file.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585
  1. /*
  2. * This file is part of UBIFS.
  3. *
  4. * Copyright (C) 2006-2008 Nokia Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published by
  8. * the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc., 51
  17. * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18. *
  19. * Authors: Artem Bityutskiy (Битюцкий Артём)
  20. * Adrian Hunter
  21. */
  22. /*
  23. * This file implements VFS file and inode operations of regular files, device
  24. * nodes and symlinks as well as address space operations.
  25. *
  26. * UBIFS uses 2 page flags: PG_private and PG_checked. PG_private is set if the
  27. * page is dirty and is used for budgeting purposes - dirty pages should not be
  28. * budgeted. The PG_checked flag is set if full budgeting is required for the
  29. * page e.g., when it corresponds to a file hole or it is just beyond the file
  30. * size. The budgeting is done in 'ubifs_write_begin()', because it is OK to
  31. * fail in this function, and the budget is released in 'ubifs_write_end()'. So
  32. * the PG_private and PG_checked flags carry the information about how the page
  33. * was budgeted, to make it possible to release the budget properly.
  34. *
  35. * A thing to keep in mind: inode's 'i_mutex' is locked in most VFS operations
  36. * we implement. However, this is not true for '->writepage()', which might be
  37. * called with 'i_mutex' unlocked. For example, when pdflush is performing
  38. * write-back, it calls 'writepage()' with unlocked 'i_mutex', although the
  39. * inode has 'I_LOCK' flag in this case. At "normal" work-paths 'i_mutex' is
  40. * locked in '->writepage', e.g. in "sys_write -> alloc_pages -> direct reclaim
  41. * path'. So, in '->writepage()' we are only guaranteed that the page is
  42. * locked.
  43. *
  44. * Similarly, 'i_mutex' does not have to be locked in readpage(), e.g.,
  45. * readahead path does not have it locked ("sys_read -> generic_file_aio_read
  46. * -> ondemand_readahead -> readpage"). In case of readahead, 'I_LOCK' flag is
  47. * not set as well. However, UBIFS disables readahead.
  48. *
  49. * This, for example means that there might be 2 concurrent '->writepage()'
  50. * calls for the same inode, but different inode dirty pages.
  51. */
  52. #include "ubifs.h"
  53. #include <linux/mount.h>
  54. #include <linux/namei.h>
  55. static int read_block(struct inode *inode, void *addr, unsigned int block,
  56. struct ubifs_data_node *dn)
  57. {
  58. struct ubifs_info *c = inode->i_sb->s_fs_info;
  59. int err, len, out_len;
  60. union ubifs_key key;
  61. unsigned int dlen;
  62. data_key_init(c, &key, inode->i_ino, block);
  63. err = ubifs_tnc_lookup(c, &key, dn);
  64. if (err) {
  65. if (err == -ENOENT)
  66. /* Not found, so it must be a hole */
  67. memset(addr, 0, UBIFS_BLOCK_SIZE);
  68. return err;
  69. }
  70. ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
  71. ubifs_inode(inode)->creat_sqnum);
  72. len = le32_to_cpu(dn->size);
  73. if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  74. goto dump;
  75. dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  76. out_len = UBIFS_BLOCK_SIZE;
  77. err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
  78. le16_to_cpu(dn->compr_type));
  79. if (err || len != out_len)
  80. goto dump;
  81. /*
  82. * Data length can be less than a full block, even for blocks that are
  83. * not the last in the file (e.g., as a result of making a hole and
  84. * appending data). Ensure that the remainder is zeroed out.
  85. */
  86. if (len < UBIFS_BLOCK_SIZE)
  87. memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  88. return 0;
  89. dump:
  90. ubifs_err("bad data node (block %u, inode %lu)",
  91. block, inode->i_ino);
  92. dbg_dump_node(c, dn);
  93. return -EINVAL;
  94. }
  95. static int do_readpage(struct page *page)
  96. {
  97. void *addr;
  98. int err = 0, i;
  99. unsigned int block, beyond;
  100. struct ubifs_data_node *dn;
  101. struct inode *inode = page->mapping->host;
  102. loff_t i_size = i_size_read(inode);
  103. dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
  104. inode->i_ino, page->index, i_size, page->flags);
  105. ubifs_assert(!PageChecked(page));
  106. ubifs_assert(!PagePrivate(page));
  107. addr = kmap(page);
  108. block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
  109. beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
  110. if (block >= beyond) {
  111. /* Reading beyond inode */
  112. SetPageChecked(page);
  113. memset(addr, 0, PAGE_CACHE_SIZE);
  114. goto out;
  115. }
  116. dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
  117. if (!dn) {
  118. err = -ENOMEM;
  119. goto error;
  120. }
  121. i = 0;
  122. while (1) {
  123. int ret;
  124. if (block >= beyond) {
  125. /* Reading beyond inode */
  126. err = -ENOENT;
  127. memset(addr, 0, UBIFS_BLOCK_SIZE);
  128. } else {
  129. ret = read_block(inode, addr, block, dn);
  130. if (ret) {
  131. err = ret;
  132. if (err != -ENOENT)
  133. break;
  134. } else if (block + 1 == beyond) {
  135. int dlen = le32_to_cpu(dn->size);
  136. int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
  137. if (ilen && ilen < dlen)
  138. memset(addr + ilen, 0, dlen - ilen);
  139. }
  140. }
  141. if (++i >= UBIFS_BLOCKS_PER_PAGE)
  142. break;
  143. block += 1;
  144. addr += UBIFS_BLOCK_SIZE;
  145. }
  146. if (err) {
  147. if (err == -ENOENT) {
  148. /* Not found, so it must be a hole */
  149. SetPageChecked(page);
  150. dbg_gen("hole");
  151. goto out_free;
  152. }
  153. ubifs_err("cannot read page %lu of inode %lu, error %d",
  154. page->index, inode->i_ino, err);
  155. goto error;
  156. }
  157. out_free:
  158. kfree(dn);
  159. out:
  160. SetPageUptodate(page);
  161. ClearPageError(page);
  162. flush_dcache_page(page);
  163. kunmap(page);
  164. return 0;
  165. error:
  166. kfree(dn);
  167. ClearPageUptodate(page);
  168. SetPageError(page);
  169. flush_dcache_page(page);
  170. kunmap(page);
  171. return err;
  172. }
  173. /**
  174. * release_new_page_budget - release budget of a new page.
  175. * @c: UBIFS file-system description object
  176. *
  177. * This is a helper function which releases budget corresponding to the budget
  178. * of one new page of data.
  179. */
  180. static void release_new_page_budget(struct ubifs_info *c)
  181. {
  182. struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
  183. ubifs_release_budget(c, &req);
  184. }
  185. /**
  186. * release_existing_page_budget - release budget of an existing page.
