forcedeth.c 114 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  109. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  110. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  111. *
  112. * Known bugs:
  113. * We suspect that on some hardware no TX done interrupts are generated.
  114. * This means recovery from netif_stop_queue only happens if the hw timer
  115. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  116. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  117. * If your hardware reliably generates tx done interrupts, then you can remove
  118. * DEV_NEED_TIMERIRQ from the driver_data flags.
  119. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  120. * superfluous timer interrupts from the nic.
  121. */
  122. #define FORCEDETH_VERSION "0.55"
  123. #define DRV_NAME "forcedeth"
  124. #include <linux/module.h>
  125. #include <linux/types.h>
  126. #include <linux/pci.h>
  127. #include <linux/interrupt.h>
  128. #include <linux/netdevice.h>
  129. #include <linux/etherdevice.h>
  130. #include <linux/delay.h>
  131. #include <linux/spinlock.h>
  132. #include <linux/ethtool.h>
  133. #include <linux/timer.h>
  134. #include <linux/skbuff.h>
  135. #include <linux/mii.h>
  136. #include <linux/random.h>
  137. #include <linux/init.h>
  138. #include <linux/if_vlan.h>
  139. #include <linux/dma-mapping.h>
  140. #include <asm/irq.h>
  141. #include <asm/io.h>
  142. #include <asm/uaccess.h>
  143. #include <asm/system.h>
  144. #if 0
  145. #define dprintk printk
  146. #else
  147. #define dprintk(x...) do { } while (0)
  148. #endif
  149. /*
  150. * Hardware access:
  151. */
  152. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  153. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  154. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  155. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  156. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  157. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  158. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  159. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  160. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  161. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  162. enum {
  163. NvRegIrqStatus = 0x000,
  164. #define NVREG_IRQSTAT_MIIEVENT 0x040
  165. #define NVREG_IRQSTAT_MASK 0x1ff
  166. NvRegIrqMask = 0x004,
  167. #define NVREG_IRQ_RX_ERROR 0x0001
  168. #define NVREG_IRQ_RX 0x0002
  169. #define NVREG_IRQ_RX_NOBUF 0x0004
  170. #define NVREG_IRQ_TX_ERR 0x0008
  171. #define NVREG_IRQ_TX_OK 0x0010
  172. #define NVREG_IRQ_TIMER 0x0020
  173. #define NVREG_IRQ_LINK 0x0040
  174. #define NVREG_IRQ_RX_FORCED 0x0080
  175. #define NVREG_IRQ_TX_FORCED 0x0100
  176. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  177. #define NVREG_IRQMASK_CPU 0x0040
  178. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  179. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  180. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  181. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  182. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  183. NVREG_IRQ_TX_FORCED))
  184. NvRegUnknownSetupReg6 = 0x008,
  185. #define NVREG_UNKSETUP6_VAL 3
  186. /*
  187. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  188. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  189. */
  190. NvRegPollingInterval = 0x00c,
  191. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  192. #define NVREG_POLL_DEFAULT_CPU 13
  193. NvRegMSIMap0 = 0x020,
  194. NvRegMSIMap1 = 0x024,
  195. NvRegMSIIrqMask = 0x030,
  196. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  197. NvRegMisc1 = 0x080,
  198. #define NVREG_MISC1_PAUSE_TX 0x01
  199. #define NVREG_MISC1_HD 0x02
  200. #define NVREG_MISC1_FORCE 0x3b0f3c
  201. NvRegMacReset = 0x3c,
  202. #define NVREG_MAC_RESET_ASSERT 0x0F3
  203. NvRegTransmitterControl = 0x084,
  204. #define NVREG_XMITCTL_START 0x01
  205. NvRegTransmitterStatus = 0x088,
  206. #define NVREG_XMITSTAT_BUSY 0x01
  207. NvRegPacketFilterFlags = 0x8c,
  208. #define NVREG_PFF_PAUSE_RX 0x08
  209. #define NVREG_PFF_ALWAYS 0x7F0000
  210. #define NVREG_PFF_PROMISC 0x80
  211. #define NVREG_PFF_MYADDR 0x20
  212. NvRegOffloadConfig = 0x90,
  213. #define NVREG_OFFLOAD_HOMEPHY 0x601
  214. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  215. NvRegReceiverControl = 0x094,
  216. #define NVREG_RCVCTL_START 0x01
  217. NvRegReceiverStatus = 0x98,
  218. #define NVREG_RCVSTAT_BUSY 0x01
  219. NvRegRandomSeed = 0x9c,
  220. #define NVREG_RNDSEED_MASK 0x00ff
  221. #define NVREG_RNDSEED_FORCE 0x7f00
  222. #define NVREG_RNDSEED_FORCE2 0x2d00
  223. #define NVREG_RNDSEED_FORCE3 0x7400
  224. NvRegUnknownSetupReg1 = 0xA0,
  225. #define NVREG_UNKSETUP1_VAL 0x16070f
  226. NvRegUnknownSetupReg2 = 0xA4,
  227. #define NVREG_UNKSETUP2_VAL 0x16
  228. NvRegMacAddrA = 0xA8,
  229. NvRegMacAddrB = 0xAC,
  230. NvRegMulticastAddrA = 0xB0,
  231. #define NVREG_MCASTADDRA_FORCE 0x01
  232. NvRegMulticastAddrB = 0xB4,
  233. NvRegMulticastMaskA = 0xB8,
  234. NvRegMulticastMaskB = 0xBC,
  235. NvRegPhyInterface = 0xC0,
  236. #define PHY_RGMII 0x10000000
  237. NvRegTxRingPhysAddr = 0x100,
  238. NvRegRxRingPhysAddr = 0x104,
  239. NvRegRingSizes = 0x108,
  240. #define NVREG_RINGSZ_TXSHIFT 0
  241. #define NVREG_RINGSZ_RXSHIFT 16
  242. NvRegUnknownTransmitterReg = 0x10c,
  243. NvRegLinkSpeed = 0x110,
  244. #define NVREG_LINKSPEED_FORCE 0x10000
  245. #define NVREG_LINKSPEED_10 1000
  246. #define NVREG_LINKSPEED_100 100
  247. #define NVREG_LINKSPEED_1000 50
  248. #define NVREG_LINKSPEED_MASK (0xFFF)
  249. NvRegUnknownSetupReg5 = 0x130,
  250. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  251. NvRegUnknownSetupReg3 = 0x13c,
  252. #define NVREG_UNKSETUP3_VAL1 0x200010
  253. NvRegTxRxControl = 0x144,
  254. #define NVREG_TXRXCTL_KICK 0x0001
  255. #define NVREG_TXRXCTL_BIT1 0x0002
  256. #define NVREG_TXRXCTL_BIT2 0x0004
  257. #define NVREG_TXRXCTL_IDLE 0x0008
  258. #define NVREG_TXRXCTL_RESET 0x0010
  259. #define NVREG_TXRXCTL_RXCHECK 0x0400
  260. #define NVREG_TXRXCTL_DESC_1 0
  261. #define NVREG_TXRXCTL_DESC_2 0x02100
  262. #define NVREG_TXRXCTL_DESC_3 0x02200
  263. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  264. #define NVREG_TXRXCTL_VLANINS 0x00080
  265. NvRegTxRingPhysAddrHigh = 0x148,
  266. NvRegRxRingPhysAddrHigh = 0x14C,
  267. NvRegTxPauseFrame = 0x170,
  268. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  269. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  270. NvRegMIIStatus = 0x180,
  271. #define NVREG_MIISTAT_ERROR 0x0001
  272. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  273. #define NVREG_MIISTAT_MASK 0x000f
  274. #define NVREG_MIISTAT_MASK2 0x000f
  275. NvRegUnknownSetupReg4 = 0x184,
  276. #define NVREG_UNKSETUP4_VAL 8
  277. NvRegAdapterControl = 0x188,
  278. #define NVREG_ADAPTCTL_START 0x02
  279. #define NVREG_ADAPTCTL_LINKUP 0x04
  280. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  281. #define NVREG_ADAPTCTL_RUNNING 0x100000
  282. #define NVREG_ADAPTCTL_PHYSHIFT 24
  283. NvRegMIISpeed = 0x18c,
  284. #define NVREG_MIISPEED_BIT8 (1<<8)
  285. #define NVREG_MIIDELAY 5
  286. NvRegMIIControl = 0x190,
  287. #define NVREG_MIICTL_INUSE 0x08000
  288. #define NVREG_MIICTL_WRITE 0x00400
  289. #define NVREG_MIICTL_ADDRSHIFT 5
  290. NvRegMIIData = 0x194,
  291. NvRegWakeUpFlags = 0x200,
  292. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  293. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  294. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  295. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  296. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  297. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  298. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  299. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  300. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  301. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  302. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  303. NvRegPatternCRC = 0x204,
  304. NvRegPatternMask = 0x208,
  305. NvRegPowerCap = 0x268,
  306. #define NVREG_POWERCAP_D3SUPP (1<<30)
  307. #define NVREG_POWERCAP_D2SUPP (1<<26)
  308. #define NVREG_POWERCAP_D1SUPP (1<<25)
  309. NvRegPowerState = 0x26c,
  310. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  311. #define NVREG_POWERSTATE_VALID 0x0100
  312. #define NVREG_POWERSTATE_MASK 0x0003
  313. #define NVREG_POWERSTATE_D0 0x0000
  314. #define NVREG_POWERSTATE_D1 0x0001
  315. #define NVREG_POWERSTATE_D2 0x0002
  316. #define NVREG_POWERSTATE_D3 0x0003
  317. NvRegVlanControl = 0x300,
  318. #define NVREG_VLANCONTROL_ENABLE 0x2000
  319. NvRegMSIXMap0 = 0x3e0,
  320. NvRegMSIXMap1 = 0x3e4,
  321. NvRegMSIXIrqStatus = 0x3f0,
  322. NvRegPowerState2 = 0x600,
  323. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  324. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  325. };
  326. /* Big endian: should work, but is untested */
  327. struct ring_desc {
  328. u32 PacketBuffer;
  329. u32 FlagLen;
  330. };
  331. struct ring_desc_ex {
  332. u32 PacketBufferHigh;
  333. u32 PacketBufferLow;
  334. u32 TxVlan;
  335. u32 FlagLen;
  336. };
  337. typedef union _ring_type {
  338. struct ring_desc* orig;
  339. struct ring_desc_ex* ex;
  340. } ring_type;
  341. #define FLAG_MASK_V1 0xffff0000
  342. #define FLAG_MASK_V2 0xffffc000
  343. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  344. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  345. #define NV_TX_LASTPACKET (1<<16)
  346. #define NV_TX_RETRYERROR (1<<19)
  347. #define NV_TX_FORCED_INTERRUPT (1<<24)
  348. #define NV_TX_DEFERRED (1<<26)
  349. #define NV_TX_CARRIERLOST (1<<27)
  350. #define NV_TX_LATECOLLISION (1<<28)
  351. #define NV_TX_UNDERFLOW (1<<29)
  352. #define NV_TX_ERROR (1<<30)
  353. #define NV_TX_VALID (1<<31)
  354. #define NV_TX2_LASTPACKET (1<<29)
  355. #define NV_TX2_RETRYERROR (1<<18)
  356. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  357. #define NV_TX2_DEFERRED (1<<25)
  358. #define NV_TX2_CARRIERLOST (1<<26)
  359. #define NV_TX2_LATECOLLISION (1<<27)
  360. #define NV_TX2_UNDERFLOW (1<<28)
  361. /* error and valid are the same for both */
  362. #define NV_TX2_ERROR (1<<30)
  363. #define NV_TX2_VALID (1<<31)
  364. #define NV_TX2_TSO (1<<28)
  365. #define NV_TX2_TSO_SHIFT 14
  366. #define NV_TX2_TSO_MAX_SHIFT 14
  367. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  368. #define NV_TX2_CHECKSUM_L3 (1<<27)
  369. #define NV_TX2_CHECKSUM_L4 (1<<26)
  370. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  371. #define NV_RX_DESCRIPTORVALID (1<<16)
  372. #define NV_RX_MISSEDFRAME (1<<17)
  373. #define NV_RX_SUBSTRACT1 (1<<18)
  374. #define NV_RX_ERROR1 (1<<23)
  375. #define NV_RX_ERROR2 (1<<24)
  376. #define NV_RX_ERROR3 (1<<25)
  377. #define NV_RX_ERROR4 (1<<26)
  378. #define NV_RX_CRCERR (1<<27)
  379. #define NV_RX_OVERFLOW (1<<28)
  380. #define NV_RX_FRAMINGERR (1<<29)
  381. #define NV_RX_ERROR (1<<30)
  382. #define NV_RX_AVAIL (1<<31)
  383. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  384. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  385. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  386. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  387. #define NV_RX2_DESCRIPTORVALID (1<<29)
  388. #define NV_RX2_SUBSTRACT1 (1<<25)
  389. #define NV_RX2_ERROR1 (1<<18)
  390. #define NV_RX2_ERROR2 (1<<19)
  391. #define NV_RX2_ERROR3 (1<<20)
  392. #define NV_RX2_ERROR4 (1<<21)
  393. #define NV_RX2_CRCERR (1<<22)
  394. #define NV_RX2_OVERFLOW (1<<23)
  395. #define NV_RX2_FRAMINGERR (1<<24)
  396. /* error and avail are the same for both */
  397. #define NV_RX2_ERROR (1<<30)
  398. #define NV_RX2_AVAIL (1<<31)
  399. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  400. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  401. /* Miscelaneous hardware related defines: */
  402. #define NV_PCI_REGSZ_VER1 0x270
  403. #define NV_PCI_REGSZ_VER2 0x604
  404. /* various timeout delays: all in usec */
  405. #define NV_TXRX_RESET_DELAY 4
  406. #define NV_TXSTOP_DELAY1 10
  407. #define NV_TXSTOP_DELAY1MAX 500000
  408. #define NV_TXSTOP_DELAY2 100
  409. #define NV_RXSTOP_DELAY1 10
  410. #define NV_RXSTOP_DELAY1MAX 500000
  411. #define NV_RXSTOP_DELAY2 100
  412. #define NV_SETUP5_DELAY 5
  413. #define NV_SETUP5_DELAYMAX 50000
  414. #define NV_POWERUP_DELAY 5
  415. #define NV_POWERUP_DELAYMAX 5000
  416. #define NV_MIIBUSY_DELAY 50
  417. #define NV_MIIPHY_DELAY 10
  418. #define NV_MIIPHY_DELAYMAX 10000
  419. #define NV_MAC_RESET_DELAY 64
  420. #define NV_WAKEUPPATTERNS 5
  421. #define NV_WAKEUPMASKENTRIES 4
  422. /* General driver defaults */
  423. #define NV_WATCHDOG_TIMEO (5*HZ)
  424. #define RX_RING_DEFAULT 128
  425. #define TX_RING_DEFAULT 256
  426. #define RX_RING_MIN 128
  427. #define TX_RING_MIN 64
  428. #define RING_MAX_DESC_VER_1 1024
  429. #define RING_MAX_DESC_VER_2_3 16384
  430. /*
  431. * Difference between the get and put pointers for the tx ring.
