sched.c 174 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/suspend.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/tsacct_kern.h>
  52. #include <linux/kprobes.h>
  53. #include <linux/delayacct.h>
  54. #include <asm/tlb.h>
  55. #include <asm/unistd.h>
  56. /*
  57. * Convert user-nice values [ -20 ... 0 ... 19 ]
  58. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  59. * and back.
  60. */
  61. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  62. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  63. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  64. /*
  65. * 'User priority' is the nice value converted to something we
  66. * can work with better when scaling various scheduler parameters,
  67. * it's a [ 0 ... 39 ] range.
  68. */
  69. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  70. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  71. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  72. /*
  73. * Some helpers for converting nanosecond timing to jiffy resolution
  74. */
  75. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  76. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  77. /*
  78. * These are the 'tuning knobs' of the scheduler:
  79. *
  80. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  81. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  82. * Timeslices get refilled after they expire.
  83. */
  84. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  85. #define DEF_TIMESLICE (100 * HZ / 1000)
  86. #define ON_RUNQUEUE_WEIGHT 30
  87. #define CHILD_PENALTY 95
  88. #define PARENT_PENALTY 100
  89. #define EXIT_WEIGHT 3
  90. #define PRIO_BONUS_RATIO 25
  91. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  92. #define INTERACTIVE_DELTA 2
  93. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  94. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  95. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  96. /*
  97. * If a task is 'interactive' then we reinsert it in the active
  98. * array after it has expired its current timeslice. (it will not
  99. * continue to run immediately, it will still roundrobin with
  100. * other interactive tasks.)
  101. *
  102. * This part scales the interactivity limit depending on niceness.
  103. *
  104. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  105. * Here are a few examples of different nice levels:
  106. *
  107. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  108. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  109. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  110. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  111. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  112. *
  113. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  114. * priority range a task can explore, a value of '1' means the
  115. * task is rated interactive.)
  116. *
  117. * Ie. nice +19 tasks can never get 'interactive' enough to be
  118. * reinserted into the active array. And only heavily CPU-hog nice -20
  119. * tasks will be expired. Default nice 0 tasks are somewhere between,
  120. * it takes some effort for them to get interactive, but it's not
  121. * too hard.
  122. */
  123. #define CURRENT_BONUS(p) \
  124. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  125. MAX_SLEEP_AVG)
  126. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  127. #ifdef CONFIG_SMP
  128. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  129. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  130. num_online_cpus())
  131. #else
  132. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  133. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  134. #endif
  135. #define SCALE(v1,v1_max,v2_max) \
  136. (v1) * (v2_max) / (v1_max)
  137. #define DELTA(p) \
  138. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  139. INTERACTIVE_DELTA)
  140. #define TASK_INTERACTIVE(p) \
  141. ((p)->prio <= (p)->static_prio - DELTA(p))
  142. #define INTERACTIVE_SLEEP(p) \
  143. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  144. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  145. #define TASK_PREEMPTS_CURR(p, rq) \
  146. ((p)->prio < (rq)->curr->prio)
  147. #define SCALE_PRIO(x, prio) \
  148. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  149. static unsigned int static_prio_timeslice(int static_prio)
  150. {
  151. if (static_prio < NICE_TO_PRIO(0))
  152. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  153. else
  154. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  155. }
  156. /*
  157. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  158. * to time slice values: [800ms ... 100ms ... 5ms]
  159. *
  160. * The higher a thread's priority, the bigger timeslices
  161. * it gets during one round of execution. But even the lowest
  162. * priority thread gets MIN_TIMESLICE worth of execution time.
  163. */
  164. static inline unsigned int task_timeslice(struct task_struct *p)
  165. {
  166. return static_prio_timeslice(p->static_prio);
  167. }
  168. /*
  169. * These are the runqueue data structures:
  170. */
  171. struct prio_array {
  172. unsigned int nr_active;
  173. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  174. struct list_head queue[MAX_PRIO];
  175. };
  176. /*
  177. * This is the main, per-CPU runqueue data structure.
  178. *
  179. * Locking rule: those places that want to lock multiple runqueues
  180. * (such as the load balancing or the thread migration code), lock
  181. * acquire operations must be ordered by ascending &runqueue.
  182. */
  183. struct rq {
  184. spinlock_t lock;
  185. /*
  186. * nr_running and cpu_load should be in the same cacheline because
  187. * remote CPUs use both these fields when doing load calculation.
  188. */
  189. unsigned long nr_running;
  190. unsigned long raw_weighted_load;
  191. #ifdef CONFIG_SMP
  192. unsigned long cpu_load[3];
  193. #endif
  194. unsigned long long nr_switches;
  195. /*
  196. * This is part of a global counter where only the total sum
  197. * over all CPUs matters. A task can increase this counter on
  198. * one CPU and if it got migrated afterwards it may decrease
  199. * it on another CPU. Always updated under the runqueue lock:
  200. */
  201. unsigned long nr_uninterruptible;
  202. unsigned long expired_timestamp;
  203. unsigned long long timestamp_last_tick;
  204. struct task_struct *curr, *idle;
  205. struct mm_struct *prev_mm;
  206. struct prio_array *active, *expired, arrays[2];
  207. int best_expired_prio;
  208. atomic_t nr_iowait;
  209. #ifdef CONFIG_SMP
  210. struct sched_domain *sd;
  211. /* For active balancing */
  212. int active_balance;
  213. int push_cpu;
  214. int cpu; /* cpu of this runqueue */
  215. struct task_struct *migration_thread;
  216. struct list_head migration_queue;
  217. #endif
  218. #ifdef CONFIG_SCHEDSTATS
  219. /* latency stats */
  220. struct sched_info rq_sched_info;
  221. /* sys_sched_yield() stats */
  222. unsigned long yld_exp_empty;
  223. unsigned long yld_act_empty;
  224. unsigned long yld_both_empty;
  225. unsigned long yld_cnt;
  226. /* schedule() stats */
  227. unsigned long sched_switch;
  228. unsigned long sched_cnt;
  229. unsigned long sched_goidle;
  230. /* try_to_wake_up() stats */
  231. unsigned long ttwu_cnt;
  232. unsigned long ttwu_local;
  233. #endif
  234. struct lock_class_key rq_lock_key;
  235. };
  236. static DEFINE_PER_CPU(struct rq, runqueues);
  237. static inline int cpu_of(struct rq *rq)
  238. {
  239. #ifdef CONFIG_SMP
  240. return rq->cpu;
  241. #else
  242. return 0;
  243. #endif
  244. }
  245. /*
  246. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  247. * See detach_destroy_domains: synchronize_sched for details.
  248. *
  249. * The domain tree of any CPU may only be accessed from within
  250. * preempt-disabled sections.