  187. * @c: UBIFS file-system description object
  188. *
  189. * This is a helper function which releases budget corresponding to the budget
  190. * of changing one one page of data which already exists on the flash media.
  191. */
  192. static void release_existing_page_budget(struct ubifs_info *c)
  193. {
  194. struct ubifs_budget_req req = { .dd_growth = c->page_budget};
  195. ubifs_release_budget(c, &req);
  196. }
  197. static int write_begin_slow(struct address_space *mapping,
  198. loff_t pos, unsigned len, struct page **pagep)
  199. {
  200. struct inode *inode = mapping->host;
  201. struct ubifs_info *c = inode->i_sb->s_fs_info;
  202. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  203. struct ubifs_budget_req req = { .new_page = 1 };
  204. int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
  205. struct page *page;
  206. dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
  207. inode->i_ino, pos, len, inode->i_size);
  208. /*
  209. * At the slow path we have to budget before locking the page, because
  210. * budgeting may force write-back, which would wait on locked pages and
  211. * deadlock if we had the page locked. At this point we do not know
  212. * anything about the page, so assume that this is a new page which is
  213. * written to a hole. This corresponds to largest budget. Later the
  214. * budget will be amended if this is not true.
  215. */
  216. if (appending)
  217. /* We are appending data, budget for inode change */
  218. req.dirtied_ino = 1;
  219. err = ubifs_budget_space(c, &req);
  220. if (unlikely(err))
  221. return err;
  222. page = __grab_cache_page(mapping, index);
  223. if (unlikely(!page)) {
  224. ubifs_release_budget(c, &req);
  225. return -ENOMEM;
  226. }
  227. if (!PageUptodate(page)) {
  228. if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
  229. SetPageChecked(page);
  230. else {
  231. err = do_readpage(page);
  232. if (err) {
  233. unlock_page(page);
  234. page_cache_release(page);
  235. return err;
  236. }
  237. }
  238. SetPageUptodate(page);
  239. ClearPageError(page);
  240. }
  241. if (PagePrivate(page))
  242. /*
  243. * The page is dirty, which means it was budgeted twice:
  244. * o first time the budget was allocated by the task which
  245. * made the page dirty and set the PG_private flag;
  246. * o and then we budgeted for it for the second time at the
  247. * very beginning of this function.
  248. *
  249. * So what we have to do is to release the page budget we
  250. * allocated.
  251. */
  252. release_new_page_budget(c);
  253. else if (!PageChecked(page))
  254. /*
  255. * We are changing a page which already exists on the media.
  256. * This means that changing the page does not make the amount
  257. * of indexing information larger, and this part of the budget
  258. * which we have already acquired may be released.
  259. */
  260. ubifs_convert_page_budget(c);
  261. if (appending) {
  262. struct ubifs_inode *ui = ubifs_inode(inode);
  263. /*
  264. * 'ubifs_write_end()' is optimized from the fast-path part of
  265. * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
  266. * if data is appended.
  267. */
  268. mutex_lock(&ui->ui_mutex);
  269. if (ui->dirty)
  270. /*
  271. * The inode is dirty already, so we may free the
  272. * budget we allocated.
  273. */
  274. ubifs_release_dirty_inode_budget(c, ui);
  275. }
  276. *pagep = page;
  277. return 0;
  278. }
  279. /**
  280. * allocate_budget - allocate budget for 'ubifs_write_begin()'.
  281. * @c: UBIFS file-system description object
  282. * @page: page to allocate budget for
  283. * @ui: UBIFS inode object the page belongs to
  284. * @appending: non-zero if the page is appended
  285. *
  286. * This is a helper function for 'ubifs_write_begin()' which allocates budget
  287. * for the operation. The budget is allocated differently depending on whether
  288. * this is appending, whether the page is dirty or not, and so on. This
  289. * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
  290. * in case of success and %-ENOSPC in case of failure.
  291. */
  292. static int allocate_budget(struct ubifs_info *c, struct page *page,
  293. struct ubifs_inode *ui, int appending)
  294. {
  295. struct ubifs_budget_req req = { .fast = 1 };
  296. if (PagePrivate(page)) {
  297. if (!appending)
  298. /*
  299. * The page is dirty and we are not appending, which
  300. * means no budget is needed at all.
  301. */
  302. return 0;
  303. mutex_lock(&ui->ui_mutex);
  304. if (ui->dirty)
  305. /*
  306. * The page is dirty and we are appending, so the inode
  307. * has to be marked as dirty. However, it is already
  308. * dirty, so we do not need any budget. We may return,
  309. * but @ui->ui_mutex hast to be left locked because we
  310. * should prevent write-back from flushing the inode
  311. * and freeing the budget. The lock will be released in
  312. * 'ubifs_write_end()'.
  313. */
  314. return 0;
  315. /*
  316. * The page is dirty, we are appending, the inode is clean, so
  317. * we need to budget the inode change.
  318. */
  319. req.dirtied_ino = 1;
  320. } else {
  321. if (PageChecked(page))
  322. /*
  323. * The page corresponds to a hole and does not
  324. * exist on the media. So changing it makes
  325. * make the amount of indexing information
  326. * larger, and we have to budget for a new
  327. * page.
  328. */
  329. req.new_page = 1;
  330. else
  331. /*
  332. * Not a hole, the change will not add any new
  333. * indexing information, budget for page
  334. * change.
  335. */
  336. req.dirtied_page = 1;
  337. if (appending) {
  338. mutex_lock(&ui->ui_mutex);
  339. if (!ui->dirty)
  340. /*
  341. * The inode is clean but we will have to mark
  342. * it as dirty because we are appending. This
  343. * needs a budget.
  344. */
  345. req.dirtied_ino = 1;
  346. }
  347. }
  348. return ubifs_budget_space(c, &req);
  349. }
  350. /*
  351. * This function is called when a page of data is going to be written. Since
  352. * the page of data will not necessarily go to the flash straight away, UBIFS
  353. * has to reserve space on the media for it, which is done by means of
  354. * budgeting.
  355. *
  356. * This is the hot-path of the file-system and we are trying to optimize it as
  357. * much as possible. For this reasons it is split on 2 parts - slow and fast.
  358. *
  359. * There many budgeting cases:
  360. * o a new page is appended - we have to budget for a new page and for
  361. * changing the inode; however, if the inode is already dirty, there is
  362. * no need to budget for it;
  363. * o an existing clean page is changed - we have budget for it; if the page
  364. * does not exist on the media (a hole), we have to budget for a new
  365. * page; otherwise, we may budget for changing an existing page; the
  366. * difference between these cases is that changing an existing page does
  367. * not introduce anything new to the FS indexing information, so it does
  368. * not grow, and smaller budget is acquired in this case;
  369. * o an existing dirty page is changed - no need to budget at all, because
  370. * the page budget has been acquired by earlier, when the page has been
  371. * marked dirty.