  432. * This is used to throttle the amount of data outstanding in the
  433. * tx ring.
  434. */
  435. #define TX_LIMIT_DIFFERENCE 1
  436. /* rx/tx mac addr + type + vlan + align + slack*/
  437. #define NV_RX_HEADERS (64)
  438. /* even more slack. */
  439. #define NV_RX_ALLOC_PAD (64)
  440. /* maximum mtu size */
  441. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  442. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  443. #define OOM_REFILL (1+HZ/20)
  444. #define POLL_WAIT (1+HZ/100)
  445. #define LINK_TIMEOUT (3*HZ)
  446. /*
  447. * desc_ver values:
  448. * The nic supports three different descriptor types:
  449. * - DESC_VER_1: Original
  450. * - DESC_VER_2: support for jumbo frames.
  451. * - DESC_VER_3: 64-bit format.
  452. */
  453. #define DESC_VER_1 1
  454. #define DESC_VER_2 2
  455. #define DESC_VER_3 3
  456. /* PHY defines */
  457. #define PHY_OUI_MARVELL 0x5043
  458. #define PHY_OUI_CICADA 0x03f1
  459. #define PHYID1_OUI_MASK 0x03ff
  460. #define PHYID1_OUI_SHFT 6
  461. #define PHYID2_OUI_MASK 0xfc00
  462. #define PHYID2_OUI_SHFT 10
  463. #define PHY_INIT1 0x0f000
  464. #define PHY_INIT2 0x0e00
  465. #define PHY_INIT3 0x01000
  466. #define PHY_INIT4 0x0200
  467. #define PHY_INIT5 0x0004
  468. #define PHY_INIT6 0x02000
  469. #define PHY_GIGABIT 0x0100
  470. #define PHY_TIMEOUT 0x1
  471. #define PHY_ERROR 0x2
  472. #define PHY_100 0x1
  473. #define PHY_1000 0x2
  474. #define PHY_HALF 0x100
  475. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  476. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  477. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  478. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  479. #define NV_PAUSEFRAME_RX_REQ 0x0010
  480. #define NV_PAUSEFRAME_TX_REQ 0x0020
  481. #define NV_PAUSEFRAME_AUTONEG 0x0040
  482. /* MSI/MSI-X defines */
  483. #define NV_MSI_X_MAX_VECTORS 8
  484. #define NV_MSI_X_VECTORS_MASK 0x000f
  485. #define NV_MSI_CAPABLE 0x0010
  486. #define NV_MSI_X_CAPABLE 0x0020
  487. #define NV_MSI_ENABLED 0x0040
  488. #define NV_MSI_X_ENABLED 0x0080
  489. #define NV_MSI_X_VECTOR_ALL 0x0
  490. #define NV_MSI_X_VECTOR_RX 0x0
  491. #define NV_MSI_X_VECTOR_TX 0x1
  492. #define NV_MSI_X_VECTOR_OTHER 0x2
  493. /*
  494. * SMP locking:
  495. * All hardware access under dev->priv->lock, except the performance
  496. * critical parts:
  497. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  498. * by the arch code for interrupts.
  499. * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission
  500. * needs dev->priv->lock :-(
  501. * - set_multicast_list: preparation lockless, relies on dev->xmit_lock.
  502. */
  503. /* in dev: base, irq */
  504. struct fe_priv {
  505. spinlock_t lock;
  506. /* General data:
  507. * Locking: spin_lock(&np->lock); */
  508. struct net_device_stats stats;
  509. int in_shutdown;
  510. u32 linkspeed;
  511. int duplex;
  512. int autoneg;
  513. int fixed_mode;
  514. int phyaddr;
  515. int wolenabled;
  516. unsigned int phy_oui;
  517. u16 gigabit;
  518. /* General data: RO fields */
  519. dma_addr_t ring_addr;
  520. struct pci_dev *pci_dev;
  521. u32 orig_mac[2];
  522. u32 irqmask;
  523. u32 desc_ver;
  524. u32 txrxctl_bits;
  525. u32 vlanctl_bits;
  526. u32 driver_data;
  527. u32 register_size;
  528. void __iomem *base;
  529. /* rx specific fields.
  530. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  531. */
  532. ring_type rx_ring;
  533. unsigned int cur_rx, refill_rx;
  534. struct sk_buff **rx_skbuff;
  535. dma_addr_t *rx_dma;
  536. unsigned int rx_buf_sz;
  537. unsigned int pkt_limit;
  538. struct timer_list oom_kick;
  539. struct timer_list nic_poll;
  540. u32 nic_poll_irq;
  541. int rx_ring_size;
  542. /* media detection workaround.
  543. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  544. */
  545. int need_linktimer;
  546. unsigned long link_timeout;
  547. /*
  548. * tx specific fields.
  549. */
  550. ring_type tx_ring;
  551. unsigned int next_tx, nic_tx;
  552. struct sk_buff **tx_skbuff;
  553. dma_addr_t *tx_dma;
  554. unsigned int *tx_dma_len;
  555. u32 tx_flags;
  556. int tx_ring_size;
  557. int tx_limit_start;
  558. int tx_limit_stop;
  559. /* vlan fields */
  560. struct vlan_group *vlangrp;
  561. /* msi/msi-x fields */
  562. u32 msi_flags;
  563. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  564. /* flow control */
  565. u32 pause_flags;
  566. };
  567. /*
  568. * Maximum number of loops until we assume that a bit in the irq mask
  569. * is stuck. Overridable with module param.
  570. */
  571. static int max_interrupt_work = 5;
  572. /*
  573. * Optimization can be either throuput mode or cpu mode
  574. *
  575. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  576. * CPU Mode: Interrupts are controlled by a timer.
  577. */
  578. #define NV_OPTIMIZATION_MODE_THROUGHPUT 0
  579. #define NV_OPTIMIZATION_MODE_CPU 1
  580. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  581. /*
  582. * Poll interval for timer irq
  583. *
  584. * This interval determines how frequent an interrupt is generated.
  585. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  586. * Min = 0, and Max = 65535
  587. */
  588. static int poll_interval = -1;
  589. /*
  590. * Disable MSI interrupts
  591. */
  592. static int disable_msi = 0;
  593. /*
  594. * Disable MSIX interrupts
  595. */
  596. static int disable_msix = 0;
  597. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  598. {
  599. return netdev_priv(dev);
  600. }
  601. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  602. {
  603. return ((struct fe_priv *)netdev_priv(dev))->base;
  604. }
  605. static inline void pci_push(u8 __iomem *base)
  606. {
  607. /* force out pending posted writes */
  608. readl(base);
  609. }
  610. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  611. {
  612. return le32_to_cpu(prd->FlagLen)
  613. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  614. }
  615. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  616. {
  617. return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2;
  618. }
  619. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  620. int delay, int delaymax, const char *msg)
  621. {
  622. u8 __iomem *base = get_hwbase(dev);
  623. pci_push(base);
  624. do {
  625. udelay(delay);
  626. delaymax -= delay;
  627. if (delaymax < 0) {
  628. if (msg)
  629. printk(msg);
  630. return 1;
  631. }
  632. } while ((readl(base + offset) & mask) != target);
  633. return 0;
  634. }
  635. #define NV_SETUP_RX_RING 0x01
  636. #define NV_SETUP_TX_RING 0x02
  637. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  638. {
  639. struct fe_priv *np = get_nvpriv(dev);
  640. u8 __iomem *base = get_hwbase(dev);
  641. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  642. if (rxtx_flags & NV_SETUP_RX_RING) {
  643. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  644. }
  645. if (rxtx_flags & NV_SETUP_TX_RING) {
  646. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  647. }
  648. } else {
  649. if (rxtx_flags & NV_SETUP_RX_RING) {
  650. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  651. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  652. }
  653. if (rxtx_flags & NV_SETUP_TX_RING) {
  654. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  655. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  656. }
  657. }
  658. }
  659. static void free_rings(struct net_device *dev)
  660. {
  661. struct fe_priv *np = get_nvpriv(dev);
  662. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  663. if(np->rx_ring.orig)
  664. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  665. np->rx_ring.orig, np->ring_addr);
  666. } else {
  667. if (np->rx_ring.ex)
  668. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  669. np->rx_ring.ex, np->ring_addr);
  670. }
  671. if (np->rx_skbuff)
  672. kfree(np->rx_skbuff);
  673. if (np->rx_dma)
  674. kfree(np->rx_dma);
  675. if (np->tx_skbuff)
  676. kfree(np->tx_skbuff);
  677. if (np->tx_dma)
  678. kfree(np->tx_dma);
  679. if (np->tx_dma_len)
  680. kfree(np->tx_dma_len);
  681. }
  682. static int using_multi_irqs(struct net_device *dev)
  683. {
  684. struct fe_priv *np = get_nvpriv(dev);
  685. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  686. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  687. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  688. return 0;
  689. else
  690. return 1;
  691. }
  692. static void nv_enable_irq(struct net_device *dev)
  693. {
  694. struct fe_priv *np = get_nvpriv(dev);
  695. if (!using_multi_irqs(dev)) {
  696. if (np->msi_flags & NV_MSI_X_ENABLED)
  697. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  698. else
  699. enable_irq(dev->irq);
  700. } else {
  701. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  702. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  703. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  704. }
  705. }
  706. static void nv_disable_irq(struct net_device *dev)
  707. {
  708. struct fe_priv *np = get_nvpriv(dev);
  709. if (!using_multi_irqs(dev)) {
  710. if (np->msi_flags & NV_MSI_X_ENABLED)
  711. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  712. else
  713. disable_irq(dev->irq);
  714. } else {
  715. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  716. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  717. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  718. }
  719. }
  720. /* In MSIX mode, a write to irqmask behaves as XOR */
  721. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  722. {
  723. u8 __iomem *base = get_hwbase(dev);
  724. writel(mask, base + NvRegIrqMask);
  725. }
  726. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  727. {
  728. struct fe_priv *np = get_nvpriv(dev);
  729. u8 __iomem *base = get_hwbase(dev);
  730. if (np->msi_flags & NV_MSI_X_ENABLED) {
  731. writel(mask, base + NvRegIrqMask);
  732. } else {
  733. if (np->msi_flags & NV_MSI_ENABLED)
  734. writel(0, base + NvRegMSIIrqMask);
  735. writel(0, base + NvRegIrqMask);
  736. }
  737. }
  738. #define MII_READ (-1)
  739. /* mii_rw: read/write a register on the PHY.