  251. */
  252. #define for_each_domain(cpu, __sd) \
  253. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  254. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  255. #define this_rq() (&__get_cpu_var(runqueues))
  256. #define task_rq(p) cpu_rq(task_cpu(p))
  257. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  258. #ifndef prepare_arch_switch
  259. # define prepare_arch_switch(next) do { } while (0)
  260. #endif
  261. #ifndef finish_arch_switch
  262. # define finish_arch_switch(prev) do { } while (0)
  263. #endif
  264. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  265. static inline int task_running(struct rq *rq, struct task_struct *p)
  266. {
  267. return rq->curr == p;
  268. }
  269. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  270. {
  271. }
  272. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  273. {
  274. #ifdef CONFIG_DEBUG_SPINLOCK
  275. /* this is a valid case when another task releases the spinlock */
  276. rq->lock.owner = current;
  277. #endif
  278. /*
  279. * If we are tracking spinlock dependencies then we have to
  280. * fix up the runqueue lock - which gets 'carried over' from
  281. * prev into current:
  282. */
  283. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  284. spin_unlock_irq(&rq->lock);
  285. }
  286. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  287. static inline int task_running(struct rq *rq, struct task_struct *p)
  288. {
  289. #ifdef CONFIG_SMP
  290. return p->oncpu;
  291. #else
  292. return rq->curr == p;
  293. #endif
  294. }
  295. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  296. {
  297. #ifdef CONFIG_SMP
  298. /*
  299. * We can optimise this out completely for !SMP, because the
  300. * SMP rebalancing from interrupt is the only thing that cares
  301. * here.
  302. */
  303. next->oncpu = 1;
  304. #endif
  305. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  306. spin_unlock_irq(&rq->lock);
  307. #else
  308. spin_unlock(&rq->lock);
  309. #endif
  310. }
  311. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  312. {
  313. #ifdef CONFIG_SMP
  314. /*
  315. * After ->oncpu is cleared, the task can be moved to a different CPU.
  316. * We must ensure this doesn't happen until the switch is completely
  317. * finished.
  318. */
  319. smp_wmb();
  320. prev->oncpu = 0;
  321. #endif
  322. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  323. local_irq_enable();
  324. #endif
  325. }
  326. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  327. /*
  328. * __task_rq_lock - lock the runqueue a given task resides on.
  329. * Must be called interrupts disabled.
  330. */
  331. static inline struct rq *__task_rq_lock(struct task_struct *p)
  332. __acquires(rq->lock)
  333. {
  334. struct rq *rq;
  335. repeat_lock_task:
  336. rq = task_rq(p);
  337. spin_lock(&rq->lock);
  338. if (unlikely(rq != task_rq(p))) {
  339. spin_unlock(&rq->lock);
  340. goto repeat_lock_task;
  341. }
  342. return rq;
  343. }
  344. /*
  345. * task_rq_lock - lock the runqueue a given task resides on and disable
  346. * interrupts. Note the ordering: we can safely lookup the task_rq without
  347. * explicitly disabling preemption.
  348. */
  349. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  350. __acquires(rq->lock)
  351. {
  352. struct rq *rq;
  353. repeat_lock_task:
  354. local_irq_save(*flags);
  355. rq = task_rq(p);
  356. spin_lock(&rq->lock);
  357. if (unlikely(rq != task_rq(p))) {
  358. spin_unlock_irqrestore(&rq->lock, *flags);
  359. goto repeat_lock_task;
  360. }
  361. return rq;
  362. }
  363. static inline void __task_rq_unlock(struct rq *rq)
  364. __releases(rq->lock)
  365. {
  366. spin_unlock(&rq->lock);
  367. }
  368. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  369. __releases(rq->lock)
  370. {
  371. spin_unlock_irqrestore(&rq->lock, *flags);
  372. }
  373. #ifdef CONFIG_SCHEDSTATS
  374. /*
  375. * bump this up when changing the output format or the meaning of an existing
  376. * format, so that tools can adapt (or abort)
  377. */
  378. #define SCHEDSTAT_VERSION 12
  379. static int show_schedstat(struct seq_file *seq, void *v)
  380. {
  381. int cpu;
  382. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  383. seq_printf(seq, "timestamp %lu\n", jiffies);
  384. for_each_online_cpu(cpu) {
  385. struct rq *rq = cpu_rq(cpu);
  386. #ifdef CONFIG_SMP
  387. struct sched_domain *sd;
  388. int dcnt = 0;
  389. #endif
  390. /* runqueue-specific stats */
  391. seq_printf(seq,
  392. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  393. cpu, rq->yld_both_empty,
  394. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  395. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  396. rq->ttwu_cnt, rq->ttwu_local,
  397. rq->rq_sched_info.cpu_time,
  398. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  399. seq_printf(seq, "\n");
  400. #ifdef CONFIG_SMP
  401. /* domain-specific stats */
  402. preempt_disable();
  403. for_each_domain(cpu, sd) {
  404. enum idle_type itype;
  405. char mask_str[NR_CPUS];
  406. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  407. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  408. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  409. itype++) {
  410. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
  411. sd->lb_cnt[itype],
  412. sd->lb_balanced[itype],
  413. sd->lb_failed[itype],
  414. sd->lb_imbalance[itype],
  415. sd->lb_gained[itype],
  416. sd->lb_hot_gained[itype],
  417. sd->lb_nobusyq[itype],
  418. sd->lb_nobusyg[itype]);
  419. }
  420. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
  421. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  422. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  423. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  424. sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
  425. }
  426. preempt_enable();
  427. #endif
  428. }
  429. return 0;
  430. }
  431. static int schedstat_open(struct inode *inode, struct file *file)
  432. {
  433. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  434. char *buf = kmalloc(size, GFP_KERNEL);
  435. struct seq_file *m;
  436. int res;
  437. if (!buf)
  438. return -ENOMEM;
  439. res = single_open(file, show_schedstat, NULL);
  440. if (!res) {
  441. m = file->private_data;
  442. m->buf = buf;
  443. m->size = size;
  444. } else
  445. kfree(buf);
  446. return res;
  447. }
  448. struct file_operations proc_schedstat_operations = {
  449. .open = schedstat_open,
  450. .read = seq_read,
  451. .llseek = seq_lseek,
  452. .release = single_release,
  453. };
  454. /*
  455. * Expects runqueue lock to be held for atomicity of update
  456. */
  457. static inline void
  458. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  459. {
  460. if (rq) {
  461. rq->rq_sched_info.run_delay += delta_jiffies;
  462. rq->rq_sched_info.pcnt++;
  463. }
  464. }
  465. /*
  466. * Expects runqueue lock to be held for atomicity of update
  467. */
  468. static inline void
  469. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  470. {
  471. if (rq)
  472. rq->rq_sched_info.cpu_time += delta_jiffies;
  473. }
  474. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  475. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  476. #else /* !CONFIG_SCHEDSTATS */
  477. static inline void
  478. rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
  479. {}
  480. static inline void
  481. rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
  482. {}
  483. # define schedstat_inc(rq, field) do { } while (0)
  484. # define schedstat_add(rq, field, amt) do { } while (0)
  485. #endif
  486. /*
  487. * rq_lock - lock a given runqueue and disable interrupts.