  372. *
  373. * UBIFS budgeting sub-system may force write-back if it thinks there is no
  374. * space to reserve. This imposes some locking restrictions and makes it
  375. * impossible to take into account the above cases, and makes it impossible to
  376. * optimize budgeting.
  377. *
  378. * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
  379. * there is a plenty of flash space and the budget will be acquired quickly,
  380. * without forcing write-back. The slow path does not make this assumption.
  381. */
  382. static int ubifs_write_begin(struct file *file, struct address_space *mapping,
  383. loff_t pos, unsigned len, unsigned flags,
  384. struct page **pagep, void **fsdata)
  385. {
  386. struct inode *inode = mapping->host;
  387. struct ubifs_info *c = inode->i_sb->s_fs_info;
  388. struct ubifs_inode *ui = ubifs_inode(inode);
  389. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  390. int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
  391. struct page *page;
  392. ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
  393. if (unlikely(c->ro_media))
  394. return -EROFS;
  395. /* Try out the fast-path part first */
  396. page = __grab_cache_page(mapping, index);
  397. if (unlikely(!page))
  398. return -ENOMEM;
  399. if (!PageUptodate(page)) {
  400. /* The page is not loaded from the flash */
  401. if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
  402. /*
  403. * We change whole page so no need to load it. But we
  404. * have to set the @PG_checked flag to make the further
  405. * code the page is new. This might be not true, but it
  406. * is better to budget more that to read the page from
  407. * the media.
  408. */
  409. SetPageChecked(page);
  410. else {
  411. err = do_readpage(page);
  412. if (err) {
  413. unlock_page(page);
  414. page_cache_release(page);
  415. return err;
  416. }
  417. }
  418. SetPageUptodate(page);
  419. ClearPageError(page);
  420. }
  421. err = allocate_budget(c, page, ui, appending);
  422. if (unlikely(err)) {
  423. ubifs_assert(err == -ENOSPC);
  424. /*
  425. * Budgeting failed which means it would have to force
  426. * write-back but didn't, because we set the @fast flag in the
  427. * request. Write-back cannot be done now, while we have the
  428. * page locked, because it would deadlock. Unlock and free
  429. * everything and fall-back to slow-path.
  430. */
  431. if (appending) {
  432. ubifs_assert(mutex_is_locked(&ui->ui_mutex));
  433. mutex_unlock(&ui->ui_mutex);
  434. }
  435. unlock_page(page);
  436. page_cache_release(page);
  437. return write_begin_slow(mapping, pos, len, pagep);
  438. }
  439. /*
  440. * Whee, we aquired budgeting quickly - without involving
  441. * garbage-collection, committing or forceing write-back. We return
  442. * with @ui->ui_mutex locked if we are appending pages, and unlocked
  443. * otherwise. This is an optimization (slightly hacky though).
  444. */
  445. *pagep = page;
  446. return 0;
  447. }
  448. /**
  449. * cancel_budget - cancel budget.
  450. * @c: UBIFS file-system description object
  451. * @page: page to cancel budget for
  452. * @ui: UBIFS inode object the page belongs to
  453. * @appending: non-zero if the page is appended
  454. *
  455. * This is a helper function for a page write operation. It unlocks the
  456. * @ui->ui_mutex in case of appending.
  457. */
  458. static void cancel_budget(struct ubifs_info *c, struct page *page,
  459. struct ubifs_inode *ui, int appending)
  460. {
  461. if (appending) {
  462. if (!ui->dirty)
  463. ubifs_release_dirty_inode_budget(c, ui);
  464. mutex_unlock(&ui->ui_mutex);
  465. }
  466. if (!PagePrivate(page)) {
  467. if (PageChecked(page))
  468. release_new_page_budget(c);
  469. else
  470. release_existing_page_budget(c);
  471. }
  472. }
  473. static int ubifs_write_end(struct file *file, struct address_space *mapping,
  474. loff_t pos, unsigned len, unsigned copied,
  475. struct page *page, void *fsdata)
  476. {
  477. struct inode *inode = mapping->host;
  478. struct ubifs_inode *ui = ubifs_inode(inode);
  479. struct ubifs_info *c = inode->i_sb->s_fs_info;
  480. loff_t end_pos = pos + len;
  481. int appending = !!(end_pos > inode->i_size);
  482. dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
  483. inode->i_ino, pos, page->index, len, copied, inode->i_size);
  484. if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
  485. /*
  486. * VFS copied less data to the page that it intended and
  487. * declared in its '->write_begin()' call via the @len
  488. * argument. If the page was not up-to-date, and @len was
  489. * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
  490. * not load it from the media (for optimization reasons). This
  491. * means that part of the page contains garbage. So read the
  492. * page now.
  493. */
  494. dbg_gen("copied %d instead of %d, read page and repeat",
  495. copied, len);
  496. cancel_budget(c, page, ui, appending);
  497. /*
  498. * Return 0 to force VFS to repeat the whole operation, or the
  499. * error code if 'do_readpage()' failes.
  500. */
  501. copied = do_readpage(page);
  502. goto out;
  503. }
  504. if (!PagePrivate(page)) {
  505. SetPagePrivate(page);
  506. atomic_long_inc(&c->dirty_pg_cnt);
  507. __set_page_dirty_nobuffers(page);
  508. }
  509. if (appending) {
  510. i_size_write(inode, end_pos);
  511. ui->ui_size = end_pos;
  512. /*
  513. * Note, we do not set @I_DIRTY_PAGES (which means that the
  514. * inode has dirty pages), this has been done in
  515. * '__set_page_dirty_nobuffers()'.
  516. */
  517. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  518. ubifs_assert(mutex_is_locked(&ui->ui_mutex));
  519. mutex_unlock(&ui->ui_mutex);
  520. }
  521. out:
  522. unlock_page(page);
  523. page_cache_release(page);
  524. return copied;
  525. }
  526. /**
  527. * populate_page - copy data nodes into a page for bulk-read.
  528. * @c: UBIFS file-system description object
  529. * @page: page
  530. * @bu: bulk-read information
  531. * @n: next zbranch slot
  532. *
  533. * This function returns %0 on success and a negative error code on failure.
