time.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489
  1. /*
  2. * linux/arch/ia64/kernel/time.c
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * Stephane Eranian <eranian@hpl.hp.com>
  6. * David Mosberger <davidm@hpl.hp.com>
  7. * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
  8. * Copyright (C) 1999-2000 VA Linux Systems
  9. * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/init.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/profile.h>
  16. #include <linux/sched.h>
  17. #include <linux/time.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/efi.h>
  20. #include <linux/timex.h>
  21. #include <linux/clocksource.h>
  22. #include <asm/machvec.h>
  23. #include <asm/delay.h>
  24. #include <asm/hw_irq.h>
  25. #include <asm/paravirt.h>
  26. #include <asm/ptrace.h>
  27. #include <asm/sal.h>
  28. #include <asm/sections.h>
  29. #include <asm/system.h>
  30. #include "fsyscall_gtod_data.h"
  31. static cycle_t itc_get_cycles(void);
  32. struct fsyscall_gtod_data_t fsyscall_gtod_data = {
  33. .lock = SEQLOCK_UNLOCKED,
  34. };
  35. struct itc_jitter_data_t itc_jitter_data;
  36. volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  37. #ifdef CONFIG_IA64_DEBUG_IRQ
  38. unsigned long last_cli_ip;
  39. EXPORT_SYMBOL(last_cli_ip);
  40. #endif
  41. #ifdef CONFIG_PARAVIRT
  42. /* We need to define a real function for sched_clock, to override the
  43. weak default version */
  44. unsigned long long sched_clock(void)
  45. {
  46. return paravirt_sched_clock();
  47. }
  48. #endif
  49. #ifdef CONFIG_PARAVIRT
  50. static void
  51. paravirt_clocksource_resume(void)
  52. {
  53. if (pv_time_ops.clocksource_resume)
  54. pv_time_ops.clocksource_resume();
  55. }
  56. #endif
  57. static struct clocksource clocksource_itc = {
  58. .name = "itc",
  59. .rating = 350,
  60. .read = itc_get_cycles,
  61. .mask = CLOCKSOURCE_MASK(64),
  62. .mult = 0, /*to be calculated*/
  63. .shift = 16,
  64. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  65. #ifdef CONFIG_PARAVIRT
  66. .resume = paravirt_clocksource_resume,
  67. #endif
  68. };
  69. static struct clocksource *itc_clocksource;
  70. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  71. #include <linux/kernel_stat.h>
  72. extern cputime_t cycle_to_cputime(u64 cyc);
  73. /*
  74. * Called from the context switch with interrupts disabled, to charge all
  75. * accumulated times to the current process, and to prepare accounting on
  76. * the next process.
  77. */
  78. void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
  79. {
  80. struct thread_info *pi = task_thread_info(prev);
  81. struct thread_info *ni = task_thread_info(next);
  82. cputime_t delta_stime, delta_utime;
  83. __u64 now;
  84. now = ia64_get_itc();
  85. delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
  86. if (idle_task(smp_processor_id()) != prev)
  87. account_system_time(prev, 0, delta_stime, delta_stime);
  88. else
  89. account_idle_time(delta_stime);
  90. if (pi->ac_utime) {
  91. delta_utime = cycle_to_cputime(pi->ac_utime);
  92. account_user_time(prev, delta_utime, delta_utime);
  93. }
  94. pi->ac_stamp = ni->ac_stamp = now;
  95. ni->ac_stime = ni->ac_utime = 0;
  96. }
  97. /*
  98. * Account time for a transition between system, hard irq or soft irq state.
  99. * Note that this function is called with interrupts enabled.
  100. */
  101. void account_system_vtime(struct task_struct *tsk)
  102. {
  103. struct thread_info *ti = task_thread_info(tsk);
  104. unsigned long flags;
  105. cputime_t delta_stime;
  106. __u64 now;
  107. local_irq_save(flags);
  108. now = ia64_get_itc();
  109. delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
  110. if (irq_count() || idle_task(smp_processor_id()) != tsk)
  111. account_system_time(tsk, 0, delta_stime, delta_stime);
  112. else
  113. account_idle_time(delta_stime);
  114. ti->ac_stime = 0;
  115. ti->ac_stamp = now;
  116. local_irq_restore(flags);
  117. }
  118. EXPORT_SYMBOL_GPL(account_system_vtime);
  119. /*
  120. * Called from the timer interrupt handler to charge accumulated user time
  121. * to the current process. Must be called with interrupts disabled.