  488. */
  489. static inline struct rq *this_rq_lock(void)
  490. __acquires(rq->lock)
  491. {
  492. struct rq *rq;
  493. local_irq_disable();
  494. rq = this_rq();
  495. spin_lock(&rq->lock);
  496. return rq;
  497. }
  498. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  499. /*
  500. * Called when a process is dequeued from the active array and given
  501. * the cpu. We should note that with the exception of interactive
  502. * tasks, the expired queue will become the active queue after the active
  503. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  504. * expired queue. (Interactive tasks may be requeued directly to the
  505. * active queue, thus delaying tasks in the expired queue from running;
  506. * see scheduler_tick()).
  507. *
  508. * This function is only called from sched_info_arrive(), rather than
  509. * dequeue_task(). Even though a task may be queued and dequeued multiple
  510. * times as it is shuffled about, we're really interested in knowing how
  511. * long it was from the *first* time it was queued to the time that it
  512. * finally hit a cpu.
  513. */
  514. static inline void sched_info_dequeued(struct task_struct *t)
  515. {
  516. t->sched_info.last_queued = 0;
  517. }
  518. /*
  519. * Called when a task finally hits the cpu. We can now calculate how
  520. * long it was waiting to run. We also note when it began so that we
  521. * can keep stats on how long its timeslice is.
  522. */
  523. static void sched_info_arrive(struct task_struct *t)
  524. {
  525. unsigned long now = jiffies, delta_jiffies = 0;
  526. if (t->sched_info.last_queued)
  527. delta_jiffies = now - t->sched_info.last_queued;
  528. sched_info_dequeued(t);
  529. t->sched_info.run_delay += delta_jiffies;
  530. t->sched_info.last_arrival = now;
  531. t->sched_info.pcnt++;
  532. rq_sched_info_arrive(task_rq(t), delta_jiffies);
  533. }
  534. /*
  535. * Called when a process is queued into either the active or expired
  536. * array. The time is noted and later used to determine how long we
  537. * had to wait for us to reach the cpu. Since the expired queue will
  538. * become the active queue after active queue is empty, without dequeuing
  539. * and requeuing any tasks, we are interested in queuing to either. It
  540. * is unusual but not impossible for tasks to be dequeued and immediately
  541. * requeued in the same or another array: this can happen in sched_yield(),
  542. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  543. * to runqueue.
  544. *
  545. * This function is only called from enqueue_task(), but also only updates
  546. * the timestamp if it is already not set. It's assumed that
  547. * sched_info_dequeued() will clear that stamp when appropriate.
  548. */
  549. static inline void sched_info_queued(struct task_struct *t)
  550. {
  551. if (unlikely(sched_info_on()))
  552. if (!t->sched_info.last_queued)
  553. t->sched_info.last_queued = jiffies;
  554. }
  555. /*
  556. * Called when a process ceases being the active-running process, either
  557. * voluntarily or involuntarily. Now we can calculate how long we ran.
  558. */
  559. static inline void sched_info_depart(struct task_struct *t)
  560. {
  561. unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
  562. t->sched_info.cpu_time += delta_jiffies;
  563. rq_sched_info_depart(task_rq(t), delta_jiffies);
  564. }
  565. /*
  566. * Called when tasks are switched involuntarily due, typically, to expiring
  567. * their time slice. (This may also be called when switching to or from
  568. * the idle task.) We are only called when prev != next.
  569. */
  570. static inline void
  571. __sched_info_switch(struct task_struct *prev, struct task_struct *next)
  572. {
  573. struct rq *rq = task_rq(prev);
  574. /*
  575. * prev now departs the cpu. It's not interesting to record
  576. * stats about how efficient we were at scheduling the idle
  577. * process, however.
  578. */
  579. if (prev != rq->idle)
  580. sched_info_depart(prev);
  581. if (next != rq->idle)
  582. sched_info_arrive(next);
  583. }
  584. static inline void
  585. sched_info_switch(struct task_struct *prev, struct task_struct *next)
  586. {
  587. if (unlikely(sched_info_on()))
  588. __sched_info_switch(prev, next);
  589. }
  590. #else
  591. #define sched_info_queued(t) do { } while (0)
  592. #define sched_info_switch(t, next) do { } while (0)
  593. #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
  594. /*
  595. * Adding/removing a task to/from a priority array:
  596. */
  597. static void dequeue_task(struct task_struct *p, struct prio_array *array)
  598. {
  599. array->nr_active--;
  600. list_del(&p->run_list);
  601. if (list_empty(array->queue + p->prio))
  602. __clear_bit(p->prio, array->bitmap);
  603. }
  604. static void enqueue_task(struct task_struct *p, struct prio_array *array)
  605. {
  606. sched_info_queued(p);
  607. list_add_tail(&p->run_list, array->queue + p->prio);
  608. __set_bit(p->prio, array->bitmap);
  609. array->nr_active++;
  610. p->array = array;
  611. }
  612. /*
  613. * Put task to the end of the run list without the overhead of dequeue
  614. * followed by enqueue.
  615. */
  616. static void requeue_task(struct task_struct *p, struct prio_array *array)
  617. {
  618. list_move_tail(&p->run_list, array->queue + p->prio);
  619. }
  620. static inline void
  621. enqueue_task_head(struct task_struct *p, struct prio_array *array)
  622. {
  623. list_add(&p->run_list, array->queue + p->prio);
  624. __set_bit(p->prio, array->bitmap);
  625. array->nr_active++;
  626. p->array = array;
  627. }
  628. /*
  629. * __normal_prio - return the priority that is based on the static
  630. * priority but is modified by bonuses/penalties.
  631. *
  632. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  633. * into the -5 ... 0 ... +5 bonus/penalty range.
  634. *
  635. * We use 25% of the full 0...39 priority range so that:
  636. *
  637. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  638. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  639. *
  640. * Both properties are important to certain workloads.
  641. */
  642. static inline int __normal_prio(struct task_struct *p)
  643. {
  644. int bonus, prio;
  645. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  646. prio = p->static_prio - bonus;
  647. if (prio < MAX_RT_PRIO)
  648. prio = MAX_RT_PRIO;
  649. if (prio > MAX_PRIO-1)
  650. prio = MAX_PRIO-1;
  651. return prio;
  652. }
  653. /*
  654. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  655. * of tasks with abnormal "nice" values across CPUs the contribution that
  656. * each task makes to its run queue's load is weighted according to its
  657. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  658. * scaled version of the new time slice allocation that they receive on time
  659. * slice expiry etc.
