid[3] = cpuid3.value;
  884. /*Set vac and vdc fields*/
  885. vpd->vac.a_from_int_cr = 1;
  886. vpd->vac.a_to_int_cr = 1;
  887. vpd->vac.a_from_psr = 1;
  888. vpd->vac.a_from_cpuid = 1;
  889. vpd->vac.a_cover = 1;
  890. vpd->vac.a_bsw = 1;
  891. vpd->vac.a_int = 1;
  892. vpd->vdc.d_vmsw = 1;
  893. /*Set virtual buffer*/
  894. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  895. return 0;
  896. }
  897. static int vti_create_vp(struct kvm_vcpu *vcpu)
  898. {
  899. long ret;
  900. struct vpd *vpd = vcpu->arch.vpd;
  901. unsigned long vmm_ivt;
  902. vmm_ivt = kvm_vmm_info->vmm_ivt;
  903. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  904. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  905. if (ret) {
  906. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  907. return -EINVAL;
  908. }
  909. return 0;
  910. }
  911. static void init_ptce_info(struct kvm_vcpu *vcpu)
  912. {
  913. ia64_ptce_info_t ptce = {0};
  914. ia64_get_ptce(&ptce);
  915. vcpu->arch.ptce_base = ptce.base;
  916. vcpu->arch.ptce_count[0] = ptce.count[0];
  917. vcpu->arch.ptce_count[1] = ptce.count[1];
  918. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  919. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  920. }
  921. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  922. {
  923. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  924. if (hrtimer_cancel(p_ht))
  925. hrtimer_start(p_ht, p_ht->expires, HRTIMER_MODE_ABS);
  926. }
  927. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  928. {
  929. struct kvm_vcpu *vcpu;
  930. wait_queue_head_t *q;
  931. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  932. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  933. goto out;
  934. q = &vcpu->wq;
  935. if (waitqueue_active(q)) {
  936. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  937. wake_up_interruptible(q);
  938. }
  939. out:
  940. vcpu->arch.timer_check = 1;
  941. return HRTIMER_NORESTART;
  942. }
  943. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  944. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  945. {
  946. struct kvm_vcpu *v;
  947. int r;
  948. int i;
  949. long itc_offset;
  950. struct kvm *kvm = vcpu->kvm;
  951. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  952. union context *p_ctx = &vcpu->arch.guest;
  953. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  954. /*Init vcpu context for first run.*/
  955. if (IS_ERR(vmm_vcpu))
  956. return PTR_ERR(vmm_vcpu);
  957. if (vcpu->vcpu_id == 0) {
  958. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  959. /*Set entry address for first run.*/
  960. regs->cr_iip = PALE_RESET_ENTRY;
  961. /*Initilize itc offset for vcpus*/
  962. itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
  963. for (i = 0; i < MAX_VCPU_NUM; i++) {
  964. v = (struct kvm_vcpu *)((char *)vcpu + VCPU_SIZE * i);
  965. v->arch.itc_offset = itc_offset;
  966. v->arch.last_itc = 0;
  967. }
  968. } else
  969. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  970. r = -ENOMEM;
  971. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  972. if (!vcpu->arch.apic)
  973. goto out;
  974. vcpu->arch.apic->vcpu = vcpu;
  975. p_ctx->gr[1] = 0;
  976. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + IA64_STK_OFFSET);
  977. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  978. p_ctx->psr = 0x1008522000UL;
  979. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  980. p_ctx->caller_unat = 0;
  981. p_ctx->pr = 0x0;
  982. p_ctx->ar[36] = 0x0; /*unat*/
  983. p_ctx->ar[19] = 0x0; /*rnat*/
  984. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  985. ((sizeof(struct kvm_vcpu)+15) & ~15);
  986. p_ctx->ar[64] = 0x0; /*pfs*/
  987. p_ctx->cr[0] = 0x7e04UL;
  988. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  989. p_ctx->cr[8] = 0x3c;
  990. /*Initilize region register*/
  991. p_ctx->rr[0] = 0x30;
  992. p_ctx->rr[1] = 0x30;
  993. p_ctx->rr[2] = 0x30;
  994. p_ctx->rr[3] = 0x30;
  995. p_ctx->rr[4] = 0x30;
  996. p_ctx->rr[5] = 0x30;
  997. p_ctx->rr[7] = 0x30;
  998. /*Initilize branch register 0*/