  122. */
  123. void account_process_tick(struct task_struct *p, int user_tick)
  124. {
  125. struct thread_info *ti = task_thread_info(p);
  126. cputime_t delta_utime;
  127. if (ti->ac_utime) {
  128. delta_utime = cycle_to_cputime(ti->ac_utime);
  129. account_user_time(p, delta_utime, delta_utime);
  130. ti->ac_utime = 0;
  131. }
  132. }
  133. #endif /* CONFIG_VIRT_CPU_ACCOUNTING */
  134. static irqreturn_t
  135. timer_interrupt (int irq, void *dev_id)
  136. {
  137. unsigned long new_itm;
  138. if (unlikely(cpu_is_offline(smp_processor_id()))) {
  139. return IRQ_HANDLED;
  140. }
  141. platform_timer_interrupt(irq, dev_id);
  142. new_itm = local_cpu_data->itm_next;
  143. if (!time_after(ia64_get_itc(), new_itm))
  144. printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
  145. ia64_get_itc(), new_itm);
  146. profile_tick(CPU_PROFILING);
  147. if (paravirt_do_steal_accounting(&new_itm))
  148. goto skip_process_time_accounting;
  149. while (1) {
  150. update_process_times(user_mode(get_irq_regs()));
  151. new_itm += local_cpu_data->itm_delta;
  152. if (smp_processor_id() == time_keeper_id) {
  153. /*
  154. * Here we are in the timer irq handler. We have irqs locally
  155. * disabled, but we don't know if the timer_bh is running on
  156. * another CPU. We need to avoid to SMP race by acquiring the
  157. * xtime_lock.
  158. */
  159. write_seqlock(&xtime_lock);
  160. do_timer(1);
  161. local_cpu_data->itm_next = new_itm;
  162. write_sequnlock(&xtime_lock);
  163. } else
  164. local_cpu_data->itm_next = new_itm;
  165. if (time_after(new_itm, ia64_get_itc()))
  166. break;
  167. /*
  168. * Allow IPIs to interrupt the timer loop.
  169. */
  170. local_irq_enable();
  171. local_irq_disable();
  172. }
  173. skip_process_time_accounting:
  174. do {
  175. /*
  176. * If we're too close to the next clock tick for
  177. * comfort, we increase the safety margin by
  178. * intentionally dropping the next tick(s). We do NOT
  179. * update itm.next because that would force us to call
  180. * do_timer() which in turn would let our clock run
  181. * too fast (with the potentially devastating effect
  182. * of losing monotony of time).
  183. */
  184. while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
  185. new_itm += local_cpu_data->itm_delta;
  186. ia64_set_itm(new_itm);
  187. /* double check, in case we got hit by a (slow) PMI: */
  188. } while (time_after_eq(ia64_get_itc(), new_itm));
  189. return IRQ_HANDLED;
  190. }
  191. /*
  192. * Encapsulate access to the itm structure for SMP.
  193. */
  194. void
  195. ia64_cpu_local_tick (void)
  196. {
  197. int cpu = smp_processor_id();
  198. unsigned long shift = 0, delta;
  199. /* arrange for the cycle counter to generate a timer interrupt: */
  200. ia64_set_itv(IA64_TIMER_VECTOR);
  201. delta = local_cpu_data->itm_delta;
  202. /*
  203. * Stagger the timer tick for each CPU so they don't occur all at (almost) the
  204. * same time:
  205. */
  206. if (cpu) {
  207. unsigned long hi = 1UL << ia64_fls(cpu);
  208. shift = (2*(cpu - hi) + 1) * delta/hi/2;
  209. }
  210. local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
  211. ia64_set_itm(local_cpu_data->itm_next);
  212. }
  213. static int nojitter;
  214. static int __init nojitter_setup(char *str)
  215. {
  216. nojitter = 1;
  217. printk("Jitter checking for ITC timers disabled\n");
  218. return 1;
  219. }
  220. __setup("nojitter", nojitter_setup);
  221. void __devinit
  222. ia64_init_itm (void)
  223. {
  224. unsigned long platform_base_freq, itc_freq;
  225. struct pal_freq_ratio itc_ratio, proc_ratio;
  226. long status, platform_base_drift, itc_drift;
  227. /*
  228. * According to SAL v2.6, we need to use a SAL call to determine the platform base
  229. * frequency and then a PAL call to determine the frequency ratio between the ITC
  230. * and the base frequency.
  231. */
  232. status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
  233. &platform_base_freq, &platform_base_drift);
  234. if (status != 0) {
  235. printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
  236. } else {
  237. status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
  238. if (status != 0)
  239. printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
  240. }
  241. if (status != 0) {
  242. /* invent "random" values */
  243. printk(KERN_ERR
  244. "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
  245. platform_base_freq = 100000000;
  246. platform_base_drift = -1; /* no drift info */
  247. itc_ratio.num = 3;
  248. itc_ratio.den = 1;
  249. }
  250. if (platform_base_freq < 40000000) {
  251. printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
  252. platform_base_freq);
  253. platform_base_freq = 75000000;
  254. platform_base_drift = -1;
  255. }
  256. if (!proc_ratio.den)
  257. proc_ratio.den = 1; /* avoid division by zero */
  258. if (!itc_ratio.den)
  259. itc_ratio.den = 1; /* avoid division by zero */
  260. itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
  261. local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
  262. printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
  263. "ITC freq=%lu.%03luMHz", smp_processor_id(),
  264. platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
  265. itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
  266. if (platform_base_drift != -1) {
  267. itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
  268. printk("+/-%ldppm\n", itc_drift);
  269. } else {
  270. itc_drift = -1;
  271. printk("\n");
  272. }
  273. local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
  274. local_cpu_data->itc_freq = itc_freq;
  275. local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
  276. local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
  277. + itc_freq/2)/itc_freq;
  278. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  279. #ifdef CONFIG_SMP
  280. /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
  281. * Jitter compensation requires a cmpxchg which may limit
  282. * the scalability of the syscalls for retrieving time.