  534. */
  535. static int populate_page(struct ubifs_info *c, struct page *page,
  536. struct bu_info *bu, int *n)
  537. {
  538. int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
  539. struct inode *inode = page->mapping->host;
  540. loff_t i_size = i_size_read(inode);
  541. unsigned int page_block;
  542. void *addr, *zaddr;
  543. pgoff_t end_index;
  544. dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
  545. inode->i_ino, page->index, i_size, page->flags);
  546. addr = zaddr = kmap(page);
  547. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  548. if (!i_size || page->index > end_index) {
  549. hole = 1;
  550. memset(addr, 0, PAGE_CACHE_SIZE);
  551. goto out_hole;
  552. }
  553. page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
  554. while (1) {
  555. int err, len, out_len, dlen;
  556. if (nn >= bu->cnt) {
  557. hole = 1;
  558. memset(addr, 0, UBIFS_BLOCK_SIZE);
  559. } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
  560. struct ubifs_data_node *dn;
  561. dn = bu->buf + (bu->zbranch[nn].offs - offs);
  562. ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
  563. ubifs_inode(inode)->creat_sqnum);
  564. len = le32_to_cpu(dn->size);
  565. if (len <= 0 || len > UBIFS_BLOCK_SIZE)
  566. goto out_err;
  567. dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
  568. out_len = UBIFS_BLOCK_SIZE;
  569. err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
  570. le16_to_cpu(dn->compr_type));
  571. if (err || len != out_len)
  572. goto out_err;
  573. if (len < UBIFS_BLOCK_SIZE)
  574. memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
  575. nn += 1;
  576. read = (i << UBIFS_BLOCK_SHIFT) + len;
  577. } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
  578. nn += 1;
  579. continue;
  580. } else {
  581. hole = 1;
  582. memset(addr, 0, UBIFS_BLOCK_SIZE);
  583. }
  584. if (++i >= UBIFS_BLOCKS_PER_PAGE)
  585. break;
  586. addr += UBIFS_BLOCK_SIZE;
  587. page_block += 1;
  588. }
  589. if (end_index == page->index) {
  590. int len = i_size & (PAGE_CACHE_SIZE - 1);
  591. if (len && len < read)
  592. memset(zaddr + len, 0, read - len);
  593. }
  594. out_hole:
  595. if (hole) {
  596. SetPageChecked(page);
  597. dbg_gen("hole");
  598. }
  599. SetPageUptodate(page);
  600. ClearPageError(page);
  601. flush_dcache_page(page);
  602. kunmap(page);
  603. *n = nn;
  604. return 0;
  605. out_err:
  606. ClearPageUptodate(page);
  607. SetPageError(page);
  608. flush_dcache_page(page);
  609. kunmap(page);
  610. ubifs_err("bad data node (block %u, inode %lu)",
  611. page_block, inode->i_ino);
  612. return -EINVAL;
  613. }
  614. /**
  615. * ubifs_do_bulk_read - do bulk-read.
  616. * @c: UBIFS file-system description object
  617. * @bu: bulk-read information
  618. * @page1: first page to read
  619. *
  620. * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
  621. */
  622. static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
  623. struct page *page1)
  624. {
  625. pgoff_t offset = page1->index, end_index;
  626. struct address_space *mapping = page1->mapping;
  627. struct inode *inode = mapping->host;
  628. struct ubifs_inode *ui = ubifs_inode(inode);
  629. int err, page_idx, page_cnt, ret = 0, n = 0;
  630. int allocate = bu->buf ? 0 : 1;
  631. loff_t isize;
  632. err = ubifs_tnc_get_bu_keys(c, bu);
  633. if (err)
  634. goto out_warn;
  635. if (bu->eof) {
  636. /* Turn off bulk-read at the end of the file */
  637. ui->read_in_a_row = 1;
  638. ui->bulk_read = 0;
  639. }
  640. page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
  641. if (!page_cnt) {
  642. /*
  643. * This happens when there are multiple blocks per page and the
  644. * blocks for the first page we are looking for, are not
  645. * together. If all the pages were like this, bulk-read would
  646. * reduce performance, so we turn it off for a while.
  647. */
  648. goto out_bu_off;
  649. }
  650. if (bu->cnt) {
  651. if (allocate) {
  652. /*
  653. * Allocate bulk-read buffer depending on how many data
  654. * nodes we are going to read.
  655. */
  656. bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
  657. bu->zbranch[bu->cnt - 1].len -
  658. bu->zbranch[0].offs;
  659. ubifs_assert(bu->buf_len > 0);
  660. ubifs_assert(bu->buf_len <= c->leb_size);
  661. bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
  662. if (!bu->buf)
  663. goto out_bu_off;
  664. }
  665. err = ubifs_tnc_bulk_read(c, bu);
  666. if (err)
  667. goto out_warn;
  668. }
  669. err = populate_page(c, page1, bu, &n);
  670. if (err)
  671. goto out_warn;
  672. unlock_page(page1);
  673. ret = 1;
  674. isize = i_size_read(inode);
  675. if (isize == 0)
  676. goto out_free;
  677. end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
  678. for (page_idx = 1; page_idx < page_cnt; page_idx++) {
  679. pgoff_t page_offset = offset + page_idx;
  680. struct page *page;
  681. if (page_offset > end_index)
  682. break;
  683. page = find_or_create_page(mapping, page_offset,
  684. GFP_NOFS | __GFP_COLD);
  685. if (!page)
  686. break;
  687. if (!PageUptodate(page))
  688. err = populate_page(c, page, bu, &n);
  689. unlock_page(page);
  690. page_cache_release(page);
  691. if (err)
  692. break;
  693. }
  694. ui->last_page_read = offset + page_idx - 1;
  695. out_free:
  696. if (allocate)
  697. kfree(bu->buf);
  698. return ret;
  699. out_warn:
  700. ubifs_warn("ignoring error %d and skipping bulk-read", err);
  701. goto out_free;
  702. out_bu_off:
  703. ui->read_in_a_row = ui->bulk_read = 0;
  704. goto out_free;
  705. }
  706. /**
  707. * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
  708. * @page: page from which to start bulk-read.
  709. *
  710. * Some flash media are capable of reading sequentially at faster rates. UBIFS
  711. * bulk-read facility is designed to take advantage of that, by reading in one
  712. * go consecutive data nodes that are also located consecutively in the same
  713. * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
  714. */
  715. static int ubifs_bulk_read(struct page *page)
  716. {
  717. struct inode *inode = page->mapping->host;
  718. struct ubifs_info *c = inode->i_sb->s_fs_info;
  719. struct ubifs_inode *ui = ubifs_inode(inode);
  720. pgoff_t index = page->index, last_page_read = ui->last_page_read;
  721. struct bu_info *bu;
  722. int err = 0, allocated = 0;
  723. ui->last_page_read = index;
  724. if (!c->bulk_read)
  725. return 0;
  726. /*
  727. * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
  728. * so don't bother if we cannot lock the mutex.