  999. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1000. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1001. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1002. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1003. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1004. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1005. vcpu->arch.last_run_cpu = -1;
  1006. vcpu->arch.vpd = (struct vpd *)VPD_ADDR(vcpu->vcpu_id);
  1007. vcpu->arch.vsa_base = kvm_vsa_base;
  1008. vcpu->arch.__gp = kvm_vmm_gp;
  1009. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1010. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_ADDR(vcpu->vcpu_id);
  1011. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_ADDR(vcpu->vcpu_id);
  1012. init_ptce_info(vcpu);
  1013. r = 0;
  1014. out:
  1015. return r;
  1016. }
  1017. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1018. {
  1019. unsigned long psr;
  1020. int r;
  1021. local_irq_save(psr);
  1022. r = kvm_insert_vmm_mapping(vcpu);
  1023. if (r)
  1024. goto fail;
  1025. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1026. if (r)
  1027. goto fail;
  1028. r = vti_init_vpd(vcpu);
  1029. if (r) {
  1030. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1031. goto uninit;
  1032. }
  1033. r = vti_create_vp(vcpu);
  1034. if (r)
  1035. goto uninit;
  1036. kvm_purge_vmm_mapping(vcpu);
  1037. local_irq_restore(psr);
  1038. return 0;
  1039. uninit:
  1040. kvm_vcpu_uninit(vcpu);
  1041. fail:
  1042. local_irq_restore(psr);
  1043. return r;
  1044. }
  1045. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1046. unsigned int id)
  1047. {
  1048. struct kvm_vcpu *vcpu;
  1049. unsigned long vm_base = kvm->arch.vm_base;
  1050. int r;
  1051. int cpu;
  1052. r = -ENOMEM;
  1053. if (!vm_base) {
  1054. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1055. goto fail;
  1056. }
  1057. vcpu = (struct kvm_vcpu *)(vm_base + KVM_VCPU_OFS + VCPU_SIZE * id);
  1058. vcpu->kvm = kvm;
  1059. cpu = get_cpu();
  1060. vti_vcpu_load(vcpu, cpu);
  1061. r = vti_vcpu_setup(vcpu, id);
  1062. put_cpu();
  1063. if (r) {
  1064. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1065. goto fail;
  1066. }
  1067. return vcpu;
  1068. fail:
  1069. return ERR_PTR(r);
  1070. }
  1071. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1072. {
  1073. return 0;
  1074. }
  1075. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1076. {
  1077. return -EINVAL;
  1078. }
  1079. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1080. {
  1081. return -EINVAL;
  1082. }
  1083. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  1084. struct kvm_debug_guest *dbg)
  1085. {
  1086. return -EINVAL;
  1087. }
  1088. static void free_kvm(struct kvm *kvm)
  1089. {
  1090. unsigned long vm_base = kvm->arch.vm_base;
  1091. if (vm_base) {
  1092. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1093. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1094. }
  1095. }
  1096. static void kvm_release_vm_pages(struct kvm *kvm)
  1097. {
  1098. struct kvm_memory_slot *memslot;
  1099. int i, j;
  1100. unsigned long base_gfn;
  1101. for (i = 0; i < kvm->nmemslots; i++) {
  1102. memslot = &kvm->memslots[i];
  1103. base_gfn = memslot->base_gfn;
  1104. for (j = 0; j < memslot->npages; j++) {
  1105. if (memslot->rmap[j])
  1106. put_page((struct page *)memslot->rmap[j]);
  1107. }
  1108. }
  1109. }
  1110. void kvm_arch_destroy_vm(struct kvm *kvm)
  1111. {
  1112. kvm_iommu_unmap_guest(kvm);
  1113. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1114. kvm_free_all_assigned_devices(kvm);
  1115. #endif
  1116. kfree(kvm->arch.vioapic);
  1117. kvm_release_vm_pages(kvm);
  1118. kvm_free_physmem(kvm);
  1119. free_kvm(kvm);
  1120. }
  1121. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1122. {
  1123. }
  1124. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1125. {
  1126. if (cpu != vcpu->cpu) {
  1127. vcpu->cpu = cpu;
  1128. if (vcpu->arch.ht_active)
  1129. kvm_migrate_hlt_timer(vcpu);
  1130. }
  1131. }
  1132. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1133. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1134. {
  1135. int i;
  1136. int r;
  1137. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1138. vcpu_load(vcpu);
  1139. for (i = 0; i < 16; i++) {