  740. *
  741. * Caller must guarantee serialization
  742. */
  743. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  744. {
  745. u8 __iomem *base = get_hwbase(dev);
  746. u32 reg;
  747. int retval;
  748. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  749. reg = readl(base + NvRegMIIControl);
  750. if (reg & NVREG_MIICTL_INUSE) {
  751. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  752. udelay(NV_MIIBUSY_DELAY);
  753. }
  754. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  755. if (value != MII_READ) {
  756. writel(value, base + NvRegMIIData);
  757. reg |= NVREG_MIICTL_WRITE;
  758. }
  759. writel(reg, base + NvRegMIIControl);
  760. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  761. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  762. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  763. dev->name, miireg, addr);
  764. retval = -1;
  765. } else if (value != MII_READ) {
  766. /* it was a write operation - fewer failures are detectable */
  767. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  768. dev->name, value, miireg, addr);
  769. retval = 0;
  770. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  771. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  772. dev->name, miireg, addr);
  773. retval = -1;
  774. } else {
  775. retval = readl(base + NvRegMIIData);
  776. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  777. dev->name, miireg, addr, retval);
  778. }
  779. return retval;
  780. }
  781. static int phy_reset(struct net_device *dev)
  782. {
  783. struct fe_priv *np = netdev_priv(dev);
  784. u32 miicontrol;
  785. unsigned int tries = 0;
  786. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  787. miicontrol |= BMCR_RESET;
  788. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  789. return -1;
  790. }
  791. /* wait for 500ms */
  792. msleep(500);
  793. /* must wait till reset is deasserted */
  794. while (miicontrol & BMCR_RESET) {
  795. msleep(10);
  796. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  797. /* FIXME: 100 tries seem excessive */
  798. if (tries++ > 100)
  799. return -1;
  800. }
  801. return 0;
  802. }
  803. static int phy_init(struct net_device *dev)
  804. {
  805. struct fe_priv *np = get_nvpriv(dev);
  806. u8 __iomem *base = get_hwbase(dev);
  807. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  808. /* set advertise register */
  809. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  810. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  811. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  812. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  813. return PHY_ERROR;
  814. }
  815. /* get phy interface type */
  816. phyinterface = readl(base + NvRegPhyInterface);
  817. /* see if gigabit phy */
  818. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  819. if (mii_status & PHY_GIGABIT) {
  820. np->gigabit = PHY_GIGABIT;
  821. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  822. mii_control_1000 &= ~ADVERTISE_1000HALF;
  823. if (phyinterface & PHY_RGMII)
  824. mii_control_1000 |= ADVERTISE_1000FULL;
  825. else
  826. mii_control_1000 &= ~ADVERTISE_1000FULL;
  827. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  828. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  829. return PHY_ERROR;
  830. }
  831. }
  832. else
  833. np->gigabit = 0;
  834. /* reset the phy */
  835. if (phy_reset(dev)) {
  836. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  837. return PHY_ERROR;
  838. }
  839. /* phy vendor specific configuration */
  840. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  841. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  842. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  843. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  844. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  845. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  846. return PHY_ERROR;
  847. }
  848. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  849. phy_reserved |= PHY_INIT5;
  850. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  851. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  852. return PHY_ERROR;
  853. }
  854. }
  855. if (np->phy_oui == PHY_OUI_CICADA) {
  856. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  857. phy_reserved |= PHY_INIT6;
  858. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  859. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  860. return PHY_ERROR;
  861. }
  862. }
  863. /* some phys clear out pause advertisment on reset, set it back */
  864. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  865. /* restart auto negotiation */
  866. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  867. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  868. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  869. return PHY_ERROR;
  870. }
  871. return 0;
  872. }
  873. static void nv_start_rx(struct net_device *dev)
  874. {
  875. struct fe_priv *np = netdev_priv(dev);
  876. u8 __iomem *base = get_hwbase(dev);
  877. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  878. /* Already running? Stop it. */
  879. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  880. writel(0, base + NvRegReceiverControl);
  881. pci_push(base);
  882. }
  883. writel(np->linkspeed, base + NvRegLinkSpeed);
  884. pci_push(base);
  885. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  886. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  887. dev->name, np->duplex, np->linkspeed);
  888. pci_push(base);
  889. }
  890. static void nv_stop_rx(struct net_device *dev)
  891. {
  892. u8 __iomem *base = get_hwbase(dev);
  893. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  894. writel(0, base + NvRegReceiverControl);
  895. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  896. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  897. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  898. udelay(NV_RXSTOP_DELAY2);
  899. writel(0, base + NvRegLinkSpeed);
  900. }
  901. static void nv_start_tx(struct net_device *dev)
  902. {
  903. u8 __iomem *base = get_hwbase(dev);
  904. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  905. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  906. pci_push(base);
  907. }
  908. static void nv_stop_tx(struct net_device *dev)
  909. {
  910. u8 __iomem *base = get_hwbase(dev);
  911. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  912. writel(0, base + NvRegTransmitterControl);
  913. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  914. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  915. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  916. udelay(NV_TXSTOP_DELAY2);
  917. writel(0, base + NvRegUnknownTransmitterReg);
  918. }
  919. static void nv_txrx_reset(struct net_device *dev)
  920. {
  921. struct fe_priv *np = netdev_priv(dev);
  922. u8 __iomem *base = get_hwbase(dev);
  923. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  924. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  925. pci_push(base);
  926. udelay(NV_TXRX_RESET_DELAY);
  927. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  928. pci_push(base);
  929. }
  930. static void nv_mac_reset(struct net_device *dev)
  931. {
  932. struct fe_priv *np = netdev_priv(dev);
  933. u8 __iomem *base = get_hwbase(dev);
  934. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  935. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  936. pci_push(base);
  937. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  938. pci_push(base);
  939. udelay(NV_MAC_RESET_DELAY);
  940. writel(0, base + NvRegMacReset);
  941. pci_push(base);
  942. udelay(NV_MAC_RESET_DELAY);
  943. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  944. pci_push(base);
  945. }
  946. /*
  947. * nv_get_stats: dev->get_stats function
  948. * Get latest stats value from the nic.
  949. * Called with read_lock(&dev_base_lock) held for read -
  950. * only synchronized against unregister_netdevice.
  951. */
  952. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  953. {
  954. struct fe_priv *np = netdev_priv(dev);
  955. /* It seems that the nic always generates interrupts and doesn't
  956. * accumulate errors internally. Thus the current values in np->stats
  957. * are already up to date.
  958. */
  959. return &np->stats;
  960. }
  961. /*
  962. * nv_alloc_rx: fill rx ring entries.
  963. * Return 1 if the allocations for the skbs failed and the
  964. * rx engine is without Available descriptors
  965. */
  966. static int nv_alloc_rx(struct net_device *dev)
  967. {
  968. struct fe_priv *np = netdev_priv(dev);
  969. unsigned int refill_rx = np->refill_rx;
  970. int nr;
  971. while (np->cur_rx != refill_rx) {
  972. struct sk_buff *skb;
  973. nr = refill_rx % np->rx_ring_size;
  974. if (np->rx_skbuff[nr] == NULL) {
  975. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  976. if (!skb)
  977. break;
  978. skb->dev = dev;
  979. np->rx_skbuff[nr] = skb;
  980. } else {
  981. skb = np->rx_skbuff[nr];
  982. }
  983. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  984. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  985. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  986. np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]);
  987. wmb();
  988. np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  989. } else {
  990. np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  991. np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  992. wmb();
  993. np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  994. }
  995. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  996. dev->name, refill_rx);
  997. refill_rx++;
  998. }
  999. np->refill_rx = refill_rx;
  1000. if (np->cur_rx - refill_rx == np->rx_ring_size)
  1001. return 1;
  1002. return 0;
  1003. }
  1004. static void nv_do_rx_refill(unsigned long data)
  1005. {
  1006. struct net_device *dev = (struct net_device *) data;
  1007. struct fe_priv *np = netdev_priv(dev);
  1008. if (!using_multi_irqs(dev)) {
  1009. if (np->msi_flags & NV_MSI_X_ENABLED)
  1010. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1011. else
  1012. disable_irq(dev->irq);
  1013. } else {
  1014. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1015. }
  1016. if (nv_alloc_rx(dev)) {
  1017. spin_lock_irq(&np->lock);
  1018. if (!np->in_shutdown)
  1019. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1020. spin_unlock_irq(&np->lock);
  1021. }
  1022. if (!using_multi_irqs(dev)) {
  1023. if (np->msi_flags & NV_MSI_X_ENABLED)
  1024. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1025. else
  1026. enable_irq(dev->irq);
  1027. } else {
  1028. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1029. }
  1030. }
  1031. static void nv_init_rx(struct net_device *dev)
  1032. {
  1033. struct fe_priv *np = netdev_priv(dev);
  1034. int i;
  1035. np->cur_rx = np->rx_ring_size;
  1036. np->refill_rx = 0;
  1037. for (i = 0; i < np->rx_ring_size; i++)
  1038. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1039. np->rx_ring.orig[i].FlagLen = 0;
  1040. else
  1041. np->rx_ring.ex[i].FlagLen = 0;
  1042. }
  1043. static void nv_init_tx(struct net_device *dev)
  1044. {
  1045. struct fe_priv *np = netdev_priv(dev);
  1046. int i;
  1047. np->next_tx = np->nic_tx = 0;
  1048. for (i = 0; i < np->tx_ring_size; i++) {
  1049. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1050. np->tx_ring.orig[i].FlagLen = 0;
  1051. else
  1052. np->tx_ring.ex[i].FlagLen = 0;
  1053. np->tx_skbuff[i] = NULL;
  1054. np->tx_dma[i] = 0;
  1055. }
  1056. }
  1057. static int nv_init_ring(struct net_device *dev)
  1058. {
  1059. nv_init_tx(dev);
  1060. nv_init_rx(dev);
  1061. return nv_alloc_rx(dev);
  1062. }
  1063. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  1064. {
  1065. struct fe_priv *np = netdev_priv(dev);
  1066. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  1067. dev->name, skbnr);
  1068. if (np->tx_dma[skbnr]) {
  1069. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  1070. np->tx_dma_len[skbnr],
  1071. PCI_DMA_TODEVICE);
  1072. np->tx_dma[skbnr] = 0;
  1073. }
  1074. if (np->tx_skbuff[skbnr]) {
  1075. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  1076. np->tx_skbuff[skbnr] = NULL;
  1077. return 1;
  1078. } else {
  1079. return 0;
  1080. }
  1081. }
  1082. static void nv_drain_tx(struct net_device *dev)
  1083. {
  1084. struct fe_priv *np = netdev_priv(dev);
  1085. unsigned int i;
  1086. for (i = 0; i < np->tx_ring_size; i++) {
  1087. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1088. np->tx_ring.orig[i].FlagLen = 0;
  1089. else
  1090. np->tx_ring.ex[i].FlagLen = 0;
  1091. if (nv_release_txskb(dev, i))
  1092. np->stats.tx_dropped++;
  1093. }
  1094. }
  1095. static void nv_drain_rx(struct net_device *dev)
  1096. {
  1097. struct fe_priv *np = netdev_priv(dev);
  1098. int i;
  1099. for (i = 0; i < np->rx_ring_size; i++) {
  1100. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1101. np->rx_ring.orig[i].FlagLen = 0;
  1102. else
  1103. np->rx_ring.ex[i].FlagLen = 0;
  1104. wmb();
  1105. if (np->rx_skbuff[i]) {
  1106. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1107. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1108. PCI_DMA_FROMDEVICE);
  1109. dev_kfree_skb(np->rx_skbuff[i]);
  1110. np->rx_skbuff[i] = NULL;
  1111. }
  1112. }
  1113. }
  1114. static void drain_ring(struct net_device *dev)
  1115. {
  1116. nv_drain_tx(dev);
  1117. nv_drain_rx(dev);
  1118. }
  1119. /*
  1120. * nv_start_xmit: dev->hard_start_xmit function
  1121. * Called with dev->xmit_lock held.
  1122. */
  1123. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1124. {
  1125. struct fe_priv *np = netdev_priv(dev);
  1126. u32 tx_flags = 0;
  1127. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1128. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1129. unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
  1130. unsigned int start_nr = np->next_tx % np->tx_ring_size;
  1131. unsigned int i;
  1132. u32 offset = 0;
  1133. u32 bcnt;
  1134. u32 size = skb->len-skb->data_len;
  1135. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1136. u32 tx_flags_vlan = 0;
  1137. /* add fragments to entries count */
  1138. for (i = 0; i < fragments; i++) {
  1139. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1140. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1141. }
  1142. spin_lock_irq(&np->lock);
  1143. if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
  1144. spin_unlock_irq(&np->lock);
  1145. netif_stop_queue(dev);
  1146. return NETDEV_TX_BUSY;
  1147. }
  1148. /* setup the header buffer */
  1149. do {
  1150. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1151. nr = (nr + 1) % np->tx_ring_size;
  1152. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1153. PCI_DMA_TODEVICE);
  1154. np->tx_dma_len[nr] = bcnt;
  1155. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1156. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1157. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1158. } else {
  1159. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1160. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1161. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1162. }
  1163. tx_flags = np->tx_flags;
  1164. offset += bcnt;
  1165. size -= bcnt;
  1166. } while(size);
  1167. /* setup the fragments */
  1168. for (i = 0; i < fragments; i++) {
  1169. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1170. u32 size = frag->size;
  1171. offset = 0;
  1172. do {
  1173. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1174. nr = (nr + 1) % np->tx_ring_size;
  1175. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1176. PCI_DMA_TODEVICE);
  1177. np->tx_dma_len[nr] = bcnt;
  1178. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1179. np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]);
  1180. np->tx_ring.orig[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1181. } else {
  1182. np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1183. np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1184. np->tx_ring.ex[nr].FlagLen = cpu_to_le32((bcnt-1) | tx_flags);
  1185. }
  1186. offset += bcnt;
  1187. size -= bcnt;
  1188. } while (size);
  1189. }
  1190. /* set last fragment flag */
  1191. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1192. np->tx_ring.orig[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1193. } else {
  1194. np->tx_ring.ex[nr].FlagLen |= cpu_to_le32(tx_flags_extra);
  1195. }
  1196. np->tx_skbuff[nr] = skb;
  1197. #ifdef NETIF_F_TSO
  1198. if (skb_shinfo(skb)->tso_size)
  1199. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT);
  1200. else
  1201. #endif
  1202. tx_flags_extra = (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0);
  1203. /* vlan tag */
  1204. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1205. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1206. }
  1207. /* set tx flags */
  1208. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1209. np->tx_ring.orig[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1210. } else {
  1211. np->tx_ring.ex[start_nr].TxVlan = cpu_to_le32(tx_flags_vlan);
  1212. np->tx_ring.ex[start_nr].FlagLen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1213. }
  1214. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1215. dev->name, np->next_tx, entries, tx_flags_extra);
  1216. {
  1217. int j;
  1218. for (j=0; j<64; j++) {
  1219. if ((j%16) == 0)
  1220. dprintk("\n%03x:", j);
  1221. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1222. }
  1223. dprintk("\n");
  1224. }
  1225. np->next_tx += entries;
  1226. dev->trans_start = jiffies;
  1227. spin_unlock_irq(&np->lock);
  1228. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1229. pci_push(get_hwbase(dev));
  1230. return NETDEV_TX_OK;
  1231. }
  1232. /*
  1233. * nv_tx_done: check for completed packets, release the skbs.
  1234. *
  1235. * Caller must own np->lock.
  1236. */
  1237. static void nv_tx_done(struct net_device *dev)
  1238. {
  1239. struct fe_priv *np = netdev_priv(dev);
  1240. u32 Flags;
  1241. unsigned int i;
  1242. struct sk_buff *skb;
  1243. while (np->nic_tx != np->next_tx) {
  1244. i = np->nic_tx % np->tx_ring_size;
  1245. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1246. Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen);
  1247. else
  1248. Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen);
  1249. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n",
  1250. dev->name, np->nic_tx, Flags);
  1251. if (Flags & NV_TX_VALID)
  1252. break;
  1253. if (np->desc_ver == DESC_VER_1) {
  1254. if (Flags & NV_TX_LASTPACKET) {
  1255. skb = np->tx_skbuff[i];
  1256. if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1257. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1258. if (Flags & NV_TX_UNDERFLOW)
  1259. np->stats.tx_fifo_errors++;
  1260. if (Flags & NV_TX_CARRIERLOST)
  1261. np->stats.tx_carrier_errors++;
  1262. np->stats.tx_errors++;
  1263. } else {
  1264. np->stats.tx_packets++;
  1265. np->stats.tx_bytes += skb->len;
  1266. }
  1267. }
  1268. } else {
  1269. if (Flags & NV_TX2_LASTPACKET) {
  1270. skb = np->tx_skbuff[i];
  1271. if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1272. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1273. if (Flags & NV_TX2_UNDERFLOW)
  1274. np->stats.tx_fifo_errors++;
  1275. if (Flags & NV_TX2_CARRIERLOST)
  1276. np->stats.tx_carrier_errors++;
  1277. np->stats.tx_errors++;
  1278. } else {
  1279. np->stats.tx_packets++;
  1280. np->stats.tx_bytes += skb->len;
  1281. }
  1282. }
  1283. }
  1284. nv_release_txskb(dev, i);
  1285. np->nic_tx++;
  1286. }
  1287. if (np->next_tx - np->nic_tx < np->tx_limit_start)
  1288. netif_wake_queue(dev);
  1289. }
  1290. /*
  1291. * nv_tx_timeout: dev->tx_timeout function
  1292. * Called with dev->xmit_lock held.