  729. */
  730. if (!mutex_trylock(&ui->ui_mutex))
  731. return 0;
  732. if (index != last_page_read + 1) {
  733. /* Turn off bulk-read if we stop reading sequentially */
  734. ui->read_in_a_row = 1;
  735. if (ui->bulk_read)
  736. ui->bulk_read = 0;
  737. goto out_unlock;
  738. }
  739. if (!ui->bulk_read) {
  740. ui->read_in_a_row += 1;
  741. if (ui->read_in_a_row < 3)
  742. goto out_unlock;
  743. /* Three reads in a row, so switch on bulk-read */
  744. ui->bulk_read = 1;
  745. }
  746. /*
  747. * If possible, try to use pre-allocated bulk-read information, which
  748. * is protected by @c->bu_mutex.
  749. */
  750. if (mutex_trylock(&c->bu_mutex))
  751. bu = &c->bu;
  752. else {
  753. bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
  754. if (!bu)
  755. goto out_unlock;
  756. bu->buf = NULL;
  757. allocated = 1;
  758. }
  759. bu->buf_len = c->max_bu_buf_len;
  760. data_key_init(c, &bu->key, inode->i_ino,
  761. page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
  762. err = ubifs_do_bulk_read(c, bu, page);
  763. if (!allocated)
  764. mutex_unlock(&c->bu_mutex);
  765. else
  766. kfree(bu);
  767. out_unlock:
  768. mutex_unlock(&ui->ui_mutex);
  769. return err;
  770. }
  771. static int ubifs_readpage(struct file *file, struct page *page)
  772. {
  773. if (ubifs_bulk_read(page))
  774. return 0;
  775. do_readpage(page);
  776. unlock_page(page);
  777. return 0;
  778. }
  779. static int do_writepage(struct page *page, int len)
  780. {
  781. int err = 0, i, blen;
  782. unsigned int block;
  783. void *addr;
  784. union ubifs_key key;
  785. struct inode *inode = page->mapping->host;
  786. struct ubifs_info *c = inode->i_sb->s_fs_info;
  787. #ifdef UBIFS_DEBUG
  788. spin_lock(&ui->ui_lock);
  789. ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
  790. spin_unlock(&ui->ui_lock);
  791. #endif
  792. /* Update radix tree tags */
  793. set_page_writeback(page);
  794. addr = kmap(page);
  795. block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
  796. i = 0;
  797. while (len) {
  798. blen = min_t(int, len, UBIFS_BLOCK_SIZE);
  799. data_key_init(c, &key, inode->i_ino, block);
  800. err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
  801. if (err)
  802. break;
  803. if (++i >= UBIFS_BLOCKS_PER_PAGE)
  804. break;
  805. block += 1;
  806. addr += blen;
  807. len -= blen;
  808. }
  809. if (err) {
  810. SetPageError(page);
  811. ubifs_err("cannot write page %lu of inode %lu, error %d",
  812. page->index, inode->i_ino, err);
  813. ubifs_ro_mode(c, err);
  814. }
  815. ubifs_assert(PagePrivate(page));
  816. if (PageChecked(page))
  817. release_new_page_budget(c);
  818. else
  819. release_existing_page_budget(c);
  820. atomic_long_dec(&c->dirty_pg_cnt);
  821. ClearPagePrivate(page);
  822. ClearPageChecked(page);
  823. kunmap(page);
  824. unlock_page(page);
  825. end_page_writeback(page);
  826. return err;
  827. }
  828. /*
  829. * When writing-back dirty inodes, VFS first writes-back pages belonging to the
  830. * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
  831. * situation when a we have an inode with size 0, then a megabyte of data is
  832. * appended to the inode, then write-back starts and flushes some amount of the
  833. * dirty pages, the journal becomes full, commit happens and finishes, and then
  834. * an unclean reboot happens. When the file system is mounted next time, the
  835. * inode size would still be 0, but there would be many pages which are beyond
  836. * the inode size, they would be indexed and consume flash space. Because the
  837. * journal has been committed, the replay would not be able to detect this
  838. * situation and correct the inode size. This means UBIFS would have to scan
  839. * whole index and correct all inode sizes, which is long an unacceptable.
  840. *
  841. * To prevent situations like this, UBIFS writes pages back only if they are
  842. * within last synchronized inode size, i.e. the the size which has been
  843. * written to the flash media last time. Otherwise, UBIFS forces inode
  844. * write-back, thus making sure the on-flash inode contains current inode size,
  845. * and then keeps writing pages back.
  846. *
  847. * Some locking issues explanation. 'ubifs_writepage()' first is called with
  848. * the page locked, and it locks @ui_mutex. However, write-back does take inode
  849. * @i_mutex, which means other VFS operations may be run on this inode at the
  850. * same time. And the problematic one is truncation to smaller size, from where
  851. * we have to call 'vmtruncate()', which first changes @inode->i_size, then
  852. * drops the truncated pages. And while dropping the pages, it takes the page
  853. * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
  854. * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
  855. * means that @inode->i_size is changed while @ui_mutex is unlocked.
  856. *
  857. * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
  858. * inode size. How do we do this if @inode->i_size may became smaller while we
  859. * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
  860. * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
  861. * internally and updates it under @ui_mutex.
  862. *
  863. * Q: why we do not worry that if we race with truncation, we may end up with a
  864. * situation when the inode is truncated while we are in the middle of
  865. * 'do_writepage()', so we do write beyond inode size?
  866. * A: If we are in the middle of 'do_writepage()', truncation would be locked
  867. * on the page lock and it would not write the truncated inode node to the
  868. * journal before we have finished.
  869. */
  870. static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
  871. {
  872. struct inode *inode = page->mapping->host;
  873. struct ubifs_inode *ui = ubifs_inode(inode);
  874. loff_t i_size = i_size_read(inode), synced_i_size;
  875. pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
  876. int err, len = i_size & (PAGE_CACHE_SIZE - 1);
  877. void *kaddr;
  878. dbg_gen("ino %lu, pg %lu, pg flags %#lx",
  879. inode->i_ino, page->index, page->flags);
  880. ubifs_assert(PagePrivate(page));
  881. /* Is the page fully outside @i_size? (truncate in progress) */
  882. if (page->index > end_index || (page->index == end_index && !len)) {
  883. err = 0;
  884. goto out_unlock;
  885. }
  886. spin_lock(&ui->ui_lock);
  887. synced_i_size = ui->synced_i_size;
  888. spin_unlock(&ui->ui_lock);
  889. /* Is the page fully inside @i_size? */
  890. if (page->index < end_index) {
  891. if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
  892. err = inode->i_sb->s_op->write_inode(inode, 1);
  893. if (err)
  894. goto out_unlock;
  895. /*
  896. * The inode has been written, but the write-buffer has
  897. * not been synchronized, so in case of an unclean
  898. * reboot we may end up with some pages beyond inode
  899. * size, but they would be in the journal (because
  900. * commit flushes write buffers) and recovery would deal
  901. * with this.