  1140. regs->vpd.vgr[i] = vpd->vgr[i];
  1141. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1142. }
  1143. for (i = 0; i < 128; i++)
  1144. regs->vpd.vcr[i] = vpd->vcr[i];
  1145. regs->vpd.vhpi = vpd->vhpi;
  1146. regs->vpd.vnat = vpd->vnat;
  1147. regs->vpd.vbnat = vpd->vbnat;
  1148. regs->vpd.vpsr = vpd->vpsr;
  1149. regs->vpd.vpr = vpd->vpr;
  1150. r = -EFAULT;
  1151. r = copy_to_user(regs->saved_guest, &vcpu->arch.guest,
  1152. sizeof(union context));
  1153. if (r)
  1154. goto out;
  1155. r = copy_to_user(regs->saved_stack, (void *)vcpu, IA64_STK_OFFSET);
  1156. if (r)
  1157. goto out;
  1158. SAVE_REGS(mp_state);
  1159. SAVE_REGS(vmm_rr);
  1160. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1161. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1162. SAVE_REGS(itr_regions);
  1163. SAVE_REGS(dtr_regions);
  1164. SAVE_REGS(tc_regions);
  1165. SAVE_REGS(irq_check);
  1166. SAVE_REGS(itc_check);
  1167. SAVE_REGS(timer_check);
  1168. SAVE_REGS(timer_pending);
  1169. SAVE_REGS(last_itc);
  1170. for (i = 0; i < 8; i++) {
  1171. regs->vrr[i] = vcpu->arch.vrr[i];
  1172. regs->ibr[i] = vcpu->arch.ibr[i];
  1173. regs->dbr[i] = vcpu->arch.dbr[i];
  1174. }
  1175. for (i = 0; i < 4; i++)
  1176. regs->insvc[i] = vcpu->arch.insvc[i];
  1177. regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
  1178. SAVE_REGS(xtp);
  1179. SAVE_REGS(metaphysical_rr0);
  1180. SAVE_REGS(metaphysical_rr4);
  1181. SAVE_REGS(metaphysical_saved_rr0);
  1182. SAVE_REGS(metaphysical_saved_rr4);
  1183. SAVE_REGS(fp_psr);
  1184. SAVE_REGS(saved_gp);
  1185. vcpu_put(vcpu);
  1186. r = 0;
  1187. out:
  1188. return r;
  1189. }
  1190. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1191. {
  1192. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1193. kfree(vcpu->arch.apic);
  1194. }
  1195. long kvm_arch_vcpu_ioctl(struct file *filp,
  1196. unsigned int ioctl, unsigned long arg)
  1197. {
  1198. return -EINVAL;
  1199. }
  1200. int kvm_arch_set_memory_region(struct kvm *kvm,
  1201. struct kvm_userspace_memory_region *mem,
  1202. struct kvm_memory_slot old,
  1203. int user_alloc)
  1204. {
  1205. unsigned long i;
  1206. unsigned long pfn;
  1207. int npages = mem->memory_size >> PAGE_SHIFT;
  1208. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1209. unsigned long base_gfn = memslot->base_gfn;
  1210. for (i = 0; i < npages; i++) {
  1211. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1212. if (!kvm_is_mmio_pfn(pfn)) {
  1213. kvm_set_pmt_entry(kvm, base_gfn + i,
  1214. pfn << PAGE_SHIFT,
  1215. _PAGE_AR_RWX | _PAGE_MA_WB);
  1216. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1217. } else {
  1218. kvm_set_pmt_entry(kvm, base_gfn + i,
  1219. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1220. _PAGE_MA_UC);
  1221. memslot->rmap[i] = 0;
  1222. }
  1223. }
  1224. return 0;
  1225. }
  1226. void kvm_arch_flush_shadow(struct kvm *kvm)
  1227. {
  1228. }
  1229. long kvm_arch_dev_ioctl(struct file *filp,
  1230. unsigned int ioctl, unsigned long arg)
  1231. {
  1232. return -EINVAL;
  1233. }
  1234. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1235. {
  1236. kvm_vcpu_uninit(vcpu);
  1237. }
  1238. static int vti_cpu_has_kvm_support(void)
  1239. {
  1240. long avail = 1, status = 1, control = 1;
  1241. long ret;
  1242. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1243. if (ret)
  1244. goto out;
  1245. if (!(avail & PAL_PROC_VM_BIT))
  1246. goto out;
  1247. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1248. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1249. if (ret)
  1250. goto out;
  1251. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1252. if (!(vp_env_info & VP_OPCODE)) {
  1253. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1254. "vm_env_info:0x%lx\n", vp_env_info);
  1255. }
  1256. return 1;
  1257. out:
  1258. return 0;
  1259. }
  1260. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1261. struct module *module)
  1262. {
  1263. unsigned long module_base;
  1264. unsigned long vmm_size;
  1265. unsigned long vmm_offset, func_offset, fdesc_offset;
  1266. struct fdesc *p_fdesc;
  1267. BUG_ON(!module);
  1268. if (!kvm_vmm_base) {