  1293. */
  1294. static void nv_tx_timeout(struct net_device *dev)
  1295. {
  1296. struct fe_priv *np = netdev_priv(dev);
  1297. u8 __iomem *base = get_hwbase(dev);
  1298. u32 status;
  1299. if (np->msi_flags & NV_MSI_X_ENABLED)
  1300. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1301. else
  1302. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1303. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1304. {
  1305. int i;
  1306. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1307. dev->name, (unsigned long)np->ring_addr,
  1308. np->next_tx, np->nic_tx);
  1309. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1310. for (i=0;i<=np->register_size;i+= 32) {
  1311. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1312. i,
  1313. readl(base + i + 0), readl(base + i + 4),
  1314. readl(base + i + 8), readl(base + i + 12),
  1315. readl(base + i + 16), readl(base + i + 20),
  1316. readl(base + i + 24), readl(base + i + 28));
  1317. }
  1318. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1319. for (i=0;i<np->tx_ring_size;i+= 4) {
  1320. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1321. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1322. i,
  1323. le32_to_cpu(np->tx_ring.orig[i].PacketBuffer),
  1324. le32_to_cpu(np->tx_ring.orig[i].FlagLen),
  1325. le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer),
  1326. le32_to_cpu(np->tx_ring.orig[i+1].FlagLen),
  1327. le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer),
  1328. le32_to_cpu(np->tx_ring.orig[i+2].FlagLen),
  1329. le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer),
  1330. le32_to_cpu(np->tx_ring.orig[i+3].FlagLen));
  1331. } else {
  1332. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1333. i,
  1334. le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh),
  1335. le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow),
  1336. le32_to_cpu(np->tx_ring.ex[i].FlagLen),
  1337. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh),
  1338. le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow),
  1339. le32_to_cpu(np->tx_ring.ex[i+1].FlagLen),
  1340. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh),
  1341. le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow),
  1342. le32_to_cpu(np->tx_ring.ex[i+2].FlagLen),
  1343. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh),
  1344. le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow),
  1345. le32_to_cpu(np->tx_ring.ex[i+3].FlagLen));
  1346. }
  1347. }
  1348. }
  1349. spin_lock_irq(&np->lock);
  1350. /* 1) stop tx engine */
  1351. nv_stop_tx(dev);
  1352. /* 2) check that the packets were not sent already: */
  1353. nv_tx_done(dev);
  1354. /* 3) if there are dead entries: clear everything */
  1355. if (np->next_tx != np->nic_tx) {
  1356. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1357. nv_drain_tx(dev);
  1358. np->next_tx = np->nic_tx = 0;
  1359. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1360. netif_wake_queue(dev);
  1361. }
  1362. /* 4) restart tx engine */
  1363. nv_start_tx(dev);
  1364. spin_unlock_irq(&np->lock);
  1365. }
  1366. /*
  1367. * Called when the nic notices a mismatch between the actual data len on the
  1368. * wire and the len indicated in the 802 header
  1369. */
  1370. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1371. {
  1372. int hdrlen; /* length of the 802 header */
  1373. int protolen; /* length as stored in the proto field */
  1374. /* 1) calculate len according to header */
  1375. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) {
  1376. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1377. hdrlen = VLAN_HLEN;
  1378. } else {
  1379. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1380. hdrlen = ETH_HLEN;
  1381. }
  1382. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1383. dev->name, datalen, protolen, hdrlen);
  1384. if (protolen > ETH_DATA_LEN)
  1385. return datalen; /* Value in proto field not a len, no checks possible */
  1386. protolen += hdrlen;
  1387. /* consistency checks: */
  1388. if (datalen > ETH_ZLEN) {
  1389. if (datalen >= protolen) {
  1390. /* more data on wire than in 802 header, trim of
  1391. * additional data.
  1392. */
  1393. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1394. dev->name, protolen);
  1395. return protolen;
  1396. } else {
  1397. /* less data on wire than mentioned in header.
  1398. * Discard the packet.
  1399. */
  1400. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1401. dev->name);
  1402. return -1;
  1403. }
  1404. } else {
  1405. /* short packet. Accept only if 802 values are also short */
  1406. if (protolen > ETH_ZLEN) {
  1407. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1408. dev->name);
  1409. return -1;
  1410. }
  1411. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1412. dev->name, datalen);
  1413. return datalen;
  1414. }
  1415. }
  1416. static void nv_rx_process(struct net_device *dev)
  1417. {
  1418. struct fe_priv *np = netdev_priv(dev);
  1419. u32 Flags;
  1420. u32 vlanflags = 0;
  1421. for (;;) {
  1422. struct sk_buff *skb;
  1423. int len;
  1424. int i;
  1425. if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
  1426. break; /* we scanned the whole ring - do not continue */
  1427. i = np->cur_rx % np->rx_ring_size;
  1428. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1429. Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen);
  1430. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1431. } else {
  1432. Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen);
  1433. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1434. vlanflags = le32_to_cpu(np->rx_ring.ex[i].PacketBufferLow);
  1435. }
  1436. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n",
  1437. dev->name, np->cur_rx, Flags);
  1438. if (Flags & NV_RX_AVAIL)
  1439. break; /* still owned by hardware, */
  1440. /*
  1441. * the packet is for us - immediately tear down the pci mapping.
  1442. * TODO: check if a prefetch of the first cacheline improves
  1443. * the performance.
  1444. */
  1445. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1446. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1447. PCI_DMA_FROMDEVICE);
  1448. {
  1449. int j;
  1450. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags);
  1451. for (j=0; j<64; j++) {
  1452. if ((j%16) == 0)
  1453. dprintk("\n%03x:", j);
  1454. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1455. }
  1456. dprintk("\n");
  1457. }
  1458. /* look at what we actually got: */
  1459. if (np->desc_ver == DESC_VER_1) {
  1460. if (!(Flags & NV_RX_DESCRIPTORVALID))
  1461. goto next_pkt;
  1462. if (Flags & NV_RX_ERROR) {
  1463. if (Flags & NV_RX_MISSEDFRAME) {
  1464. np->stats.rx_missed_errors++;
  1465. np->stats.rx_errors++;
  1466. goto next_pkt;
  1467. }
  1468. if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1469. np->stats.rx_errors++;
  1470. goto next_pkt;
  1471. }
  1472. if (Flags & NV_RX_CRCERR) {
  1473. np->stats.rx_crc_errors++;
  1474. np->stats.rx_errors++;
  1475. goto next_pkt;
  1476. }
  1477. if (Flags & NV_RX_OVERFLOW) {
  1478. np->stats.rx_over_errors++;
  1479. np->stats.rx_errors++;
  1480. goto next_pkt;
  1481. }
  1482. if (Flags & NV_RX_ERROR4) {
  1483. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1484. if (len < 0) {
  1485. np->stats.rx_errors++;
  1486. goto next_pkt;
  1487. }
  1488. }
  1489. /* framing errors are soft errors. */
  1490. if (Flags & NV_RX_FRAMINGERR) {
  1491. if (Flags & NV_RX_SUBSTRACT1) {
  1492. len--;
  1493. }
  1494. }
  1495. }
  1496. } else {
  1497. if (!(Flags & NV_RX2_DESCRIPTORVALID))
  1498. goto next_pkt;
  1499. if (Flags & NV_RX2_ERROR) {
  1500. if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1501. np->stats.rx_errors++;
  1502. goto next_pkt;
  1503. }
  1504. if (Flags & NV_RX2_CRCERR) {
  1505. np->stats.rx_crc_errors++;
  1506. np->stats.rx_errors++;
  1507. goto next_pkt;
  1508. }
  1509. if (Flags & NV_RX2_OVERFLOW) {
  1510. np->stats.rx_over_errors++;
  1511. np->stats.rx_errors++;
  1512. goto next_pkt;
  1513. }
  1514. if (Flags & NV_RX2_ERROR4) {
  1515. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1516. if (len < 0) {
  1517. np->stats.rx_errors++;
  1518. goto next_pkt;
  1519. }
  1520. }
  1521. /* framing errors are soft errors */
  1522. if (Flags & NV_RX2_FRAMINGERR) {
  1523. if (Flags & NV_RX2_SUBSTRACT1) {
  1524. len--;
  1525. }
  1526. }
  1527. }
  1528. Flags &= NV_RX2_CHECKSUMMASK;
  1529. if (Flags == NV_RX2_CHECKSUMOK1 ||
  1530. Flags == NV_RX2_CHECKSUMOK2 ||
  1531. Flags == NV_RX2_CHECKSUMOK3) {
  1532. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1533. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1534. } else {
  1535. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1536. }
  1537. }
  1538. /* got a valid packet - forward it to the network core */
  1539. skb = np->rx_skbuff[i];
  1540. np->rx_skbuff[i] = NULL;
  1541. skb_put(skb, len);
  1542. skb->protocol = eth_type_trans(skb, dev);
  1543. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1544. dev->name, np->cur_rx, len, skb->protocol);
  1545. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT)) {
  1546. vlan_hwaccel_rx(skb, np->vlangrp, vlanflags & NV_RX3_VLAN_TAG_MASK);
  1547. } else {
  1548. netif_rx(skb);
  1549. }
  1550. dev->last_rx = jiffies;
  1551. np->stats.rx_packets++;
  1552. np->stats.rx_bytes += len;
  1553. next_pkt:
  1554. np->cur_rx++;
  1555. }
  1556. }
  1557. static void set_bufsize(struct net_device *dev)
  1558. {
  1559. struct fe_priv *np = netdev_priv(dev);
  1560. if (dev->mtu <= ETH_DATA_LEN)
  1561. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1562. else
  1563. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1564. }
  1565. /*
  1566. * nv_change_mtu: dev->change_mtu function
  1567. * Called with dev_base_lock held for read.
  1568. */
  1569. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1570. {
  1571. struct fe_priv *np = netdev_priv(dev);
  1572. int old_mtu;
  1573. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1574. return -EINVAL;
  1575. old_mtu = dev->mtu;
  1576. dev->mtu = new_mtu;
  1577. /* return early if the buffer sizes will not change */
  1578. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1579. return 0;
  1580. if (old_mtu == new_mtu)
  1581. return 0;
  1582. /* synchronized against open : rtnl_lock() held by caller */
  1583. if (netif_running(dev)) {
  1584. u8 __iomem *base = get_hwbase(dev);
  1585. /*
  1586. * It seems that the nic preloads valid ring entries into an
  1587. * internal buffer. The procedure for flushing everything is
  1588. * guessed, there is probably a simpler approach.
  1589. * Changing the MTU is a rare event, it shouldn't matter.
  1590. */
  1591. nv_disable_irq(dev);
  1592. spin_lock_bh(&dev->xmit_lock);
  1593. spin_lock(&np->lock);
  1594. /* stop engines */
  1595. nv_stop_rx(dev);
  1596. nv_stop_tx(dev);
  1597. nv_txrx_reset(dev);
  1598. /* drain rx queue */
  1599. nv_drain_rx(dev);
  1600. nv_drain_tx(dev);
  1601. /* reinit driver view of the rx queue */
  1602. set_bufsize(dev);
  1603. if (nv_init_ring(dev)) {
  1604. if (!np->in_shutdown)
  1605. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1606. }
  1607. /* reinit nic view of the rx queue */
  1608. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1609. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1610. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  1611. base + NvRegRingSizes);
  1612. pci_push(base);
  1613. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1614. pci_push(base);
  1615. /* restart rx engine */
  1616. nv_start_rx(dev);
  1617. nv_start_tx(dev);
  1618. spin_unlock(&np->lock);
  1619. spin_unlock_bh(&dev->xmit_lock);
  1620. nv_enable_irq(dev);
  1621. }
  1622. return 0;
  1623. }
  1624. static void nv_copy_mac_to_hw(struct net_device *dev)
  1625. {
  1626. u8 __iomem *base = get_hwbase(dev);
  1627. u32 mac[2];
  1628. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1629. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1630. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1631. writel(mac[0], base + NvRegMacAddrA);
  1632. writel(mac[1], base + NvRegMacAddrB);
  1633. }
  1634. /*
  1635. * nv_set_mac_address: dev->set_mac_address function
  1636. * Called with rtnl_lock() held.
  1637. */
  1638. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1639. {
  1640. struct fe_priv *np = netdev_priv(dev);
  1641. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1642. if(!is_valid_ether_addr(macaddr->sa_data))
  1643. return -EADDRNOTAVAIL;
  1644. /* synchronized against open : rtnl_lock() held by caller */
  1645. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1646. if (netif_running(dev)) {
  1647. spin_lock_bh(&dev->xmit_lock);
  1648. spin_lock_irq(&np->lock);
  1649. /* stop rx engine */
  1650. nv_stop_rx(dev);
  1651. /* set mac address */
  1652. nv_copy_mac_to_hw(dev);
  1653. /* restart rx engine */
  1654. nv_start_rx(dev);
  1655. spin_unlock_irq(&np->lock);
  1656. spin_unlock_bh(&dev->xmit_lock);
  1657. } else {
  1658. nv_copy_mac_to_hw(dev);
  1659. }
  1660. return 0;
  1661. }
  1662. /*
  1663. * nv_set_multicast: dev->set_multicast function
  1664. * Called with dev->xmit_lock held.