  660. */
  661. /*
  662. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  663. * If static_prio_timeslice() is ever changed to break this assumption then
  664. * this code will need modification
  665. */
  666. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  667. #define LOAD_WEIGHT(lp) \
  668. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  669. #define PRIO_TO_LOAD_WEIGHT(prio) \
  670. LOAD_WEIGHT(static_prio_timeslice(prio))
  671. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  672. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  673. static void set_load_weight(struct task_struct *p)
  674. {
  675. if (has_rt_policy(p)) {
  676. #ifdef CONFIG_SMP
  677. if (p == task_rq(p)->migration_thread)
  678. /*
  679. * The migration thread does the actual balancing.
  680. * Giving its load any weight will skew balancing
  681. * adversely.
  682. */
  683. p->load_weight = 0;
  684. else
  685. #endif
  686. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  687. } else
  688. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  689. }
  690. static inline void
  691. inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  692. {
  693. rq->raw_weighted_load += p->load_weight;
  694. }
  695. static inline void
  696. dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
  697. {
  698. rq->raw_weighted_load -= p->load_weight;
  699. }
  700. static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
  701. {
  702. rq->nr_running++;
  703. inc_raw_weighted_load(rq, p);
  704. }
  705. static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
  706. {
  707. rq->nr_running--;
  708. dec_raw_weighted_load(rq, p);
  709. }
  710. /*
  711. * Calculate the expected normal priority: i.e. priority
  712. * without taking RT-inheritance into account. Might be
  713. * boosted by interactivity modifiers. Changes upon fork,
  714. * setprio syscalls, and whenever the interactivity
  715. * estimator recalculates.
  716. */
  717. static inline int normal_prio(struct task_struct *p)
  718. {
  719. int prio;
  720. if (has_rt_policy(p))
  721. prio = MAX_RT_PRIO-1 - p->rt_priority;
  722. else
  723. prio = __normal_prio(p);
  724. return prio;
  725. }
  726. /*
  727. * Calculate the current priority, i.e. the priority
  728. * taken into account by the scheduler. This value might
  729. * be boosted by RT tasks, or might be boosted by
  730. * interactivity modifiers. Will be RT if the task got
  731. * RT-boosted. If not then it returns p->normal_prio.
  732. */
  733. static int effective_prio(struct task_struct *p)
  734. {
  735. p->normal_prio = normal_prio(p);
  736. /*
  737. * If we are RT tasks or we were boosted to RT priority,
  738. * keep the priority unchanged. Otherwise, update priority
  739. * to the normal priority:
  740. */
  741. if (!rt_prio(p->prio))
  742. return p->normal_prio;
  743. return p->prio;
  744. }
  745. /*
  746. * __activate_task - move a task to the runqueue.
  747. */
  748. static void __activate_task(struct task_struct *p, struct rq *rq)
  749. {
  750. struct prio_array *target = rq->active;
  751. if (batch_task(p))
  752. target = rq->expired;
  753. enqueue_task(p, target);
  754. inc_nr_running(p, rq);
  755. }
  756. /*
  757. * __activate_idle_task - move idle task to the _front_ of runqueue.
  758. */
  759. static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
  760. {
  761. enqueue_task_head(p, rq->active);
  762. inc_nr_running(p, rq);
  763. }
  764. /*
  765. * Recalculate p->normal_prio and p->prio after having slept,
  766. * updating the sleep-average too:
  767. */
  768. static int recalc_task_prio(struct task_struct *p, unsigned long long now)
  769. {
  770. /* Caller must always ensure 'now >= p->timestamp' */
  771. unsigned long sleep_time = now - p->timestamp;
  772. if (batch_task(p))
  773. sleep_time = 0;
  774. if (likely(sleep_time > 0)) {
  775. /*
  776. * This ceiling is set to the lowest priority that would allow
  777. * a task to be reinserted into the active array on timeslice
  778. * completion.
  779. */
  780. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  781. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  782. /*
  783. * Prevents user tasks from achieving best priority
  784. * with one single large enough sleep.
  785. */
  786. p->sleep_avg = ceiling;
  787. /*
  788. * Using INTERACTIVE_SLEEP() as a ceiling places a
  789. * nice(0) task 1ms sleep away from promotion, and
  790. * gives it 700ms to round-robin with no chance of
  791. * being demoted. This is more than generous, so
  792. * mark this sleep as non-interactive to prevent the
  793. * on-runqueue bonus logic from intervening should
  794. * this task not receive cpu immediately.
  795. */
  796. p->sleep_type = SLEEP_NONINTERACTIVE;
  797. } else {
  798. /*
  799. * Tasks waking from uninterruptible sleep are
  800. * limited in their sleep_avg rise as they
  801. * are likely to be waiting on I/O
  802. */
  803. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  804. if (p->sleep_avg >= ceiling)
  805. sleep_time = 0;
  806. else if (p->sleep_avg + sleep_time >=
  807. ceiling) {
  808. p->sleep_avg = ceiling;
  809. sleep_time = 0;
  810. }
  811. }
  812. /*
  813. * This code gives a bonus to interactive tasks.
  814. *
  815. * The boost works by updating the 'average sleep time'
  816. * value here, based on ->timestamp. The more time a
  817. * task spends sleeping, the higher the average gets -
  818. * and the higher the priority boost gets as well.
  819. */
  820. p->sleep_avg += sleep_time;
  821. }
  822. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  823. p->sleep_avg = NS_MAX_SLEEP_AVG;
  824. }
  825. return effective_prio(p);
  826. }
  827. /*
  828. * activate_task - move a task to the runqueue and do priority recalculation
  829. *
  830. * Update all the scheduling statistics stuff. (sleep average
  831. * calculation, priority modifiers, etc.)
  832. */
  833. static void activate_task(struct task_struct *p, struct rq *rq, int local)
  834. {
  835. unsigned long long now;
  836. now = sched_clock();
  837. #ifdef CONFIG_SMP
  838. if (!local) {
  839. /* Compensate for drifting sched_clock */
  840. struct rq *this_rq = this_rq();
  841. now = (now - this_rq->timestamp_last_tick)
  842. + rq->timestamp_last_tick;
  843. }
  844. #endif
  845. if (!rt_task(p))
  846. p->prio = recalc_task_prio(p, now);
  847. /*
  848. * This checks to make sure it's not an uninterruptible task
  849. * that is now waking up.
  850. */
  851. if (p->sleep_type == SLEEP_NORMAL) {
  852. /*
  853. * Tasks which were woken up by interrupts (ie. hw events)
  854. * are most likely of interactive nature. So we give them
  855. * the credit of extending their sleep time to the period
  856. * of time they spend on the runqueue, waiting for execution
  857. * on a CPU, first time around:
  858. */
  859. if (in_interrupt())
  860. p->sleep_type = SLEEP_INTERRUPTED;
  861. else {
  862. /*
  863. * Normal first-time wakeups get a credit too for
  864. * on-runqueue time, but it will be weighted down:
  865. */
  866. p->sleep_type = SLEEP_INTERACTIVE;
  867. }
  868. }
  869. p->timestamp = now;
  870. __activate_task(p, rq);
  871. }
  872. /*
  873. * deactivate_task - remove a task from the runqueue.