  902. */
  903. }
  904. return do_writepage(page, PAGE_CACHE_SIZE);
  905. }
  906. /*
  907. * The page straddles @i_size. It must be zeroed out on each and every
  908. * writepage invocation because it may be mmapped. "A file is mapped
  909. * in multiples of the page size. For a file that is not a multiple of
  910. * the page size, the remaining memory is zeroed when mapped, and
  911. * writes to that region are not written out to the file."
  912. */
  913. kaddr = kmap_atomic(page, KM_USER0);
  914. memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
  915. flush_dcache_page(page);
  916. kunmap_atomic(kaddr, KM_USER0);
  917. if (i_size > synced_i_size) {
  918. err = inode->i_sb->s_op->write_inode(inode, 1);
  919. if (err)
  920. goto out_unlock;
  921. }
  922. return do_writepage(page, len);
  923. out_unlock:
  924. unlock_page(page);
  925. return err;
  926. }
  927. /**
  928. * do_attr_changes - change inode attributes.
  929. * @inode: inode to change attributes for
  930. * @attr: describes attributes to change
  931. */
  932. static void do_attr_changes(struct inode *inode, const struct iattr *attr)
  933. {
  934. if (attr->ia_valid & ATTR_UID)
  935. inode->i_uid = attr->ia_uid;
  936. if (attr->ia_valid & ATTR_GID)
  937. inode->i_gid = attr->ia_gid;
  938. if (attr->ia_valid & ATTR_ATIME)
  939. inode->i_atime = timespec_trunc(attr->ia_atime,
  940. inode->i_sb->s_time_gran);
  941. if (attr->ia_valid & ATTR_MTIME)
  942. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  943. inode->i_sb->s_time_gran);
  944. if (attr->ia_valid & ATTR_CTIME)
  945. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  946. inode->i_sb->s_time_gran);
  947. if (attr->ia_valid & ATTR_MODE) {
  948. umode_t mode = attr->ia_mode;
  949. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  950. mode &= ~S_ISGID;
  951. inode->i_mode = mode;
  952. }
  953. }
  954. /**
  955. * do_truncation - truncate an inode.
  956. * @c: UBIFS file-system description object
  957. * @inode: inode to truncate
  958. * @attr: inode attribute changes description
  959. *
  960. * This function implements VFS '->setattr()' call when the inode is truncated
  961. * to a smaller size. Returns zero in case of success and a negative error code
  962. * in case of failure.
  963. */
  964. static int do_truncation(struct ubifs_info *c, struct inode *inode,
  965. const struct iattr *attr)
  966. {
  967. int err;
  968. struct ubifs_budget_req req;
  969. loff_t old_size = inode->i_size, new_size = attr->ia_size;
  970. int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
  971. struct ubifs_inode *ui = ubifs_inode(inode);
  972. dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
  973. memset(&req, 0, sizeof(struct ubifs_budget_req));
  974. /*
  975. * If this is truncation to a smaller size, and we do not truncate on a
  976. * block boundary, budget for changing one data block, because the last
  977. * block will be re-written.
  978. */
  979. if (new_size & (UBIFS_BLOCK_SIZE - 1))
  980. req.dirtied_page = 1;
  981. req.dirtied_ino = 1;
  982. /* A funny way to budget for truncation node */
  983. req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
  984. err = ubifs_budget_space(c, &req);
  985. if (err) {
  986. /*
  987. * Treat truncations to zero as deletion and always allow them,
  988. * just like we do for '->unlink()'.
  989. */
  990. if (new_size || err != -ENOSPC)
  991. return err;
  992. budgeted = 0;
  993. }
  994. err = vmtruncate(inode, new_size);
  995. if (err)
  996. goto out_budg;
  997. if (offset) {
  998. pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
  999. struct page *page;
  1000. page = find_lock_page(inode->i_mapping, index);
  1001. if (page) {
  1002. if (PageDirty(page)) {
  1003. /*
  1004. * 'ubifs_jnl_truncate()' will try to truncate
  1005. * the last data node, but it contains
  1006. * out-of-date data because the page is dirty.
  1007. * Write the page now, so that
  1008. * 'ubifs_jnl_truncate()' will see an already
  1009. * truncated (and up to date) data node.
  1010. */
  1011. ubifs_assert(PagePrivate(page));
  1012. clear_page_dirty_for_io(page);
  1013. if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
  1014. offset = new_size &
  1015. (PAGE_CACHE_SIZE - 1);
  1016. err = do_writepage(page, offset);
  1017. page_cache_release(page);
  1018. if (err)
  1019. goto out_budg;
  1020. /*
  1021. * We could now tell 'ubifs_jnl_truncate()' not
  1022. * to read the last block.
  1023. */
  1024. } else {
  1025. /*
  1026. * We could 'kmap()' the page and pass the data
  1027. * to 'ubifs_jnl_truncate()' to save it from
  1028. * having to read it.
  1029. */
  1030. unlock_page(page);
  1031. page_cache_release(page);
  1032. }
  1033. }
  1034. }
  1035. mutex_lock(&ui->ui_mutex);
  1036. ui->ui_size = inode->i_size;
  1037. /* Truncation changes inode [mc]time */
  1038. inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
  1039. /* The other attributes may be changed at the same time as well */
  1040. do_attr_changes(inode, attr);
  1041. err = ubifs_jnl_truncate(c, inode, old_size, new_size);
  1042. mutex_unlock(&ui->ui_mutex);
  1043. out_budg:
  1044. if (budgeted)
  1045. ubifs_release_budget(c, &req);
  1046. else {
  1047. c->nospace = c->nospace_rp = 0;
  1048. smp_wmb();
  1049. }
  1050. return err;
  1051. }
  1052. /**
  1053. * do_setattr - change inode attributes.
  1054. * @c: UBIFS file-system description object
  1055. * @inode: inode to change attributes for
  1056. * @attr: inode attribute changes description
  1057. *
  1058. * This function implements VFS '->setattr()' call for all cases except
  1059. * truncations to smaller size. Returns zero in case of success and a negative
  1060. * error code in case of failure.