  1665. */
  1666. static void nv_set_multicast(struct net_device *dev)
  1667. {
  1668. struct fe_priv *np = netdev_priv(dev);
  1669. u8 __iomem *base = get_hwbase(dev);
  1670. u32 addr[2];
  1671. u32 mask[2];
  1672. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  1673. memset(addr, 0, sizeof(addr));
  1674. memset(mask, 0, sizeof(mask));
  1675. if (dev->flags & IFF_PROMISC) {
  1676. printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
  1677. pff |= NVREG_PFF_PROMISC;
  1678. } else {
  1679. pff |= NVREG_PFF_MYADDR;
  1680. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1681. u32 alwaysOff[2];
  1682. u32 alwaysOn[2];
  1683. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1684. if (dev->flags & IFF_ALLMULTI) {
  1685. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1686. } else {
  1687. struct dev_mc_list *walk;
  1688. walk = dev->mc_list;
  1689. while (walk != NULL) {
  1690. u32 a, b;
  1691. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1692. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1693. alwaysOn[0] &= a;
  1694. alwaysOff[0] &= ~a;
  1695. alwaysOn[1] &= b;
  1696. alwaysOff[1] &= ~b;
  1697. walk = walk->next;
  1698. }
  1699. }
  1700. addr[0] = alwaysOn[0];
  1701. addr[1] = alwaysOn[1];
  1702. mask[0] = alwaysOn[0] | alwaysOff[0];
  1703. mask[1] = alwaysOn[1] | alwaysOff[1];
  1704. }
  1705. }
  1706. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1707. pff |= NVREG_PFF_ALWAYS;
  1708. spin_lock_irq(&np->lock);
  1709. nv_stop_rx(dev);
  1710. writel(addr[0], base + NvRegMulticastAddrA);
  1711. writel(addr[1], base + NvRegMulticastAddrB);
  1712. writel(mask[0], base + NvRegMulticastMaskA);
  1713. writel(mask[1], base + NvRegMulticastMaskB);
  1714. writel(pff, base + NvRegPacketFilterFlags);
  1715. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1716. dev->name);
  1717. nv_start_rx(dev);
  1718. spin_unlock_irq(&np->lock);
  1719. }
  1720. void nv_update_pause(struct net_device *dev, u32 pause_flags)
  1721. {
  1722. struct fe_priv *np = netdev_priv(dev);
  1723. u8 __iomem *base = get_hwbase(dev);
  1724. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  1725. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  1726. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  1727. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  1728. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  1729. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1730. } else {
  1731. writel(pff, base + NvRegPacketFilterFlags);
  1732. }
  1733. }
  1734. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  1735. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  1736. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  1737. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  1738. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  1739. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1740. } else {
  1741. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  1742. writel(regmisc, base + NvRegMisc1);
  1743. }
  1744. }
  1745. }
  1746. /**
  1747. * nv_update_linkspeed: Setup the MAC according to the link partner
  1748. * @dev: Network device to be configured
  1749. *
  1750. * The function queries the PHY and checks if there is a link partner.
  1751. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1752. * set to 10 MBit HD.
  1753. *
  1754. * The function returns 0 if there is no link partner and 1 if there is
  1755. * a good link partner.
  1756. */
  1757. static int nv_update_linkspeed(struct net_device *dev)
  1758. {
  1759. struct fe_priv *np = netdev_priv(dev);
  1760. u8 __iomem *base = get_hwbase(dev);
  1761. int adv = 0;
  1762. int lpa = 0;
  1763. int adv_lpa, adv_pause, lpa_pause;
  1764. int newls = np->linkspeed;
  1765. int newdup = np->duplex;
  1766. int mii_status;
  1767. int retval = 0;
  1768. u32 control_1000, status_1000, phyreg, pause_flags;
  1769. /* BMSR_LSTATUS is latched, read it twice:
  1770. * we want the current value.
  1771. */
  1772. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1773. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1774. if (!(mii_status & BMSR_LSTATUS)) {
  1775. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1776. dev->name);
  1777. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1778. newdup = 0;
  1779. retval = 0;
  1780. goto set_speed;
  1781. }
  1782. if (np->autoneg == 0) {
  1783. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1784. dev->name, np->fixed_mode);
  1785. if (np->fixed_mode & LPA_100FULL) {
  1786. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1787. newdup = 1;
  1788. } else if (np->fixed_mode & LPA_100HALF) {
  1789. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1790. newdup = 0;
  1791. } else if (np->fixed_mode & LPA_10FULL) {
  1792. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1793. newdup = 1;
  1794. } else {
  1795. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1796. newdup = 0;
  1797. }
  1798. retval = 1;
  1799. goto set_speed;
  1800. }
  1801. /* check auto negotiation is complete */
  1802. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1803. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1804. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1805. newdup = 0;
  1806. retval = 0;
  1807. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1808. goto set_speed;
  1809. }
  1810. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1811. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  1812. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  1813. dev->name, adv, lpa);
  1814. retval = 1;
  1815. if (np->gigabit == PHY_GIGABIT) {
  1816. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1817. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  1818. if ((control_1000 & ADVERTISE_1000FULL) &&
  1819. (status_1000 & LPA_1000FULL)) {
  1820. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  1821. dev->name);
  1822. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  1823. newdup = 1;
  1824. goto set_speed;
  1825. }
  1826. }
  1827. /* FIXME: handle parallel detection properly */
  1828. adv_lpa = lpa & adv;
  1829. if (adv_lpa & LPA_100FULL) {
  1830. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1831. newdup = 1;
  1832. } else if (adv_lpa & LPA_100HALF) {
  1833. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1834. newdup = 0;
  1835. } else if (adv_lpa & LPA_10FULL) {
  1836. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1837. newdup = 1;
  1838. } else if (adv_lpa & LPA_10HALF) {
  1839. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1840. newdup = 0;
  1841. } else {
  1842. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  1843. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1844. newdup = 0;
  1845. }
  1846. set_speed:
  1847. if (np->duplex == newdup && np->linkspeed == newls)
  1848. return retval;
  1849. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  1850. dev->name, np->linkspeed, np->duplex, newls, newdup);
  1851. np->duplex = newdup;
  1852. np->linkspeed = newls;
  1853. if (np->gigabit == PHY_GIGABIT) {
  1854. phyreg = readl(base + NvRegRandomSeed);
  1855. phyreg &= ~(0x3FF00);
  1856. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  1857. phyreg |= NVREG_RNDSEED_FORCE3;
  1858. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  1859. phyreg |= NVREG_RNDSEED_FORCE2;
  1860. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  1861. phyreg |= NVREG_RNDSEED_FORCE;
  1862. writel(phyreg, base + NvRegRandomSeed);
  1863. }
  1864. phyreg = readl(base + NvRegPhyInterface);
  1865. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  1866. if (np->duplex == 0)
  1867. phyreg |= PHY_HALF;
  1868. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  1869. phyreg |= PHY_100;
  1870. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  1871. phyreg |= PHY_1000;
  1872. writel(phyreg, base + NvRegPhyInterface);
  1873. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  1874. base + NvRegMisc1);
  1875. pci_push(base);
  1876. writel(np->linkspeed, base + NvRegLinkSpeed);
  1877. pci_push(base);
  1878. pause_flags = 0;
  1879. /* setup pause frame */
  1880. if (np->duplex != 0) {
  1881. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  1882. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  1883. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  1884. switch (adv_pause) {
  1885. case (ADVERTISE_PAUSE_CAP):
  1886. if (lpa_pause & LPA_PAUSE_CAP) {
  1887. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1888. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  1889. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1890. }
  1891. break;
  1892. case (ADVERTISE_PAUSE_ASYM):
  1893. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  1894. {
  1895. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1896. }
  1897. break;
  1898. case (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM):
  1899. if (lpa_pause & LPA_PAUSE_CAP)
  1900. {
  1901. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1902. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  1903. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1904. }
  1905. if (lpa_pause == LPA_PAUSE_ASYM)
  1906. {
  1907. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1908. }
  1909. break;
  1910. }
  1911. } else {
  1912. pause_flags = np->pause_flags;
  1913. }
  1914. }
  1915. nv_update_pause(dev, pause_flags);
  1916. return retval;
  1917. }
  1918. static void nv_linkchange(struct net_device *dev)
  1919. {
  1920. if (nv_update_linkspeed(dev)) {
  1921. if (!netif_carrier_ok(dev)) {
  1922. netif_carrier_on(dev);
  1923. printk(KERN_INFO "%s: link up.\n", dev->name);
  1924. nv_start_rx(dev);
  1925. }
  1926. } else {
  1927. if (netif_carrier_ok(dev)) {
  1928. netif_carrier_off(dev);
  1929. printk(KERN_INFO "%s: link down.\n", dev->name);
  1930. nv_stop_rx(dev);
  1931. }
  1932. }
  1933. }
  1934. static void nv_link_irq(struct net_device *dev)
  1935. {
  1936. u8 __iomem *base = get_hwbase(dev);
  1937. u32 miistat;
  1938. miistat = readl(base + NvRegMIIStatus);
  1939. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  1940. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  1941. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  1942. nv_linkchange(dev);
  1943. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  1944. }
  1945. static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs)
  1946. {
  1947. struct net_device *dev = (struct net_device *) data;
  1948. struct fe_priv *np = netdev_priv(dev);
  1949. u8 __iomem *base = get_hwbase(dev);
  1950. u32 events;
  1951. int i;
  1952. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  1953. for (i=0; ; i++) {
  1954. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  1955. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1956. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  1957. } else {
  1958. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1959. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  1960. }
  1961. pci_push(base);
  1962. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  1963. if (!(events & np->irqmask))
  1964. break;
  1965. spin_lock(&np->lock);
  1966. nv_tx_done(dev);
  1967. spin_unlock(&np->lock);
  1968. nv_rx_process(dev);
  1969. if (nv_alloc_rx(dev)) {
  1970. spin_lock(&np->lock);
  1971. if (!np->in_shutdown)
  1972. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1973. spin_unlock(&np->lock);
  1974. }
  1975. if (events & NVREG_IRQ_LINK) {
  1976. spin_lock(&np->lock);
  1977. nv_link_irq(dev);
  1978. spin_unlock(&np->lock);
  1979. }
  1980. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  1981. spin_lock(&np->lock);
  1982. nv_linkchange(dev);
  1983. spin_unlock(&np->lock);
  1984. np->link_timeout = jiffies + LINK_TIMEOUT;
  1985. }
  1986. if (events & (NVREG_IRQ_TX_ERR)) {
  1987. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  1988. dev->name, events);
  1989. }
  1990. if (events & (NVREG_IRQ_UNKNOWN)) {
  1991. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  1992. dev->name, events);
  1993. }
  1994. if (i > max_interrupt_work) {
  1995. spin_lock(&np->lock);
  1996. /* disable interrupts on the nic */
  1997. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  1998. writel(0, base + NvRegIrqMask);
  1999. else
  2000. writel(np->irqmask, base + NvRegIrqMask);
  2001. pci_push(base);
  2002. if (!np->in_shutdown) {
  2003. np->nic_poll_irq = np->irqmask;
  2004. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2005. }
  2006. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2007. spin_unlock(&np->lock);
  2008. break;
  2009. }
  2010. }
  2011. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2012. return IRQ_RETVAL(i);
  2013. }
  2014. static irqreturn_t nv_nic_irq_tx(int foo, void *data, struct pt_regs *regs)
  2015. {
  2016. struct net_device *dev = (struct net_device *) data;
  2017. struct fe_priv *np = netdev_priv(dev);
  2018. u8 __iomem *base = get_hwbase(dev);
  2019. u32 events;
  2020. int i;
  2021. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2022. for (i=0; ; i++) {
  2023. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2024. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2025. pci_push(base);
  2026. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2027. if (!(events & np->irqmask))
  2028. break;
  2029. spin_lock_irq(&np->lock);
  2030. nv_tx_done(dev);
  2031. spin_unlock_irq(&np->lock);
  2032. if (events & (NVREG_IRQ_TX_ERR)) {
  2033. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2034. dev->name, events);
  2035. }
  2036. if (i > max_interrupt_work) {
  2037. spin_lock_irq(&np->lock);
  2038. /* disable interrupts on the nic */
  2039. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2040. pci_push(base);
  2041. if (!np->in_shutdown) {
  2042. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2043. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2044. }
  2045. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2046. spin_unlock_irq(&np->lock);
  2047. break;
  2048. }
  2049. }
  2050. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2051. return IRQ_RETVAL(i);
  2052. }
  2053. static irqreturn_t nv_nic_irq_rx(int foo, void *data, struct pt_regs *regs)
  2054. {
  2055. struct net_device *dev = (struct net_device *) data;
  2056. struct fe_priv *np = netdev_priv(dev);
  2057. u8 __iomem *base = get_hwbase(dev);
  2058. u32 events;
  2059. int i;
  2060. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2061. for (i=0; ; i++) {
  2062. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2063. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2064. pci_push(base);
  2065. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2066. if (!(events & np->irqmask))
  2067. break;
  2068. nv_rx_process(dev);
  2069. if (nv_alloc_rx(dev)) {
  2070. spin_lock_irq(&np->lock);
  2071. if (!np->in_shutdown)
  2072. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2073. spin_unlock_irq(&np->lock);
  2074. }
  2075. if (i > max_interrupt_work) {
  2076. spin_lock_irq(&np->lock);
  2077. /* disable interrupts on the nic */
  2078. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2079. pci_push(base);
  2080. if (!np->in_shutdown) {
  2081. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  2082. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2083. }
  2084. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  2085. spin_unlock_irq(&np->lock);
  2086. break;
  2087. }
  2088. }
  2089. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  2090. return IRQ_RETVAL(i);
  2091. }
  2092. static irqreturn_t nv_nic_irq_other(int foo, void *data, struct pt_regs *regs)
  2093. {
  2094. struct net_device *dev = (struct net_device *) data;
  2095. struct fe_priv *np = netdev_priv(dev);
  2096. u8 __iomem *base = get_hwbase(dev);
  2097. u32 events;
  2098. int i;
  2099. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  2100. for (i=0; ; i++) {