  874. */
  875. static void deactivate_task(struct task_struct *p, struct rq *rq)
  876. {
  877. dec_nr_running(p, rq);
  878. dequeue_task(p, p->array);
  879. p->array = NULL;
  880. }
  881. /*
  882. * resched_task - mark a task 'to be rescheduled now'.
  883. *
  884. * On UP this means the setting of the need_resched flag, on SMP it
  885. * might also involve a cross-CPU call to trigger the scheduler on
  886. * the target CPU.
  887. */
  888. #ifdef CONFIG_SMP
  889. #ifndef tsk_is_polling
  890. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  891. #endif
  892. static void resched_task(struct task_struct *p)
  893. {
  894. int cpu;
  895. assert_spin_locked(&task_rq(p)->lock);
  896. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  897. return;
  898. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  899. cpu = task_cpu(p);
  900. if (cpu == smp_processor_id())
  901. return;
  902. /* NEED_RESCHED must be visible before we test polling */
  903. smp_mb();
  904. if (!tsk_is_polling(p))
  905. smp_send_reschedule(cpu);
  906. }
  907. #else
  908. static inline void resched_task(struct task_struct *p)
  909. {
  910. assert_spin_locked(&task_rq(p)->lock);
  911. set_tsk_need_resched(p);
  912. }
  913. #endif
  914. /**
  915. * task_curr - is this task currently executing on a CPU?
  916. * @p: the task in question.
  917. */
  918. inline int task_curr(const struct task_struct *p)
  919. {
  920. return cpu_curr(task_cpu(p)) == p;
  921. }
  922. /* Used instead of source_load when we know the type == 0 */
  923. unsigned long weighted_cpuload(const int cpu)
  924. {
  925. return cpu_rq(cpu)->raw_weighted_load;
  926. }
  927. #ifdef CONFIG_SMP
  928. struct migration_req {
  929. struct list_head list;
  930. struct task_struct *task;
  931. int dest_cpu;
  932. struct completion done;
  933. };
  934. /*
  935. * The task's runqueue lock must be held.
  936. * Returns true if you have to wait for migration thread.
  937. */
  938. static int
  939. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  940. {
  941. struct rq *rq = task_rq(p);
  942. /*
  943. * If the task is not on a runqueue (and not running), then
  944. * it is sufficient to simply update the task's cpu field.
  945. */
  946. if (!p->array && !task_running(rq, p)) {
  947. set_task_cpu(p, dest_cpu);
  948. return 0;
  949. }
  950. init_completion(&req->done);
  951. req->task = p;
  952. req->dest_cpu = dest_cpu;
  953. list_add(&req->list, &rq->migration_queue);
  954. return 1;
  955. }
  956. /*
  957. * wait_task_inactive - wait for a thread to unschedule.
  958. *
  959. * The caller must ensure that the task *will* unschedule sometime soon,
  960. * else this function might spin for a *long* time. This function can't
  961. * be called with interrupts off, or it may introduce deadlock with
  962. * smp_call_function() if an IPI is sent by the same process we are
  963. * waiting to become inactive.
  964. */
  965. void wait_task_inactive(struct task_struct *p)
  966. {
  967. unsigned long flags;
  968. struct rq *rq;
  969. int preempted;
  970. repeat:
  971. rq = task_rq_lock(p, &flags);
  972. /* Must be off runqueue entirely, not preempted. */
  973. if (unlikely(p->array || task_running(rq, p))) {
  974. /* If it's preempted, we yield. It could be a while. */
  975. preempted = !task_running(rq, p);
  976. task_rq_unlock(rq, &flags);
  977. cpu_relax();
  978. if (preempted)
  979. yield();
  980. goto repeat;
  981. }
  982. task_rq_unlock(rq, &flags);
  983. }
  984. /***
  985. * kick_process - kick a running thread to enter/exit the kernel
  986. * @p: the to-be-kicked thread
  987. *
  988. * Cause a process which is running on another CPU to enter
  989. * kernel-mode, without any delay. (to get signals handled.)
  990. *
  991. * NOTE: this function doesnt have to take the runqueue lock,
  992. * because all it wants to ensure is that the remote task enters
  993. * the kernel. If the IPI races and the task has been migrated
  994. * to another CPU then no harm is done and the purpose has been
  995. * achieved as well.
  996. */
  997. void kick_process(struct task_struct *p)
  998. {
  999. int cpu;
  1000. preempt_disable();
  1001. cpu = task_cpu(p);
  1002. if ((cpu != smp_processor_id()) && task_curr(p))
  1003. smp_send_reschedule(cpu);
  1004. preempt_enable();
  1005. }
  1006. /*
  1007. * Return a low guess at the load of a migration-source cpu weighted
  1008. * according to the scheduling class and "nice" value.
  1009. *
  1010. * We want to under-estimate the load of migration sources, to
  1011. * balance conservatively.
  1012. */
  1013. static inline unsigned long source_load(int cpu, int type)
  1014. {
  1015. struct rq *rq = cpu_rq(cpu);
  1016. if (type == 0)
  1017. return rq->raw_weighted_load;
  1018. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  1019. }
  1020. /*
  1021. * Return a high guess at the load of a migration-target cpu weighted
  1022. * according to the scheduling class and "nice" value.
  1023. */
  1024. static inline unsigned long target_load(int cpu, int type)
  1025. {
  1026. struct rq *rq = cpu_rq(cpu);
  1027. if (type == 0)
  1028. return rq->raw_weighted_load;
  1029. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  1030. }
  1031. /*
  1032. * Return the average load per task on the cpu's run queue
  1033. */
  1034. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1035. {
  1036. struct rq *rq = cpu_rq(cpu);
  1037. unsigned long n = rq->nr_running;
  1038. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  1039. }
  1040. /*
  1041. * find_idlest_group finds and returns the least busy CPU group within the
  1042. * domain.