  283. * The ITC synchronization is usually successful to within a few
  284. * ITC ticks but this is not a sure thing. If you need to improve
  285. * timer performance in SMP situations then boot the kernel with the
  286. * "nojitter" option. However, doing so may result in time fluctuating (maybe
  287. * even going backward) if the ITC offsets between the individual CPUs
  288. * are too large.
  289. */
  290. if (!nojitter)
  291. itc_jitter_data.itc_jitter = 1;
  292. #endif
  293. } else
  294. /*
  295. * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
  296. * ITC values may fluctuate significantly between processors.
  297. * Clock should not be used for hrtimers. Mark itc as only
  298. * useful for boot and testing.
  299. *
  300. * Note that jitter compensation is off! There is no point of
  301. * synchronizing ITCs since they may be large differentials
  302. * that change over time.
  303. *
  304. * The only way to fix this would be to repeatedly sync the
  305. * ITCs. Until that time we have to avoid ITC.
  306. */
  307. clocksource_itc.rating = 50;
  308. paravirt_init_missing_ticks_accounting(smp_processor_id());
  309. /* avoid softlock up message when cpu is unplug and plugged again. */
  310. touch_softlockup_watchdog();
  311. /* Setup the CPU local timer tick */
  312. ia64_cpu_local_tick();
  313. if (!itc_clocksource) {
  314. /* Sort out mult/shift values: */
  315. clocksource_itc.mult =
  316. clocksource_hz2mult(local_cpu_data->itc_freq,
  317. clocksource_itc.shift);
  318. clocksource_register(&clocksource_itc);
  319. itc_clocksource = &clocksource_itc;
  320. }
  321. }
  322. static cycle_t itc_get_cycles(void)
  323. {
  324. u64 lcycle, now, ret;
  325. if (!itc_jitter_data.itc_jitter)
  326. return get_cycles();
  327. lcycle = itc_jitter_data.itc_lastcycle;
  328. now = get_cycles();
  329. if (lcycle && time_after(lcycle, now))
  330. return lcycle;
  331. /*
  332. * Keep track of the last timer value returned.
  333. * In an SMP environment, you could lose out in contention of
  334. * cmpxchg. If so, your cmpxchg returns new value which the
  335. * winner of contention updated to. Use the new value instead.
  336. */
  337. ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
  338. if (unlikely(ret != lcycle))
  339. return ret;
  340. return now;
  341. }
  342. static struct irqaction timer_irqaction = {
  343. .handler = timer_interrupt,
  344. .flags = IRQF_DISABLED | IRQF_IRQPOLL,
  345. .name = "timer"
  346. };
  347. void __init
  348. time_init (void)
  349. {
  350. register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
  351. efi_gettimeofday(&xtime);
  352. ia64_init_itm();
  353. /*
  354. * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
  355. * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
  356. */
  357. set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
  358. }
  359. /*
  360. * Generic udelay assumes that if preemption is allowed and the thread
  361. * migrates to another CPU, that the ITC values are synchronized across
  362. * all CPUs.
  363. */
  364. static void
  365. ia64_itc_udelay (unsigned long usecs)
  366. {
  367. unsigned long start = ia64_get_itc();
  368. unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
  369. while (time_before(ia64_get_itc(), end))
  370. cpu_relax();
  371. }
  372. void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
  373. void
  374. udelay (unsigned long usecs)
  375. {
  376. (*ia64_udelay)(usecs);
  377. }
  378. EXPORT_SYMBOL(udelay);
  379. /* IA64 doesn't cache the timezone */
  380. void update_vsyscall_tz(void)
  381. {
  382. }
  383. void update_vsyscall(struct timespec *wall, struct clocksource *c)
  384. {
  385. unsigned long flags;
  386. write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
  387. /* copy fsyscall clock data */
  388. fsyscall_gtod_data.clk_mask = c->mask;
  389. fsyscall_gtod_data.clk_mult = c->mult;
  390. fsyscall_gtod_data.clk_shift = c->shift;
  391. fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
  392. fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
  393. /* copy kernel time structures */
  394. fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
  395. fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
  396. fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
  397. + wall->tv_sec;
  398. fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
  399. + wall->tv_nsec;
  400. /* normalize */
  401. while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
  402. fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
  403. fsyscall_gtod_data.monotonic_time.tv_sec++;
  404. }
  405. write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
  406. }