  2101. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  2102. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2103. pci_push(base);
  2104. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2105. if (!(events & np->irqmask))
  2106. break;
  2107. if (events & NVREG_IRQ_LINK) {
  2108. spin_lock_irq(&np->lock);
  2109. nv_link_irq(dev);
  2110. spin_unlock_irq(&np->lock);
  2111. }
  2112. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2113. spin_lock_irq(&np->lock);
  2114. nv_linkchange(dev);
  2115. spin_unlock_irq(&np->lock);
  2116. np->link_timeout = jiffies + LINK_TIMEOUT;
  2117. }
  2118. if (events & (NVREG_IRQ_UNKNOWN)) {
  2119. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2120. dev->name, events);
  2121. }
  2122. if (i > max_interrupt_work) {
  2123. spin_lock_irq(&np->lock);
  2124. /* disable interrupts on the nic */
  2125. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2126. pci_push(base);
  2127. if (!np->in_shutdown) {
  2128. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2129. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2130. }
  2131. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2132. spin_unlock_irq(&np->lock);
  2133. break;
  2134. }
  2135. }
  2136. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2137. return IRQ_RETVAL(i);
  2138. }
  2139. static void nv_do_nic_poll(unsigned long data)
  2140. {
  2141. struct net_device *dev = (struct net_device *) data;
  2142. struct fe_priv *np = netdev_priv(dev);
  2143. u8 __iomem *base = get_hwbase(dev);
  2144. u32 mask = 0;
  2145. /*
  2146. * First disable irq(s) and then
  2147. * reenable interrupts on the nic, we have to do this before calling
  2148. * nv_nic_irq because that may decide to do otherwise
  2149. */
  2150. if (!using_multi_irqs(dev)) {
  2151. if (np->msi_flags & NV_MSI_X_ENABLED)
  2152. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2153. else
  2154. disable_irq(dev->irq);
  2155. mask = np->irqmask;
  2156. } else {
  2157. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2158. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2159. mask |= NVREG_IRQ_RX_ALL;
  2160. }
  2161. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2162. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2163. mask |= NVREG_IRQ_TX_ALL;
  2164. }
  2165. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2166. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2167. mask |= NVREG_IRQ_OTHER;
  2168. }
  2169. }
  2170. np->nic_poll_irq = 0;
  2171. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2172. writel(mask, base + NvRegIrqMask);
  2173. pci_push(base);
  2174. if (!using_multi_irqs(dev)) {
  2175. nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL);
  2176. if (np->msi_flags & NV_MSI_X_ENABLED)
  2177. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2178. else
  2179. enable_irq(dev->irq);
  2180. } else {
  2181. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2182. nv_nic_irq_rx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2183. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2184. }
  2185. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2186. nv_nic_irq_tx((int) 0, (void *) data, (struct pt_regs *) NULL);
  2187. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2188. }
  2189. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2190. nv_nic_irq_other((int) 0, (void *) data, (struct pt_regs *) NULL);
  2191. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2192. }
  2193. }
  2194. }
  2195. #ifdef CONFIG_NET_POLL_CONTROLLER
  2196. static void nv_poll_controller(struct net_device *dev)
  2197. {
  2198. nv_do_nic_poll((unsigned long) dev);
  2199. }
  2200. #endif
  2201. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2202. {
  2203. struct fe_priv *np = netdev_priv(dev);
  2204. strcpy(info->driver, "forcedeth");
  2205. strcpy(info->version, FORCEDETH_VERSION);
  2206. strcpy(info->bus_info, pci_name(np->pci_dev));
  2207. }
  2208. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2209. {
  2210. struct fe_priv *np = netdev_priv(dev);
  2211. wolinfo->supported = WAKE_MAGIC;
  2212. spin_lock_irq(&np->lock);
  2213. if (np->wolenabled)
  2214. wolinfo->wolopts = WAKE_MAGIC;
  2215. spin_unlock_irq(&np->lock);
  2216. }
  2217. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2218. {
  2219. struct fe_priv *np = netdev_priv(dev);
  2220. u8 __iomem *base = get_hwbase(dev);
  2221. spin_lock_irq(&np->lock);
  2222. if (wolinfo->wolopts == 0) {
  2223. writel(0, base + NvRegWakeUpFlags);
  2224. np->wolenabled = 0;
  2225. }
  2226. if (wolinfo->wolopts & WAKE_MAGIC) {
  2227. writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags);
  2228. np->wolenabled = 1;
  2229. }
  2230. spin_unlock_irq(&np->lock);
  2231. return 0;
  2232. }
  2233. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2234. {
  2235. struct fe_priv *np = netdev_priv(dev);
  2236. int adv;
  2237. spin_lock_irq(&np->lock);
  2238. ecmd->port = PORT_MII;
  2239. if (!netif_running(dev)) {
  2240. /* We do not track link speed / duplex setting if the
  2241. * interface is disabled. Force a link check */
  2242. if (nv_update_linkspeed(dev)) {
  2243. if (!netif_carrier_ok(dev))
  2244. netif_carrier_on(dev);
  2245. } else {
  2246. if (netif_carrier_ok(dev))
  2247. netif_carrier_off(dev);
  2248. }
  2249. }
  2250. if (netif_carrier_ok(dev)) {
  2251. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2252. case NVREG_LINKSPEED_10:
  2253. ecmd->speed = SPEED_10;
  2254. break;
  2255. case NVREG_LINKSPEED_100:
  2256. ecmd->speed = SPEED_100;
  2257. break;
  2258. case NVREG_LINKSPEED_1000:
  2259. ecmd->speed = SPEED_1000;
  2260. break;
  2261. }
  2262. ecmd->duplex = DUPLEX_HALF;
  2263. if (np->duplex)
  2264. ecmd->duplex = DUPLEX_FULL;
  2265. } else {
  2266. ecmd->speed = -1;
  2267. ecmd->duplex = -1;
  2268. }
  2269. ecmd->autoneg = np->autoneg;
  2270. ecmd->advertising = ADVERTISED_MII;
  2271. if (np->autoneg) {
  2272. ecmd->advertising |= ADVERTISED_Autoneg;
  2273. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2274. if (adv & ADVERTISE_10HALF)
  2275. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2276. if (adv & ADVERTISE_10FULL)
  2277. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2278. if (adv & ADVERTISE_100HALF)
  2279. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2280. if (adv & ADVERTISE_100FULL)
  2281. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2282. if (np->gigabit == PHY_GIGABIT) {
  2283. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2284. if (adv & ADVERTISE_1000FULL)
  2285. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2286. }
  2287. }
  2288. ecmd->supported = (SUPPORTED_Autoneg |
  2289. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2290. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2291. SUPPORTED_MII);
  2292. if (np->gigabit == PHY_GIGABIT)
  2293. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2294. ecmd->phy_address = np->phyaddr;
  2295. ecmd->transceiver = XCVR_EXTERNAL;
  2296. /* ignore maxtxpkt, maxrxpkt for now */
  2297. spin_unlock_irq(&np->lock);
  2298. return 0;
  2299. }
  2300. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2301. {
  2302. struct fe_priv *np = netdev_priv(dev);
  2303. if (ecmd->port != PORT_MII)
  2304. return -EINVAL;
  2305. if (ecmd->transceiver != XCVR_EXTERNAL)
  2306. return -EINVAL;
  2307. if (ecmd->phy_address != np->phyaddr) {
  2308. /* TODO: support switching between multiple phys. Should be
  2309. * trivial, but not enabled due to lack of test hardware. */
  2310. return -EINVAL;
  2311. }
  2312. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2313. u32 mask;
  2314. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2315. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2316. if (np->gigabit == PHY_GIGABIT)
  2317. mask |= ADVERTISED_1000baseT_Full;
  2318. if ((ecmd->advertising & mask) == 0)
  2319. return -EINVAL;
  2320. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2321. /* Note: autonegotiation disable, speed 1000 intentionally
  2322. * forbidden - noone should need that. */
  2323. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2324. return -EINVAL;
  2325. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2326. return -EINVAL;
  2327. } else {
  2328. return -EINVAL;
  2329. }
  2330. netif_carrier_off(dev);
  2331. if (netif_running(dev)) {
  2332. nv_disable_irq(dev);
  2333. spin_lock_bh(&dev->xmit_lock);
  2334. spin_lock(&np->lock);
  2335. /* stop engines */
  2336. nv_stop_rx(dev);
  2337. nv_stop_tx(dev);
  2338. spin_unlock(&np->lock);
  2339. spin_unlock_bh(&dev->xmit_lock);
  2340. }
  2341. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2342. int adv, bmcr;
  2343. np->autoneg = 1;
  2344. /* advertise only what has been requested */
  2345. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2346. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2347. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2348. adv |= ADVERTISE_10HALF;
  2349. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2350. adv |= ADVERTISE_10FULL;
  2351. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2352. adv |= ADVERTISE_100HALF;
  2353. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2354. adv |= ADVERTISE_100FULL;
  2355. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  2356. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2357. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2358. adv |= ADVERTISE_PAUSE_ASYM;
  2359. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2360. if (np->gigabit == PHY_GIGABIT) {
  2361. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2362. adv &= ~ADVERTISE_1000FULL;
  2363. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2364. adv |= ADVERTISE_1000FULL;
  2365. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2366. }
  2367. if (netif_running(dev))
  2368. printk(KERN_INFO "%s: link down.\n", dev->name);
  2369. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2370. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2371. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2372. } else {
  2373. int adv, bmcr;
  2374. np->autoneg = 0;
  2375. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2376. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2377. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2378. adv |= ADVERTISE_10HALF;
  2379. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2380. adv |= ADVERTISE_10FULL;
  2381. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2382. adv |= ADVERTISE_100HALF;
  2383. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2384. adv |= ADVERTISE_100FULL;
  2385. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  2386. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  2387. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2388. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2389. }
  2390. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  2391. adv |= ADVERTISE_PAUSE_ASYM;
  2392. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2393. }
  2394. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2395. np->fixed_mode = adv;
  2396. if (np->gigabit == PHY_GIGABIT) {
  2397. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2398. adv &= ~ADVERTISE_1000FULL;
  2399. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2400. }
  2401. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2402. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  2403. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2404. bmcr |= BMCR_FULLDPLX;
  2405. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2406. bmcr |= BMCR_SPEED100;
  2407. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2408. if (np->phy_oui == PHY_OUI_MARVELL) {
  2409. /* reset the phy */
  2410. if (phy_reset(dev)) {
  2411. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2412. return -EINVAL;
  2413. }
  2414. } else if (netif_running(dev)) {
  2415. /* Wait a bit and then reconfigure the nic. */
  2416. udelay(10);
  2417. nv_linkchange(dev);
  2418. }
  2419. }
  2420. if (netif_running(dev)) {
  2421. nv_start_rx(dev);
  2422. nv_start_tx(dev);
  2423. nv_enable_irq(dev);
  2424. }
  2425. return 0;
  2426. }
  2427. #define FORCEDETH_REGS_VER 1
  2428. static int nv_get_regs_len(struct net_device *dev)
  2429. {
  2430. struct fe_priv *np = netdev_priv(dev);
  2431. return np->register_size;
  2432. }
  2433. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2434. {
  2435. struct fe_priv *np = netdev_priv(dev);
  2436. u8 __iomem *base = get_hwbase(dev);
  2437. u32 *rbuf = buf;
  2438. int i;
  2439. regs->version = FORCEDETH_REGS_VER;
  2440. spin_lock_irq(&np->lock);
  2441. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  2442. rbuf[i] = readl(base + i*sizeof(u32));
  2443. spin_unlock_irq(&np->lock);
  2444. }
  2445. static int nv_nway_reset(struct net_device *dev)
  2446. {
  2447. struct fe_priv *np = netdev_priv(dev);
  2448. int ret;
  2449. if (np->autoneg) {
  2450. int bmcr;
  2451. netif_carrier_off(dev);
  2452. if (netif_running(dev)) {
  2453. nv_disable_irq(dev);
  2454. spin_lock_bh(&dev->xmit_lock);
  2455. spin_lock(&np->lock);
  2456. /* stop engines */
  2457. nv_stop_rx(dev);
  2458. nv_stop_tx(dev);
  2459. spin_unlock(&np->lock);
  2460. spin_unlock_bh(&dev->xmit_lock);
  2461. printk(KERN_INFO "%s: link down.\n", dev->name);
  2462. }
  2463. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2464. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2465. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2466. if (netif_running(dev)) {
  2467. nv_start_rx(dev);
  2468. nv_start_tx(dev);
  2469. nv_enable_irq(dev);
  2470. }
  2471. ret = 0;
  2472. } else {
  2473. ret = -EINVAL;
  2474. }
  2475. return ret;
  2476. }
  2477. static int nv_set_tso(struct net_device *dev, u32 value)
  2478. {
  2479. struct fe_priv *np = netdev_priv(dev);
  2480. if ((np->driver_data & DEV_HAS_CHECKSUM))
  2481. return ethtool_op_set_tso(dev, value);
  2482. else
  2483. return -EOPNOTSUPP;
  2484. }
  2485. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2486. {
  2487. struct fe_priv *np = netdev_priv(dev);
  2488. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2489. ring->rx_mini_max_pending = 0;
  2490. ring->rx_jumbo_max_pending = 0;
  2491. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2492. ring->rx_pending = np->rx_ring_size;
  2493. ring->rx_mini_pending = 0;
  2494. ring->rx_jumbo_pending = 0;
  2495. ring->tx_pending = np->tx_ring_size;
  2496. }
  2497. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2498. {
  2499. struct fe_priv *np = netdev_priv(dev);
  2500. u8 __iomem *base = get_hwbase(dev);
  2501. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
  2502. dma_addr_t ring_addr;
  2503. if (ring->rx_pending < RX_RING_MIN ||
  2504. ring->tx_pending < TX_RING_MIN ||
  2505. ring->rx_mini_pending != 0 ||
  2506. ring->rx_jumbo_pending != 0 ||
  2507. (np->desc_ver == DESC_VER_1 &&
  2508. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  2509. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  2510. (np->desc_ver != DESC_VER_1 &&
  2511. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  2512. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  2513. return -EINVAL;
  2514. }
  2515. /* allocate new rings */
  2516. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2517. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  2518. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  2519. &ring_addr);
  2520. } else {
  2521. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  2522. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  2523. &ring_addr);
  2524. }
  2525. rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
  2526. rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
  2527. tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
  2528. tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
  2529. tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
  2530. if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
  2531. /* fall back to old rings */