  1043. */
  1044. static struct sched_group *
  1045. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1046. {
  1047. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1048. unsigned long min_load = ULONG_MAX, this_load = 0;
  1049. int load_idx = sd->forkexec_idx;
  1050. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1051. do {
  1052. unsigned long load, avg_load;
  1053. int local_group;
  1054. int i;
  1055. /* Skip over this group if it has no CPUs allowed */
  1056. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1057. goto nextgroup;
  1058. local_group = cpu_isset(this_cpu, group->cpumask);
  1059. /* Tally up the load of all CPUs in the group */
  1060. avg_load = 0;
  1061. for_each_cpu_mask(i, group->cpumask) {
  1062. /* Bias balancing toward cpus of our domain */
  1063. if (local_group)
  1064. load = source_load(i, load_idx);
  1065. else
  1066. load = target_load(i, load_idx);
  1067. avg_load += load;
  1068. }
  1069. /* Adjust by relative CPU power of the group */
  1070. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1071. if (local_group) {
  1072. this_load = avg_load;
  1073. this = group;
  1074. } else if (avg_load < min_load) {
  1075. min_load = avg_load;
  1076. idlest = group;
  1077. }
  1078. nextgroup:
  1079. group = group->next;
  1080. } while (group != sd->groups);
  1081. if (!idlest || 100*this_load < imbalance*min_load)
  1082. return NULL;
  1083. return idlest;
  1084. }
  1085. /*
  1086. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1087. */
  1088. static int
  1089. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1090. {
  1091. cpumask_t tmp;
  1092. unsigned long load, min_load = ULONG_MAX;
  1093. int idlest = -1;
  1094. int i;
  1095. /* Traverse only the allowed CPUs */
  1096. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1097. for_each_cpu_mask(i, tmp) {
  1098. load = weighted_cpuload(i);
  1099. if (load < min_load || (load == min_load && i == this_cpu)) {
  1100. min_load = load;
  1101. idlest = i;
  1102. }
  1103. }
  1104. return idlest;
  1105. }
  1106. /*
  1107. * sched_balance_self: balance the current task (running on cpu) in domains
  1108. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1109. * SD_BALANCE_EXEC.
  1110. *
  1111. * Balance, ie. select the least loaded group.
  1112. *
  1113. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1114. *
  1115. * preempt must be disabled.
  1116. */
  1117. static int sched_balance_self(int cpu, int flag)
  1118. {
  1119. struct task_struct *t = current;
  1120. struct sched_domain *tmp, *sd = NULL;
  1121. for_each_domain(cpu, tmp) {
  1122. /*
  1123. * If power savings logic is enabled for a domain, stop there.
  1124. */
  1125. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1126. break;
  1127. if (tmp->flags & flag)
  1128. sd = tmp;
  1129. }
  1130. while (sd) {
  1131. cpumask_t span;
  1132. struct sched_group *group;
  1133. int new_cpu, weight;
  1134. if (!(sd->flags & flag)) {
  1135. sd = sd->child;
  1136. continue;
  1137. }
  1138. span = sd->span;
  1139. group = find_idlest_group(sd, t, cpu);
  1140. if (!group) {
  1141. sd = sd->child;
  1142. continue;
  1143. }
  1144. new_cpu = find_idlest_cpu(group, t, cpu);
  1145. if (new_cpu == -1 || new_cpu == cpu) {
  1146. /* Now try balancing at a lower domain level of cpu */
  1147. sd = sd->child;
  1148. continue;
  1149. }
  1150. /* Now try balancing at a lower domain level of new_cpu */
  1151. cpu = new_cpu;
  1152. sd = NULL;
  1153. weight = cpus_weight(span);
  1154. for_each_domain(cpu, tmp) {
  1155. if (weight <= cpus_weight(tmp->span))
  1156. break;
  1157. if (tmp->flags & flag)
  1158. sd = tmp;
  1159. }
  1160. /* while loop will break here if sd == NULL */
  1161. }
  1162. return cpu;
  1163. }
  1164. #endif /* CONFIG_SMP */
  1165. /*
  1166. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1167. * not idle and an idle cpu is available. The span of cpus to
  1168. * search starts with cpus closest then further out as needed,
  1169. * so we always favor a closer, idle cpu.
  1170. *
  1171. * Returns the CPU we should wake onto.
  1172. */
  1173. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1174. static int wake_idle(int cpu, struct task_struct *p)
  1175. {
  1176. cpumask_t tmp;
  1177. struct sched_domain *sd;
  1178. int i;
  1179. if (idle_cpu(cpu))
  1180. return cpu;
  1181. for_each_domain(cpu, sd) {
  1182. if (sd->flags & SD_WAKE_IDLE) {
  1183. cpus_and(tmp, sd->span, p->cpus_allowed);
  1184. for_each_cpu_mask(i, tmp) {
  1185. if (idle_cpu(i))
  1186. return i;
  1187. }
  1188. }
  1189. else
  1190. break;
  1191. }
  1192. return cpu;
  1193. }
  1194. #else
  1195. static inline int wake_idle(int cpu, struct task_struct *p)
  1196. {
  1197. return cpu;
  1198. }
  1199. #endif
  1200. /***
  1201. * try_to_wake_up - wake up a thread
  1202. * @p: the to-be-woken-up thread
  1203. * @state: the mask of task states that can be woken
  1204. * @sync: do a synchronous wakeup?
  1205. *
  1206. * Put it on the run-queue if it's not already there. The "current"
  1207. * thread is always on the run-queue (except when the actual
  1208. * re-schedule is in progress), and as such you're allowed to do
  1209. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1210. * runnable without the overhead of this.
  1211. *
  1212. * returns failure only if the task is already active.
  1213. */
  1214. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1215. {
  1216. int cpu, this_cpu, success = 0;
  1217. unsigned long flags;
  1218. long old_state;
  1219. struct rq *rq;
  1220. #ifdef CONFIG_SMP
  1221. struct sched_domain *sd, *this_sd = NULL;
  1222. unsigned long load, this_load;
  1223. int new_cpu;
  1224. #endif
  1225. rq = task_rq_lock(p, &flags);
  1226. old_state = p->state;
  1227. if (!(old_state & state))
  1228. goto out;
  1229. if (p->array)
  1230. goto out_running;
  1231. cpu = task_cpu(p);
  1232. this_cpu = smp_processor_id();
  1233. #ifdef CONFIG_SMP
  1234. if (unlikely(task_running(rq, p)))
  1235. goto out_activate;
  1236. new_cpu = cpu;
  1237. schedstat_inc(rq, ttwu_cnt);
  1238. if (cpu == this_cpu) {
  1239. schedstat_inc(rq, ttwu_local);
  1240. goto out_set_cpu;
  1241. }
  1242. for_each_domain(this_cpu, sd) {
  1243. if (cpu_isset(cpu, sd->span)) {
  1244. schedstat_inc(sd, ttwu_wake_remote);
  1245. this_sd = sd;
  1246. break;
  1247. }
  1248. }
  1249. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1250. goto out_set_cpu;
  1251. /*
  1252. * Check for affine wakeup and passive balancing possibilities.