  1061. */
  1062. static int do_setattr(struct ubifs_info *c, struct inode *inode,
  1063. const struct iattr *attr)
  1064. {
  1065. int err, release;
  1066. loff_t new_size = attr->ia_size;
  1067. struct ubifs_inode *ui = ubifs_inode(inode);
  1068. struct ubifs_budget_req req = { .dirtied_ino = 1,
  1069. .dirtied_ino_d = ALIGN(ui->data_len, 8) };
  1070. err = ubifs_budget_space(c, &req);
  1071. if (err)
  1072. return err;
  1073. if (attr->ia_valid & ATTR_SIZE) {
  1074. dbg_gen("size %lld -> %lld", inode->i_size, new_size);
  1075. err = vmtruncate(inode, new_size);
  1076. if (err)
  1077. goto out;
  1078. }
  1079. mutex_lock(&ui->ui_mutex);
  1080. if (attr->ia_valid & ATTR_SIZE) {
  1081. /* Truncation changes inode [mc]time */
  1082. inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
  1083. /* 'vmtruncate()' changed @i_size, update @ui_size */
  1084. ui->ui_size = inode->i_size;
  1085. }
  1086. do_attr_changes(inode, attr);
  1087. release = ui->dirty;
  1088. if (attr->ia_valid & ATTR_SIZE)
  1089. /*
  1090. * Inode length changed, so we have to make sure
  1091. * @I_DIRTY_DATASYNC is set.
  1092. */
  1093. __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
  1094. else
  1095. mark_inode_dirty_sync(inode);
  1096. mutex_unlock(&ui->ui_mutex);
  1097. if (release)
  1098. ubifs_release_budget(c, &req);
  1099. if (IS_SYNC(inode))
  1100. err = inode->i_sb->s_op->write_inode(inode, 1);
  1101. return err;
  1102. out:
  1103. ubifs_release_budget(c, &req);
  1104. return err;
  1105. }
  1106. int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
  1107. {
  1108. int err;
  1109. struct inode *inode = dentry->d_inode;
  1110. struct ubifs_info *c = inode->i_sb->s_fs_info;
  1111. dbg_gen("ino %lu, mode %#x, ia_valid %#x",
  1112. inode->i_ino, inode->i_mode, attr->ia_valid);
  1113. err = inode_change_ok(inode, attr);
  1114. if (err)
  1115. return err;
  1116. err = dbg_check_synced_i_size(inode);
  1117. if (err)
  1118. return err;
  1119. if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
  1120. /* Truncation to a smaller size */
  1121. err = do_truncation(c, inode, attr);
  1122. else
  1123. err = do_setattr(c, inode, attr);
  1124. return err;
  1125. }
  1126. static void ubifs_invalidatepage(struct page *page, unsigned long offset)
  1127. {
  1128. struct inode *inode = page->mapping->host;
  1129. struct ubifs_info *c = inode->i_sb->s_fs_info;
  1130. ubifs_assert(PagePrivate(page));
  1131. if (offset)
  1132. /* Partial page remains dirty */
  1133. return;
  1134. if (PageChecked(page))
  1135. release_new_page_budget(c);
  1136. else
  1137. release_existing_page_budget(c);
  1138. atomic_long_dec(&c->dirty_pg_cnt);
  1139. ClearPagePrivate(page);
  1140. ClearPageChecked(page);
  1141. }
  1142. static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
  1143. {
  1144. struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
  1145. nd_set_link(nd, ui->data);
  1146. return NULL;
  1147. }
  1148. int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
  1149. {
  1150. struct inode *inode = dentry->d_inode;
  1151. struct ubifs_info *c = inode->i_sb->s_fs_info;
  1152. int err;
  1153. dbg_gen("syncing inode %lu", inode->i_ino);
  1154. /*
  1155. * VFS has already synchronized dirty pages for this inode. Synchronize
  1156. * the inode unless this is a 'datasync()' call.
  1157. */
  1158. if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
  1159. err = inode->i_sb->s_op->write_inode(inode, 1);
  1160. if (err)
  1161. return err;
  1162. }
  1163. /*
  1164. * Nodes related to this inode may still sit in a write-buffer. Flush
  1165. * them.
  1166. */
  1167. err = ubifs_sync_wbufs_by_inode(c, inode);
  1168. if (err)
  1169. return err;
  1170. return 0;
  1171. }
  1172. /**
  1173. * mctime_update_needed - check if mtime or ctime update is needed.
  1174. * @inode: the inode to do the check for
  1175. * @now: current time
  1176. *
  1177. * This helper function checks if the inode mtime/ctime should be updated or
  1178. * not. If current values of the time-stamps are within the UBIFS inode time
  1179. * granularity, they are not updated. This is an optimization.
  1180. */
  1181. static inline int mctime_update_needed(const struct inode *inode,
  1182. const struct timespec *now)
  1183. {
  1184. if (!timespec_equal(&inode->i_mtime, now) ||
  1185. !timespec_equal(&inode->i_ctime, now))
  1186. return 1;
  1187. return 0;
  1188. }
  1189. /**
  1190. * update_ctime - update mtime and ctime of an inode.
  1191. * @c: UBIFS file-system description object
  1192. * @inode: inode to update
  1193. *
  1194. * This function updates mtime and ctime of the inode if it is not equivalent to
  1195. * current time. Returns zero in case of success and a negative error code in
  1196. * case of failure.
  1197. */
  1198. static int update_mctime(struct ubifs_info *c, struct inode *inode)
  1199. {
  1200. struct timespec now = ubifs_current_time(inode);
  1201. struct ubifs_inode *ui = ubifs_inode(inode);
  1202. if (mctime_update_needed(inode, &now)) {
  1203. int err, release;
  1204. struct ubifs_budget_req req = { .dirtied_ino = 1,
  1205. .dirtied_ino_d = ALIGN(ui->data_len, 8) };
  1206. err = ubifs_budget_space(c, &req);
  1207. if (err)
  1208. return err;
  1209. mutex_lock(&ui->ui_mutex);
  1210. inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
  1211. release = ui->dirty;
  1212. mark_inode_dirty_sync(inode);
  1213. mutex_unlock(&ui->ui_mutex);
  1214. if (release)
  1215. ubifs_release_budget(c, &req);
  1216. }
  1217. return 0;
  1218. }
  1219. static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
  1220. unsigned long nr_segs, loff_t pos)
  1221. {
  1222. int err;
  1223. ssize_t ret;
  1224. struct inode *inode = iocb->ki_filp->f_mapping->host;
  1225. struct ubifs_info *c = inode->i_sb->s_fs_info;
  1226. err = update_mctime(c, inode);
  1227. if (err)
  1228. return err;
  1229. ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
  1230. if (ret < 0)
  1231. return ret;
  1232. if (ret > 0 && (IS_SYNC(inode) || iocb->ki_filp->f_flags & O_SYNC)) {
  1233. err = ubifs_sync_wbufs_by_inode(c, inode);
  1234. if (err)
  1235. return err;
  1236. }
  1237. return ret;
  1238. }
  1239. static int ubifs_set_page_dirty(struct page *page)
  1240. {
  1241. int ret;
  1242. ret = __set_page_dirty_nobuffers(page);
  1243. /*
  1244. * An attempt to dirty a page without budgeting for it - should not
  1245. * happen.