  1269. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1270. return -EFAULT;
  1271. }
  1272. /*Calculate new position of relocated vmm module.*/
  1273. module_base = (unsigned long)module->module_core;
  1274. vmm_size = module->core_size;
  1275. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1276. return -EFAULT;
  1277. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1278. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1279. /*Recalculate kvm_vmm_info based on new VMM*/
  1280. vmm_offset = vmm_info->vmm_ivt - module_base;
  1281. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1282. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1283. kvm_vmm_info->vmm_ivt);
  1284. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1285. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1286. fdesc_offset);
  1287. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1288. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1289. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1290. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1291. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1292. KVM_VMM_BASE+func_offset);
  1293. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1294. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1295. fdesc_offset);
  1296. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1297. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1298. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1299. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1300. kvm_vmm_gp = p_fdesc->gp;
  1301. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1302. kvm_vmm_info->vmm_entry);
  1303. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1304. KVM_VMM_BASE + func_offset);
  1305. return 0;
  1306. }
  1307. int kvm_arch_init(void *opaque)
  1308. {
  1309. int r;
  1310. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1311. if (!vti_cpu_has_kvm_support()) {
  1312. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1313. r = -EOPNOTSUPP;
  1314. goto out;
  1315. }
  1316. if (kvm_vmm_info) {
  1317. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1318. r = -EEXIST;
  1319. goto out;
  1320. }
  1321. r = -ENOMEM;
  1322. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1323. if (!kvm_vmm_info)
  1324. goto out;
  1325. if (kvm_alloc_vmm_area())
  1326. goto out_free0;
  1327. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1328. if (r)
  1329. goto out_free1;
  1330. return 0;
  1331. out_free1:
  1332. kvm_free_vmm_area();
  1333. out_free0:
  1334. kfree(kvm_vmm_info);
  1335. out:
  1336. return r;
  1337. }
  1338. void kvm_arch_exit(void)
  1339. {
  1340. kvm_free_vmm_area();
  1341. kfree(kvm_vmm_info);
  1342. kvm_vmm_info = NULL;
  1343. }
  1344. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1345. struct kvm_dirty_log *log)
  1346. {
  1347. struct kvm_memory_slot *memslot;
  1348. int r, i;
  1349. long n, base;
  1350. unsigned long *dirty_bitmap = (unsigned long *)((void *)kvm - KVM_VM_OFS
  1351. + KVM_MEM_DIRTY_LOG_OFS);
  1352. r = -EINVAL;
  1353. if (log->slot >= KVM_MEMORY_SLOTS)
  1354. goto out;
  1355. memslot = &kvm->memslots[log->slot];
  1356. r = -ENOENT;
  1357. if (!memslot->dirty_bitmap)
  1358. goto out;
  1359. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1360. base = memslot->base_gfn / BITS_PER_LONG;
  1361. for (i = 0; i < n/sizeof(long); ++i) {
  1362. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1363. dirty_bitmap[base + i] = 0;
  1364. }
  1365. r = 0;
  1366. out:
  1367. return r;
  1368. }
  1369. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1370. struct kvm_dirty_log *log)
  1371. {
  1372. int r;
  1373. int n;
  1374. struct kvm_memory_slot *memslot;
  1375. int is_dirty = 0;
  1376. spin_lock(&kvm->arch.dirty_log_lock);
  1377. r = kvm_ia64_sync_dirty_log(kvm, log);
  1378. if (r)
  1379. goto out;
  1380. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1381. if (r)
  1382. goto out;
  1383. /* If nothing is dirty, don't bother messing with page tables. */
  1384. if (is_dirty) {
  1385. kvm_flush_remote_tlbs(kvm);
  1386. memslot = &kvm->memslots[log->slot];
  1387. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1388. memset(memslot->dirty_bitmap, 0, n);