  2532. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2533. if(rxtx_ring)
  2534. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  2535. rxtx_ring, ring_addr);
  2536. } else {
  2537. if (rxtx_ring)
  2538. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  2539. rxtx_ring, ring_addr);
  2540. }
  2541. if (rx_skbuff)
  2542. kfree(rx_skbuff);
  2543. if (rx_dma)
  2544. kfree(rx_dma);
  2545. if (tx_skbuff)
  2546. kfree(tx_skbuff);
  2547. if (tx_dma)
  2548. kfree(tx_dma);
  2549. if (tx_dma_len)
  2550. kfree(tx_dma_len);
  2551. goto exit;
  2552. }
  2553. if (netif_running(dev)) {
  2554. nv_disable_irq(dev);
  2555. spin_lock_bh(&dev->xmit_lock);
  2556. spin_lock(&np->lock);
  2557. /* stop engines */
  2558. nv_stop_rx(dev);
  2559. nv_stop_tx(dev);
  2560. nv_txrx_reset(dev);
  2561. /* drain queues */
  2562. nv_drain_rx(dev);
  2563. nv_drain_tx(dev);
  2564. /* delete queues */
  2565. free_rings(dev);
  2566. }
  2567. /* set new values */
  2568. np->rx_ring_size = ring->rx_pending;
  2569. np->tx_ring_size = ring->tx_pending;
  2570. np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
  2571. np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
  2572. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2573. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  2574. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  2575. } else {
  2576. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  2577. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  2578. }
  2579. np->rx_skbuff = (struct sk_buff**)rx_skbuff;
  2580. np->rx_dma = (dma_addr_t*)rx_dma;
  2581. np->tx_skbuff = (struct sk_buff**)tx_skbuff;
  2582. np->tx_dma = (dma_addr_t*)tx_dma;
  2583. np->tx_dma_len = (unsigned int*)tx_dma_len;
  2584. np->ring_addr = ring_addr;
  2585. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  2586. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  2587. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  2588. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  2589. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  2590. if (netif_running(dev)) {
  2591. /* reinit driver view of the queues */
  2592. set_bufsize(dev);
  2593. if (nv_init_ring(dev)) {
  2594. if (!np->in_shutdown)
  2595. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2596. }
  2597. /* reinit nic view of the queues */
  2598. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2599. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2600. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2601. base + NvRegRingSizes);
  2602. pci_push(base);
  2603. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2604. pci_push(base);
  2605. /* restart engines */
  2606. nv_start_rx(dev);
  2607. nv_start_tx(dev);
  2608. spin_unlock(&np->lock);
  2609. spin_unlock_bh(&dev->xmit_lock);
  2610. nv_enable_irq(dev);
  2611. }
  2612. return 0;
  2613. exit:
  2614. return -ENOMEM;
  2615. }
  2616. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  2617. {
  2618. struct fe_priv *np = netdev_priv(dev);
  2619. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  2620. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  2621. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  2622. }
  2623. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  2624. {
  2625. struct fe_priv *np = netdev_priv(dev);
  2626. int adv, bmcr;
  2627. if ((!np->autoneg && np->duplex == 0) ||
  2628. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  2629. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  2630. dev->name);
  2631. return -EINVAL;
  2632. }
  2633. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  2634. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  2635. return -EINVAL;
  2636. }
  2637. netif_carrier_off(dev);
  2638. if (netif_running(dev)) {
  2639. nv_disable_irq(dev);
  2640. spin_lock_bh(&dev->xmit_lock);
  2641. spin_lock(&np->lock);
  2642. /* stop engines */
  2643. nv_stop_rx(dev);
  2644. nv_stop_tx(dev);
  2645. spin_unlock(&np->lock);
  2646. spin_unlock_bh(&dev->xmit_lock);
  2647. }
  2648. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  2649. if (pause->rx_pause)
  2650. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  2651. if (pause->tx_pause)
  2652. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  2653. if (np->autoneg && pause->autoneg) {
  2654. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  2655. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2656. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2657. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  2658. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2659. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2660. adv |= ADVERTISE_PAUSE_ASYM;
  2661. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2662. if (netif_running(dev))
  2663. printk(KERN_INFO "%s: link down.\n", dev->name);
  2664. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2665. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2666. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2667. } else {
  2668. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  2669. if (pause->rx_pause)
  2670. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2671. if (pause->tx_pause)
  2672. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2673. if (!netif_running(dev))
  2674. nv_update_linkspeed(dev);
  2675. else
  2676. nv_update_pause(dev, np->pause_flags);
  2677. }
  2678. if (netif_running(dev)) {
  2679. nv_start_rx(dev);
  2680. nv_start_tx(dev);
  2681. nv_enable_irq(dev);
  2682. }
  2683. return 0;
  2684. }
  2685. static struct ethtool_ops ops = {
  2686. .get_drvinfo = nv_get_drvinfo,
  2687. .get_link = ethtool_op_get_link,
  2688. .get_wol = nv_get_wol,
  2689. .set_wol = nv_set_wol,
  2690. .get_settings = nv_get_settings,
  2691. .set_settings = nv_set_settings,
  2692. .get_regs_len = nv_get_regs_len,
  2693. .get_regs = nv_get_regs,
  2694. .nway_reset = nv_nway_reset,
  2695. .get_perm_addr = ethtool_op_get_perm_addr,
  2696. .get_tso = ethtool_op_get_tso,
  2697. .set_tso = nv_set_tso,
  2698. .get_ringparam = nv_get_ringparam,
  2699. .set_ringparam = nv_set_ringparam,
  2700. .get_pauseparam = nv_get_pauseparam,
  2701. .set_pauseparam = nv_set_pauseparam,
  2702. };
  2703. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  2704. {
  2705. struct fe_priv *np = get_nvpriv(dev);
  2706. spin_lock_irq(&np->lock);
  2707. /* save vlan group */
  2708. np->vlangrp = grp;
  2709. if (grp) {
  2710. /* enable vlan on MAC */
  2711. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  2712. } else {
  2713. /* disable vlan on MAC */
  2714. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  2715. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  2716. }
  2717. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2718. spin_unlock_irq(&np->lock);
  2719. };
  2720. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  2721. {
  2722. /* nothing to do */
  2723. };
  2724. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2725. {
  2726. u8 __iomem *base = get_hwbase(dev);
  2727. int i;
  2728. u32 msixmap = 0;
  2729. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2730. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2731. * the remaining 8 interrupts.
  2732. */
  2733. for (i = 0; i < 8; i++) {
  2734. if ((irqmask >> i) & 0x1) {
  2735. msixmap |= vector << (i << 2);
  2736. }
  2737. }
  2738. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2739. msixmap = 0;
  2740. for (i = 0; i < 8; i++) {
  2741. if ((irqmask >> (i + 8)) & 0x1) {
  2742. msixmap |= vector << (i << 2);
  2743. }
  2744. }
  2745. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2746. }
  2747. static int nv_request_irq(struct net_device *dev)
  2748. {
  2749. struct fe_priv *np = get_nvpriv(dev);
  2750. u8 __iomem *base = get_hwbase(dev);
  2751. int ret = 1;
  2752. int i;
  2753. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2754. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2755. np->msi_x_entry[i].entry = i;
  2756. }
  2757. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2758. np->msi_flags |= NV_MSI_X_ENABLED;
  2759. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  2760. /* Request irq for rx handling */
  2761. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, SA_SHIRQ, dev->name, dev) != 0) {
  2762. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2763. pci_disable_msix(np->pci_dev);
  2764. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2765. goto out_err;
  2766. }
  2767. /* Request irq for tx handling */
  2768. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, SA_SHIRQ, dev->name, dev) != 0) {
  2769. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2770. pci_disable_msix(np->pci_dev);
  2771. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2772. goto out_free_rx;
  2773. }
  2774. /* Request irq for link and timer handling */
  2775. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, SA_SHIRQ, dev->name, dev) != 0) {
  2776. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2777. pci_disable_msix(np->pci_dev);
  2778. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2779. goto out_free_tx;
  2780. }
  2781. /* map interrupts to their respective vector */
  2782. writel(0, base + NvRegMSIXMap0);
  2783. writel(0, base + NvRegMSIXMap1);
  2784. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2785. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2786. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2787. } else {
  2788. /* Request irq for all interrupts */
  2789. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2790. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2791. pci_disable_msix(np->pci_dev);
  2792. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2793. goto out_err;
  2794. }
  2795. /* map interrupts to vector 0 */
  2796. writel(0, base + NvRegMSIXMap0);
  2797. writel(0, base + NvRegMSIXMap1);
  2798. }
  2799. }
  2800. }
  2801. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2802. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2803. np->msi_flags |= NV_MSI_ENABLED;
  2804. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0) {
  2805. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2806. pci_disable_msi(np->pci_dev);
  2807. np->msi_flags &= ~NV_MSI_ENABLED;
  2808. goto out_err;
  2809. }
  2810. /* map interrupts to vector 0 */
  2811. writel(0, base + NvRegMSIMap0);
  2812. writel(0, base + NvRegMSIMap1);
  2813. /* enable msi vector 0 */
  2814. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2815. }
  2816. }
  2817. if (ret != 0) {
  2818. if (request_irq(np->pci_dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev) != 0)
  2819. goto out_err;
  2820. }
  2821. return 0;
  2822. out_free_tx:
  2823. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  2824. out_free_rx:
  2825. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  2826. out_err:
  2827. return 1;
  2828. }
  2829. static void nv_free_irq(struct net_device *dev)
  2830. {
  2831. struct fe_priv *np = get_nvpriv(dev);
  2832. int i;
  2833. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2834. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2835. free_irq(np->msi_x_entry[i].vector, dev);
  2836. }
  2837. pci_disable_msix(np->pci_dev);
  2838. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2839. } else {
  2840. free_irq(np->pci_dev->irq, dev);
  2841. if (np->msi_flags & NV_MSI_ENABLED) {
  2842. pci_disable_msi(np->pci_dev);
  2843. np->msi_flags &= ~NV_MSI_ENABLED;
  2844. }
  2845. }
  2846. }
  2847. static int nv_open(struct net_device *dev)
  2848. {
  2849. struct fe_priv *np = netdev_priv(dev);
  2850. u8 __iomem *base = get_hwbase(dev);
  2851. int ret = 1;
  2852. int oom, i;
  2853. dprintk(KERN_DEBUG "nv_open: begin\n");
  2854. /* 1) erase previous misconfiguration */
  2855. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  2856. nv_mac_reset(dev);
  2857. /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */
  2858. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2859. writel(0, base + NvRegMulticastAddrB);
  2860. writel(0, base + NvRegMulticastMaskA);
  2861. writel(0, base + NvRegMulticastMaskB);
  2862. writel(0, base + NvRegPacketFilterFlags);
  2863. writel(0, base + NvRegTransmitterControl);
  2864. writel(0, base + NvRegReceiverControl);
  2865. writel(0, base + NvRegAdapterControl);
  2866. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  2867. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2868. /* 2) initialize descriptor rings */
  2869. set_bufsize(dev);
  2870. oom = nv_init_ring(dev);
  2871. writel(0, base + NvRegLinkSpeed);
  2872. writel(0, base + NvRegUnknownTransmitterReg);
  2873. nv_txrx_reset(dev);
  2874. writel(0, base + NvRegUnknownSetupReg6);
  2875. np->in_shutdown = 0;
  2876. /* 3) set mac address */
  2877. nv_copy_mac_to_hw(dev);
  2878. /* 4) give hw rings */
  2879. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2880. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2881. base + NvRegRingSizes);
  2882. /* 5) continue setup */
  2883. writel(np->linkspeed, base + NvRegLinkSpeed);
  2884. writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3);
  2885. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  2886. writel(np->vlanctl_bits, base + NvRegVlanControl);
  2887. pci_push(base);
  2888. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  2889. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  2890. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  2891. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  2892. writel(0, base + NvRegUnknownSetupReg4);
  2893. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2894. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2895. /* 6) continue setup */
  2896. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  2897. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  2898. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  2899. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2900. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  2901. get_random_bytes(&i, sizeof(i));
  2902. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  2903. writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1);
  2904. writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2);
  2905. if (poll_interval == -1) {
  2906. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  2907. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  2908. else
  2909. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  2910. }
  2911. else
  2912. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  2913. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  2914. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  2915. base + NvRegAdapterControl);
  2916. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  2917. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  2918. writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags);
  2919. i = readl(base + NvRegPowerState);
  2920. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  2921. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  2922. pci_push(base);
  2923. udelay(10);
  2924. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  2925. nv_disable_hw_interrupts(dev, np->irqmask);
  2926. pci_push(base);
  2927. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  2928. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2929. pci_push(base);
  2930. if (nv_request_irq(dev)) {
  2931. goto out_drain;
  2932. }
  2933. /* ask for interrupts */
  2934. nv_enable_hw_interrupts(dev, np->irqmask);
  2935. spin_lock_irq(&np->lock);
  2936. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  2937. writel(0, base + NvRegMulticastAddrB);
  2938. writel(0, base + NvRegMulticastMaskA);
  2939. writel(0, base + NvRegMulticastMaskB);
  2940. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  2941. /* One manual link speed update: Interrupts are enabled, future link
  2942. * speed changes cause interrupts and are handled by nv_link_irq().