  1253. */
  1254. if (this_sd) {
  1255. int idx = this_sd->wake_idx;
  1256. unsigned int imbalance;
  1257. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1258. load = source_load(cpu, idx);
  1259. this_load = target_load(this_cpu, idx);
  1260. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1261. if (this_sd->flags & SD_WAKE_AFFINE) {
  1262. unsigned long tl = this_load;
  1263. unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
  1264. /*
  1265. * If sync wakeup then subtract the (maximum possible)
  1266. * effect of the currently running task from the load
  1267. * of the current CPU:
  1268. */
  1269. if (sync)
  1270. tl -= current->load_weight;
  1271. if ((tl <= load &&
  1272. tl + target_load(cpu, idx) <= tl_per_task) ||
  1273. 100*(tl + p->load_weight) <= imbalance*load) {
  1274. /*
  1275. * This domain has SD_WAKE_AFFINE and
  1276. * p is cache cold in this domain, and
  1277. * there is no bad imbalance.
  1278. */
  1279. schedstat_inc(this_sd, ttwu_move_affine);
  1280. goto out_set_cpu;
  1281. }
  1282. }
  1283. /*
  1284. * Start passive balancing when half the imbalance_pct
  1285. * limit is reached.
  1286. */
  1287. if (this_sd->flags & SD_WAKE_BALANCE) {
  1288. if (imbalance*this_load <= 100*load) {
  1289. schedstat_inc(this_sd, ttwu_move_balance);
  1290. goto out_set_cpu;
  1291. }
  1292. }
  1293. }
  1294. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1295. out_set_cpu:
  1296. new_cpu = wake_idle(new_cpu, p);
  1297. if (new_cpu != cpu) {
  1298. set_task_cpu(p, new_cpu);
  1299. task_rq_unlock(rq, &flags);
  1300. /* might preempt at this point */
  1301. rq = task_rq_lock(p, &flags);
  1302. old_state = p->state;
  1303. if (!(old_state & state))
  1304. goto out;
  1305. if (p->array)
  1306. goto out_running;
  1307. this_cpu = smp_processor_id();
  1308. cpu = task_cpu(p);
  1309. }
  1310. out_activate:
  1311. #endif /* CONFIG_SMP */
  1312. if (old_state == TASK_UNINTERRUPTIBLE) {
  1313. rq->nr_uninterruptible--;
  1314. /*
  1315. * Tasks on involuntary sleep don't earn
  1316. * sleep_avg beyond just interactive state.
  1317. */
  1318. p->sleep_type = SLEEP_NONINTERACTIVE;
  1319. } else
  1320. /*
  1321. * Tasks that have marked their sleep as noninteractive get
  1322. * woken up with their sleep average not weighted in an
  1323. * interactive way.
  1324. */
  1325. if (old_state & TASK_NONINTERACTIVE)
  1326. p->sleep_type = SLEEP_NONINTERACTIVE;
  1327. activate_task(p, rq, cpu == this_cpu);
  1328. /*
  1329. * Sync wakeups (i.e. those types of wakeups where the waker
  1330. * has indicated that it will leave the CPU in short order)
  1331. * don't trigger a preemption, if the woken up task will run on
  1332. * this cpu. (in this case the 'I will reschedule' promise of
  1333. * the waker guarantees that the freshly woken up task is going
  1334. * to be considered on this CPU.)
  1335. */
  1336. if (!sync || cpu != this_cpu) {
  1337. if (TASK_PREEMPTS_CURR(p, rq))
  1338. resched_task(rq->curr);
  1339. }
  1340. success = 1;
  1341. out_running:
  1342. p->state = TASK_RUNNING;
  1343. out:
  1344. task_rq_unlock(rq, &flags);
  1345. return success;
  1346. }
  1347. int fastcall wake_up_process(struct task_struct *p)
  1348. {
  1349. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1350. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1351. }
  1352. EXPORT_SYMBOL(wake_up_process);
  1353. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1354. {
  1355. return try_to_wake_up(p, state, 0);
  1356. }
  1357. /*
  1358. * Perform scheduler related setup for a newly forked process p.
  1359. * p is forked by current.
  1360. */
  1361. void fastcall sched_fork(struct task_struct *p, int clone_flags)
  1362. {
  1363. int cpu = get_cpu();
  1364. #ifdef CONFIG_SMP
  1365. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1366. #endif
  1367. set_task_cpu(p, cpu);
  1368. /*
  1369. * We mark the process as running here, but have not actually
  1370. * inserted it onto the runqueue yet. This guarantees that
  1371. * nobody will actually run it, and a signal or other external
  1372. * event cannot wake it up and insert it on the runqueue either.
  1373. */
  1374. p->state = TASK_RUNNING;
  1375. /*
  1376. * Make sure we do not leak PI boosting priority to the child:
  1377. */
  1378. p->prio = current->normal_prio;
  1379. INIT_LIST_HEAD(&p->run_list);
  1380. p->array = NULL;
  1381. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1382. if (unlikely(sched_info_on()))
  1383. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1384. #endif
  1385. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1386. p->oncpu = 0;
  1387. #endif
  1388. #ifdef CONFIG_PREEMPT
  1389. /* Want to start with kernel preemption disabled. */
  1390. task_thread_info(p)->preempt_count = 1;
  1391. #endif
  1392. /*
  1393. * Share the timeslice between parent and child, thus the
  1394. * total amount of pending timeslices in the system doesn't change,
  1395. * resulting in more scheduling fairness.
  1396. */
  1397. local_irq_disable();
  1398. p->time_slice = (current->time_slice + 1) >> 1;
  1399. /*
  1400. * The remainder of the first timeslice might be recovered by
  1401. * the parent if the child exits early enough.
  1402. */
  1403. p->first_time_slice = 1;
  1404. current->time_slice >>= 1;
  1405. p->timestamp = sched_clock();
  1406. if (unlikely(!current->time_slice)) {
  1407. /*
  1408. * This case is rare, it happens when the parent has only
  1409. * a single jiffy left from its timeslice. Taking the
  1410. * runqueue lock is not a problem.
  1411. */
  1412. current->time_slice = 1;
  1413. scheduler_tick();
  1414. }
  1415. local_irq_enable();
  1416. put_cpu();
  1417. }
  1418. /*
  1419. * wake_up_new_task - wake up a newly created task for the first time.
  1420. *
  1421. * This function will do some initial scheduler statistics housekeeping
  1422. * that must be done for every newly created context, then puts the task
  1423. * on the runqueue and wakes it.
  1424. */
  1425. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1426. {
  1427. struct rq *rq, *this_rq;
  1428. unsigned long flags;
  1429. int this_cpu, cpu;
  1430. rq = task_rq_lock(p, &flags);
  1431. BUG_ON(p->state != TASK_RUNNING);
  1432. this_cpu = smp_processor_id();
  1433. cpu = task_cpu(p);
  1434. /*
  1435. * We decrease the sleep average of forking parents
  1436. * and children as well, to keep max-interactive tasks
  1437. * from forking tasks that are max-interactive. The parent
  1438. * (current) is done further down, under its lock.