  1246. */
  1247. ubifs_assert(ret == 0);
  1248. return ret;
  1249. }
  1250. static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
  1251. {
  1252. /*
  1253. * An attempt to release a dirty page without budgeting for it - should
  1254. * not happen.
  1255. */
  1256. if (PageWriteback(page))
  1257. return 0;
  1258. ubifs_assert(PagePrivate(page));
  1259. ubifs_assert(0);
  1260. ClearPagePrivate(page);
  1261. ClearPageChecked(page);
  1262. return 1;
  1263. }
  1264. /*
  1265. * mmap()d file has taken write protection fault and is being made
  1266. * writable. UBIFS must ensure page is budgeted for.
  1267. */
  1268. static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct page *page)
  1269. {
  1270. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  1271. struct ubifs_info *c = inode->i_sb->s_fs_info;
  1272. struct timespec now = ubifs_current_time(inode);
  1273. struct ubifs_budget_req req = { .new_page = 1 };
  1274. int err, update_time;
  1275. dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
  1276. i_size_read(inode));
  1277. ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
  1278. if (unlikely(c->ro_media))
  1279. return -EROFS;
  1280. /*
  1281. * We have not locked @page so far so we may budget for changing the
  1282. * page. Note, we cannot do this after we locked the page, because
  1283. * budgeting may cause write-back which would cause deadlock.
  1284. *
  1285. * At the moment we do not know whether the page is dirty or not, so we
  1286. * assume that it is not and budget for a new page. We could look at
  1287. * the @PG_private flag and figure this out, but we may race with write
  1288. * back and the page state may change by the time we lock it, so this
  1289. * would need additional care. We do not bother with this at the
  1290. * moment, although it might be good idea to do. Instead, we allocate
  1291. * budget for a new page and amend it later on if the page was in fact
  1292. * dirty.
  1293. *
  1294. * The budgeting-related logic of this function is similar to what we
  1295. * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
  1296. * for more comments.
  1297. */
  1298. update_time = mctime_update_needed(inode, &now);
  1299. if (update_time)
  1300. /*
  1301. * We have to change inode time stamp which requires extra
  1302. * budgeting.
  1303. */
  1304. req.dirtied_ino = 1;
  1305. err = ubifs_budget_space(c, &req);
  1306. if (unlikely(err)) {
  1307. if (err == -ENOSPC)
  1308. ubifs_warn("out of space for mmapped file "
  1309. "(inode number %lu)", inode->i_ino);
  1310. return err;
  1311. }
  1312. lock_page(page);
  1313. if (unlikely(page->mapping != inode->i_mapping ||
  1314. page_offset(page) > i_size_read(inode))) {
  1315. /* Page got truncated out from underneath us */
  1316. err = -EINVAL;
  1317. goto out_unlock;
  1318. }
  1319. if (PagePrivate(page))
  1320. release_new_page_budget(c);
  1321. else {
  1322. if (!PageChecked(page))
  1323. ubifs_convert_page_budget(c);
  1324. SetPagePrivate(page);
  1325. atomic_long_inc(&c->dirty_pg_cnt);
  1326. __set_page_dirty_nobuffers(page);
  1327. }
  1328. if (update_time) {
  1329. int release;
  1330. struct ubifs_inode *ui = ubifs_inode(inode);
  1331. mutex_lock(&ui->ui_mutex);
  1332. inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
  1333. release = ui->dirty;
  1334. mark_inode_dirty_sync(inode);
  1335. mutex_unlock(&ui->ui_mutex);
  1336. if (release)
  1337. ubifs_release_dirty_inode_budget(c, ui);
  1338. }
  1339. unlock_page(page);
  1340. return 0;
  1341. out_unlock:
  1342. unlock_page(page);
  1343. ubifs_release_budget(c, &req);
  1344. return err;
  1345. }
  1346. static struct vm_operations_struct ubifs_file_vm_ops = {
  1347. .fault = filemap_fault,
  1348. .page_mkwrite = ubifs_vm_page_mkwrite,
  1349. };
  1350. static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
  1351. {
  1352. int err;
  1353. /* 'generic_file_mmap()' takes care of NOMMU case */
  1354. err = generic_file_mmap(file, vma);
  1355. if (err)
  1356. return err;
  1357. vma->vm_ops = &ubifs_file_vm_ops;
  1358. return 0;
  1359. }
  1360. struct address_space_operations ubifs_file_address_operations = {
  1361. .readpage = ubifs_readpage,
  1362. .writepage = ubifs_writepage,
  1363. .write_begin = ubifs_write_begin,
  1364. .write_end = ubifs_write_end,
  1365. .invalidatepage = ubifs_invalidatepage,
  1366. .set_page_dirty = ubifs_set_page_dirty,
  1367. .releasepage = ubifs_releasepage,
  1368. };
  1369. struct inode_operations ubifs_file_inode_operations = {
  1370. .setattr = ubifs_setattr,
  1371. .getattr = ubifs_getattr,
  1372. #ifdef CONFIG_UBIFS_FS_XATTR
  1373. .setxattr = ubifs_setxattr,
  1374. .getxattr = ubifs_getxattr,
  1375. .listxattr = ubifs_listxattr,
  1376. .removexattr = ubifs_removexattr,
  1377. #endif
  1378. };
  1379. struct inode_operations ubifs_symlink_inode_operations = {
  1380. .readlink = generic_readlink,
  1381. .follow_link = ubifs_follow_link,
  1382. .setattr = ubifs_setattr,
  1383. .getattr = ubifs_getattr,
  1384. };
  1385. struct file_operations ubifs_file_operations = {
  1386. .llseek = generic_file_llseek,
  1387. .read = do_sync_read,
  1388. .write = do_sync_write,
  1389. .aio_read = generic_file_aio_read,
  1390. .aio_write = ubifs_aio_write,
  1391. .mmap = ubifs_file_mmap,
  1392. .fsync = ubifs_fsync,
  1393. .unlocked_ioctl = ubifs_ioctl,
  1394. .splice_read = generic_file_splice_read,
  1395. .splice_write = generic_file_splice_write,
  1396. #ifdef CONFIG_COMPAT
  1397. .compat_ioctl = ubifs_compat_ioctl,
  1398. #endif
  1399. };