  2943. */
  2944. {
  2945. u32 miistat;
  2946. miistat = readl(base + NvRegMIIStatus);
  2947. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2948. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  2949. }
  2950. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  2951. * to init hw */
  2952. np->linkspeed = 0;
  2953. ret = nv_update_linkspeed(dev);
  2954. nv_start_rx(dev);
  2955. nv_start_tx(dev);
  2956. netif_start_queue(dev);
  2957. if (ret) {
  2958. netif_carrier_on(dev);
  2959. } else {
  2960. printk("%s: no link during initialization.\n", dev->name);
  2961. netif_carrier_off(dev);
  2962. }
  2963. if (oom)
  2964. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2965. spin_unlock_irq(&np->lock);
  2966. return 0;
  2967. out_drain:
  2968. drain_ring(dev);
  2969. return ret;
  2970. }
  2971. static int nv_close(struct net_device *dev)
  2972. {
  2973. struct fe_priv *np = netdev_priv(dev);
  2974. u8 __iomem *base;
  2975. spin_lock_irq(&np->lock);
  2976. np->in_shutdown = 1;
  2977. spin_unlock_irq(&np->lock);
  2978. synchronize_irq(dev->irq);
  2979. del_timer_sync(&np->oom_kick);
  2980. del_timer_sync(&np->nic_poll);
  2981. netif_stop_queue(dev);
  2982. spin_lock_irq(&np->lock);
  2983. nv_stop_tx(dev);
  2984. nv_stop_rx(dev);
  2985. nv_txrx_reset(dev);
  2986. /* disable interrupts on the nic or we will lock up */
  2987. base = get_hwbase(dev);
  2988. nv_disable_hw_interrupts(dev, np->irqmask);
  2989. pci_push(base);
  2990. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  2991. spin_unlock_irq(&np->lock);
  2992. nv_free_irq(dev);
  2993. drain_ring(dev);
  2994. if (np->wolenabled)
  2995. nv_start_rx(dev);
  2996. /* special op: write back the misordered MAC address - otherwise
  2997. * the next nv_probe would see a wrong address.
  2998. */
  2999. writel(np->orig_mac[0], base + NvRegMacAddrA);
  3000. writel(np->orig_mac[1], base + NvRegMacAddrB);
  3001. /* FIXME: power down nic */
  3002. return 0;
  3003. }
  3004. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  3005. {
  3006. struct net_device *dev;
  3007. struct fe_priv *np;
  3008. unsigned long addr;
  3009. u8 __iomem *base;
  3010. int err, i;
  3011. u32 powerstate;
  3012. dev = alloc_etherdev(sizeof(struct fe_priv));
  3013. err = -ENOMEM;
  3014. if (!dev)
  3015. goto out;
  3016. np = netdev_priv(dev);
  3017. np->pci_dev = pci_dev;
  3018. spin_lock_init(&np->lock);
  3019. SET_MODULE_OWNER(dev);
  3020. SET_NETDEV_DEV(dev, &pci_dev->dev);
  3021. init_timer(&np->oom_kick);
  3022. np->oom_kick.data = (unsigned long) dev;
  3023. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  3024. init_timer(&np->nic_poll);
  3025. np->nic_poll.data = (unsigned long) dev;
  3026. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  3027. err = pci_enable_device(pci_dev);
  3028. if (err) {
  3029. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  3030. err, pci_name(pci_dev));
  3031. goto out_free;
  3032. }
  3033. pci_set_master(pci_dev);
  3034. err = pci_request_regions(pci_dev, DRV_NAME);
  3035. if (err < 0)
  3036. goto out_disable;
  3037. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL))
  3038. np->register_size = NV_PCI_REGSZ_VER2;
  3039. else
  3040. np->register_size = NV_PCI_REGSZ_VER1;
  3041. err = -EINVAL;
  3042. addr = 0;
  3043. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3044. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  3045. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  3046. pci_resource_len(pci_dev, i),
  3047. pci_resource_flags(pci_dev, i));
  3048. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  3049. pci_resource_len(pci_dev, i) >= np->register_size) {
  3050. addr = pci_resource_start(pci_dev, i);
  3051. break;
  3052. }
  3053. }
  3054. if (i == DEVICE_COUNT_RESOURCE) {
  3055. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  3056. pci_name(pci_dev));
  3057. goto out_relreg;
  3058. }
  3059. /* copy of driver data */
  3060. np->driver_data = id->driver_data;
  3061. /* handle different descriptor versions */
  3062. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  3063. /* packet format 3: supports 40-bit addressing */
  3064. np->desc_ver = DESC_VER_3;
  3065. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  3066. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3067. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  3068. pci_name(pci_dev));
  3069. } else {
  3070. dev->features |= NETIF_F_HIGHDMA;
  3071. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  3072. }
  3073. if (pci_set_consistent_dma_mask(pci_dev, 0x0000007fffffffffULL)) {
  3074. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed for device %s.\n",
  3075. pci_name(pci_dev));
  3076. }
  3077. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  3078. /* packet format 2: supports jumbo frames */
  3079. np->desc_ver = DESC_VER_2;
  3080. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  3081. } else {
  3082. /* original packet format */
  3083. np->desc_ver = DESC_VER_1;
  3084. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  3085. }
  3086. np->pkt_limit = NV_PKTLIMIT_1;
  3087. if (id->driver_data & DEV_HAS_LARGEDESC)
  3088. np->pkt_limit = NV_PKTLIMIT_2;
  3089. if (id->driver_data & DEV_HAS_CHECKSUM) {
  3090. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3091. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  3092. #ifdef NETIF_F_TSO
  3093. dev->features |= NETIF_F_TSO;
  3094. #endif
  3095. }
  3096. np->vlanctl_bits = 0;
  3097. if (id->driver_data & DEV_HAS_VLAN) {
  3098. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  3099. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  3100. dev->vlan_rx_register = nv_vlan_rx_register;
  3101. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  3102. }
  3103. np->msi_flags = 0;
  3104. if ((id->driver_data & DEV_HAS_MSI) && !disable_msi) {
  3105. np->msi_flags |= NV_MSI_CAPABLE;
  3106. }
  3107. if ((id->driver_data & DEV_HAS_MSI_X) && !disable_msix) {
  3108. np->msi_flags |= NV_MSI_X_CAPABLE;
  3109. }
  3110. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  3111. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  3112. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  3113. }
  3114. err = -ENOMEM;
  3115. np->base = ioremap(addr, np->register_size);
  3116. if (!np->base)
  3117. goto out_relreg;
  3118. dev->base_addr = (unsigned long)np->base;
  3119. dev->irq = pci_dev->irq;
  3120. np->rx_ring_size = RX_RING_DEFAULT;
  3121. np->tx_ring_size = TX_RING_DEFAULT;
  3122. np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
  3123. np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
  3124. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3125. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  3126. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  3127. &np->ring_addr);
  3128. if (!np->rx_ring.orig)
  3129. goto out_unmap;
  3130. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3131. } else {
  3132. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  3133. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  3134. &np->ring_addr);
  3135. if (!np->rx_ring.ex)
  3136. goto out_unmap;
  3137. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3138. }
  3139. np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
  3140. np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
  3141. np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
  3142. np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
  3143. np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
  3144. if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
  3145. goto out_freering;
  3146. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3147. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3148. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3149. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3150. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3151. dev->open = nv_open;
  3152. dev->stop = nv_close;
  3153. dev->hard_start_xmit = nv_start_xmit;
  3154. dev->get_stats = nv_get_stats;
  3155. dev->change_mtu = nv_change_mtu;
  3156. dev->set_mac_address = nv_set_mac_address;
  3157. dev->set_multicast_list = nv_set_multicast;
  3158. #ifdef CONFIG_NET_POLL_CONTROLLER
  3159. dev->poll_controller = nv_poll_controller;
  3160. #endif
  3161. SET_ETHTOOL_OPS(dev, &ops);
  3162. dev->tx_timeout = nv_tx_timeout;
  3163. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  3164. pci_set_drvdata(pci_dev, dev);
  3165. /* read the mac address */
  3166. base = get_hwbase(dev);
  3167. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  3168. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  3169. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  3170. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  3171. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  3172. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  3173. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  3174. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  3175. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3176. if (!is_valid_ether_addr(dev->perm_addr)) {
  3177. /*
  3178. * Bad mac address. At least one bios sets the mac address
  3179. * to 01:23:45:67:89:ab
  3180. */
  3181. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  3182. pci_name(pci_dev),
  3183. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3184. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3185. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  3186. dev->dev_addr[0] = 0x00;
  3187. dev->dev_addr[1] = 0x00;
  3188. dev->dev_addr[2] = 0x6c;
  3189. get_random_bytes(&dev->dev_addr[3], 3);
  3190. }
  3191. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  3192. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3193. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3194. /* disable WOL */
  3195. writel(0, base + NvRegWakeUpFlags);
  3196. np->wolenabled = 0;
  3197. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  3198. u8 revision_id;
  3199. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  3200. /* take phy and nic out of low power mode */
  3201. powerstate = readl(base + NvRegPowerState2);
  3202. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  3203. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  3204. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  3205. revision_id >= 0xA3)
  3206. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  3207. writel(powerstate, base + NvRegPowerState2);
  3208. }
  3209. if (np->desc_ver == DESC_VER_1) {
  3210. np->tx_flags = NV_TX_VALID;
  3211. } else {
  3212. np->tx_flags = NV_TX2_VALID;
  3213. }
  3214. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  3215. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3216. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3217. np->msi_flags |= 0x0003;
  3218. } else {
  3219. np->irqmask = NVREG_IRQMASK_CPU;
  3220. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3221. np->msi_flags |= 0x0001;
  3222. }
  3223. if (id->driver_data & DEV_NEED_TIMERIRQ)
  3224. np->irqmask |= NVREG_IRQ_TIMER;
  3225. if (id->driver_data & DEV_NEED_LINKTIMER) {
  3226. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  3227. np->need_linktimer = 1;
  3228. np->link_timeout = jiffies + LINK_TIMEOUT;
  3229. } else {
  3230. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  3231. np->need_linktimer = 0;
  3232. }
  3233. /* find a suitable phy */
  3234. for (i = 1; i <= 32; i++) {
  3235. int id1, id2;
  3236. int phyaddr = i & 0x1F;
  3237. spin_lock_irq(&np->lock);
  3238. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  3239. spin_unlock_irq(&np->lock);
  3240. if (id1 < 0 || id1 == 0xffff)
  3241. continue;
  3242. spin_lock_irq(&np->lock);
  3243. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  3244. spin_unlock_irq(&np->lock);
  3245. if (id2 < 0 || id2 == 0xffff)
  3246. continue;
  3247. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  3248. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  3249. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  3250. pci_name(pci_dev), id1, id2, phyaddr);
  3251. np->phyaddr = phyaddr;
  3252. np->phy_oui = id1 | id2;
  3253. break;
  3254. }
  3255. if (i == 33) {
  3256. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  3257. pci_name(pci_dev));
  3258. goto out_error;
  3259. }
  3260. /* reset it */
  3261. phy_init(dev);
  3262. /* set default link speed settings */
  3263. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  3264. np->duplex = 0;
  3265. np->autoneg = 1;
  3266. err = register_netdev(dev);
  3267. if (err) {
  3268. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  3269. goto out_error;
  3270. }
  3271. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  3272. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  3273. pci_name(pci_dev));
  3274. return 0;
  3275. out_error:
  3276. pci_set_drvdata(pci_dev, NULL);
  3277. out_freering:
  3278. free_rings(dev);
  3279. out_unmap:
  3280. iounmap(get_hwbase(dev));
  3281. out_relreg:
  3282. pci_release_regions(pci_dev);
  3283. out_disable:
  3284. pci_disable_device(pci_dev);
  3285. out_free:
  3286. free_netdev(dev);
  3287. out:
  3288. return err;
  3289. }
  3290. static void __devexit nv_remove(struct pci_dev *pci_dev)
  3291. {
  3292. struct net_device *dev = pci_get_drvdata(pci_dev);
  3293. unregister_netdev(dev);
  3294. /* free all structures */
  3295. free_rings(dev);
  3296. iounmap(get_hwbase(dev));
  3297. pci_release_regions(pci_dev);
  3298. pci_disable_device(pci_dev);
  3299. free_netdev(dev);
  3300. pci_set_drvdata(pci_dev, NULL);
  3301. }
  3302. static struct pci_device_id pci_tbl[] = {
  3303. { /* nForce Ethernet Controller */
  3304. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  3305. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  3306. },
  3307. { /* nForce2 Ethernet Controller */
  3308. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  3309. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  3310. },
  3311. { /* nForce3 Ethernet Controller */
  3312. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  3313. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  3314. },
  3315. { /* nForce3 Ethernet Controller */
  3316. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  3317. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3318. },
  3319. { /* nForce3 Ethernet Controller */
  3320. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  3321. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3322. },
  3323. { /* nForce3 Ethernet Controller */
  3324. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  3325. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3326. },
  3327. { /* nForce3 Ethernet Controller */
  3328. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  3329. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  3330. },
  3331. { /* CK804 Ethernet Controller */
  3332. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  3333. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3334. },
  3335. { /* CK804 Ethernet Controller */
  3336. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  3337. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3338. },
  3339. { /* MCP04 Ethernet Controller */
  3340. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  3341. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3342. },
  3343. { /* MCP04 Ethernet Controller */
  3344. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  3345. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  3346. },
  3347. { /* MCP51 Ethernet Controller */
  3348. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  3349. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  3350. },
  3351. { /* MCP51 Ethernet Controller */
  3352. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  3353. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  3354. },
  3355. { /* MCP55 Ethernet Controller */
  3356. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  3357. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX,
  3358. },
  3359. { /* MCP55 Ethernet Controller */
  3360. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  3361. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX,
  3362. },
  3363. {0,},
  3364. };
  3365. static struct pci_driver driver = {
  3366. .name = "forcedeth",
  3367. .id_table = pci_tbl,
  3368. .probe = nv_probe,
  3369. .remove = __devexit_p(nv_remove),
  3370. };
  3371. static int __init init_nic(void)
  3372. {
  3373. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  3374. return pci_module_init(&driver);
  3375. }
  3376. static void __exit exit_nic(void)
  3377. {
  3378. pci_unregister_driver(&driver);
  3379. }
  3380. module_param(max_interrupt_work, int, 0);
  3381. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  3382. module_param(optimization_mode, int, 0);
  3383. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  3384. module_param(poll_interval, int, 0);
  3385. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  3386. module_param(disable_msi, int, 0);
  3387. MODULE_PARM_DESC(disable_msi, "Disable MSI interrupts by setting to 1.");
  3388. module_param(disable_msix, int, 0);
  3389. MODULE_PARM_DESC(disable_msix, "Disable MSIX interrupts by setting to 1.");
  3390. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  3391. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  3392. MODULE_LICENSE("GPL");
  3393. MODULE_DEVICE_TABLE(pci, pci_tbl);
  3394. module_init(init_nic);
  3395. module_exit(exit_nic);