  1389. }
  1390. r = 0;
  1391. out:
  1392. spin_unlock(&kvm->arch.dirty_log_lock);
  1393. return r;
  1394. }
  1395. int kvm_arch_hardware_setup(void)
  1396. {
  1397. return 0;
  1398. }
  1399. void kvm_arch_hardware_unsetup(void)
  1400. {
  1401. }
  1402. static void vcpu_kick_intr(void *info)
  1403. {
  1404. #ifdef DEBUG
  1405. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  1406. printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
  1407. #endif
  1408. }
  1409. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1410. {
  1411. int ipi_pcpu = vcpu->cpu;
  1412. if (waitqueue_active(&vcpu->wq))
  1413. wake_up_interruptible(&vcpu->wq);
  1414. if (vcpu->guest_mode)
  1415. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  1416. }
  1417. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, u8 vec, u8 trig)
  1418. {
  1419. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1420. if (!test_and_set_bit(vec, &vpd->irr[0])) {
  1421. vcpu->arch.irq_new_pending = 1;
  1422. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  1423. kvm_vcpu_kick(vcpu);
  1424. else if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) {
  1425. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  1426. if (waitqueue_active(&vcpu->wq))
  1427. wake_up_interruptible(&vcpu->wq);
  1428. }
  1429. return 1;
  1430. }
  1431. return 0;
  1432. }
  1433. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1434. {
  1435. return apic->vcpu->vcpu_id == dest;
  1436. }
  1437. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1438. {
  1439. return 0;
  1440. }
  1441. struct kvm_vcpu *kvm_get_lowest_prio_vcpu(struct kvm *kvm, u8 vector,
  1442. unsigned long bitmap)
  1443. {
  1444. struct kvm_vcpu *lvcpu = kvm->vcpus[0];
  1445. int i;
  1446. for (i = 1; i < KVM_MAX_VCPUS; i++) {
  1447. if (!kvm->vcpus[i])
  1448. continue;
  1449. if (lvcpu->arch.xtp > kvm->vcpus[i]->arch.xtp)
  1450. lvcpu = kvm->vcpus[i];
  1451. }
  1452. return lvcpu;
  1453. }
  1454. static int find_highest_bits(int *dat)
  1455. {
  1456. u32 bits, bitnum;
  1457. int i;
  1458. /* loop for all 256 bits */
  1459. for (i = 7; i >= 0 ; i--) {
  1460. bits = dat[i];
  1461. if (bits) {
  1462. bitnum = fls(bits);
  1463. return i * 32 + bitnum - 1;
  1464. }
  1465. }
  1466. return -1;
  1467. }
  1468. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1469. {
  1470. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1471. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1472. return NMI_VECTOR;
  1473. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1474. return ExtINT_VECTOR;
  1475. return find_highest_bits((int *)&vpd->irr[0]);
  1476. }
  1477. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1478. {
  1479. if (kvm_highest_pending_irq(vcpu) != -1)
  1480. return 1;
  1481. return 0;
  1482. }
  1483. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1484. {
  1485. return 0;
  1486. }
  1487. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1488. {
  1489. return gfn;
  1490. }
  1491. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1492. {
  1493. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1494. }
  1495. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1496. struct kvm_mp_state *mp_state)
  1497. {
  1498. vcpu_load(vcpu);
  1499. mp_state->mp_state = vcpu->arch.mp_state;
  1500. vcpu_put(vcpu);
  1501. return 0;
  1502. }
  1503. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1504. {
  1505. int r;
  1506. long psr;
  1507. local_irq_save(psr);
  1508. r = kvm_insert_vmm_mapping(vcpu);
  1509. if (r)
  1510. goto fail;
  1511. vcpu->arch.launched = 0;
  1512. kvm_arch_vcpu_uninit(vcpu);
  1513. r = kvm_arch_vcpu_init(vcpu);
  1514. if (r)
  1515. goto fail;
  1516. kvm_purge_vmm_mapping(vcpu);
  1517. r = 0;
  1518. fail:
  1519. local_irq_restore(psr);
  1520. return r;
  1521. }
  1522. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1523. struct kvm_mp_state *mp_state)
  1524. {
  1525. int r = 0;
  1526. vcpu_load(vcpu);
  1527. vcpu->arch.mp_state = mp_state->mp_state;
  1528. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1529. r = vcpu_reset(vcpu);
  1530. vcpu_put(vcpu);
  1531. return r;
  1532. }