  1439. */
  1440. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1441. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1442. p->prio = effective_prio(p);
  1443. if (likely(cpu == this_cpu)) {
  1444. if (!(clone_flags & CLONE_VM)) {
  1445. /*
  1446. * The VM isn't cloned, so we're in a good position to
  1447. * do child-runs-first in anticipation of an exec. This
  1448. * usually avoids a lot of COW overhead.
  1449. */
  1450. if (unlikely(!current->array))
  1451. __activate_task(p, rq);
  1452. else {
  1453. p->prio = current->prio;
  1454. p->normal_prio = current->normal_prio;
  1455. list_add_tail(&p->run_list, &current->run_list);
  1456. p->array = current->array;
  1457. p->array->nr_active++;
  1458. inc_nr_running(p, rq);
  1459. }
  1460. set_need_resched();
  1461. } else
  1462. /* Run child last */
  1463. __activate_task(p, rq);
  1464. /*
  1465. * We skip the following code due to cpu == this_cpu
  1466. *
  1467. * task_rq_unlock(rq, &flags);
  1468. * this_rq = task_rq_lock(current, &flags);
  1469. */
  1470. this_rq = rq;
  1471. } else {
  1472. this_rq = cpu_rq(this_cpu);
  1473. /*
  1474. * Not the local CPU - must adjust timestamp. This should
  1475. * get optimised away in the !CONFIG_SMP case.
  1476. */
  1477. p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
  1478. + rq->timestamp_last_tick;
  1479. __activate_task(p, rq);
  1480. if (TASK_PREEMPTS_CURR(p, rq))
  1481. resched_task(rq->curr);
  1482. /*
  1483. * Parent and child are on different CPUs, now get the
  1484. * parent runqueue to update the parent's ->sleep_avg:
  1485. */
  1486. task_rq_unlock(rq, &flags);
  1487. this_rq = task_rq_lock(current, &flags);
  1488. }
  1489. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1490. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1491. task_rq_unlock(this_rq, &flags);
  1492. }
  1493. /*
  1494. * Potentially available exiting-child timeslices are
  1495. * retrieved here - this way the parent does not get
  1496. * penalized for creating too many threads.
  1497. *
  1498. * (this cannot be used to 'generate' timeslices
  1499. * artificially, because any timeslice recovered here
  1500. * was given away by the parent in the first place.)
  1501. */
  1502. void fastcall sched_exit(struct task_struct *p)
  1503. {
  1504. unsigned long flags;
  1505. struct rq *rq;
  1506. /*
  1507. * If the child was a (relative-) CPU hog then decrease
  1508. * the sleep_avg of the parent as well.
  1509. */
  1510. rq = task_rq_lock(p->parent, &flags);
  1511. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1512. p->parent->time_slice += p->time_slice;
  1513. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1514. p->parent->time_slice = task_timeslice(p);
  1515. }
  1516. if (p->sleep_avg < p->parent->sleep_avg)
  1517. p->parent->sleep_avg = p->parent->sleep_avg /
  1518. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1519. (EXIT_WEIGHT + 1);
  1520. task_rq_unlock(rq, &flags);
  1521. }
  1522. /**
  1523. * prepare_task_switch - prepare to switch tasks
  1524. * @rq: the runqueue preparing to switch
  1525. * @next: the task we are going to switch to.
  1526. *
  1527. * This is called with the rq lock held and interrupts off. It must
  1528. * be paired with a subsequent finish_task_switch after the context
  1529. * switch.
  1530. *
  1531. * prepare_task_switch sets up locking and calls architecture specific
  1532. * hooks.
  1533. */
  1534. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1535. {
  1536. prepare_lock_switch(rq, next);
  1537. prepare_arch_switch(next);
  1538. }
  1539. /**
  1540. * finish_task_switch - clean up after a task-switch
  1541. * @rq: runqueue associated with task-switch
  1542. * @prev: the thread we just switched away from.
  1543. *
  1544. * finish_task_switch must be called after the context switch, paired
  1545. * with a prepare_task_switch call before the context switch.
  1546. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1547. * and do any other architecture-specific cleanup actions.
  1548. *
  1549. * Note that we may have delayed dropping an mm in context_switch(). If
  1550. * so, we finish that here outside of the runqueue lock. (Doing it
  1551. * with the lock held can cause deadlocks; see schedule() for
  1552. * details.)
  1553. */
  1554. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1555. __releases(rq->lock)
  1556. {
  1557. struct mm_struct *mm = rq->prev_mm;
  1558. long prev_state;
  1559. rq->prev_mm = NULL;
  1560. /*
  1561. * A task struct has one reference for the use as "current".
  1562. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1563. * schedule one last time. The schedule call will never return, and
  1564. * the scheduled task must drop that reference.
  1565. * The test for TASK_DEAD must occur while the runqueue locks are
  1566. * still held, otherwise prev could be scheduled on another cpu, die
  1567. * there before we look at prev->state, and then the reference would
  1568. * be dropped twice.
  1569. * Manfred Spraul <manfred@colorfullife.com>
  1570. */
  1571. prev_state = prev->state;
  1572. finish_arch_switch(prev);
  1573. finish_lock_switch(rq, prev);
  1574. if (mm)
  1575. mmdrop(mm);
  1576. if (unlikely(prev_state == TASK_DEAD)) {
  1577. /*
  1578. * Remove function-return probe instances associated with this
  1579. * task and put them back on the free list.
  1580. */
  1581. kprobe_flush_task(prev);
  1582. put_task_struct(prev);
  1583. }
  1584. }
  1585. /**
  1586. * schedule_tail - first thing a freshly forked thread must call.
  1587. * @prev: the thread we just switched away from.
  1588. */
  1589. asmlinkage void schedule_tail(struct task_struct *prev)
  1590. __releases(rq->lock)
  1591. {
  1592. struct rq *rq = this_rq();
  1593. finish_task_switch(rq, prev);
  1594. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1595. /* In this case, finish_task_switch does not reenable preemption */
  1596. preempt_enable();
  1597. #endif
  1598. if (current->set_child_tid)
  1599. put_user(current->pid, current->set_child_tid);
  1600. }
  1601. /*
  1602. * context_switch - switch to the new MM and the new
  1603. * thread's register state.
  1604. */
  1605. static inline struct task_struct *
  1606. context_switch(struct rq *rq, struct task_struct *prev,
  1607. struct task_struct *next)
  1608. {
  1609. struct mm_struct *mm = next->mm;
  1610. struct mm_struct *oldmm = prev->active_mm;
  1611. if (!mm) {
  1612. next->active_mm = oldmm;
  1613. atomic_inc(&oldmm->mm_count);
  1614. enter_lazy_tlb(oldmm, next);
  1615. } else
  1616. switch_mm(oldmm, mm, next);
  1617. if (!prev->mm) {
  1618. prev->active_mm = NULL;
  1619. WARN_ON(rq->prev_mm);
  1620. rq->prev_mm = oldmm;
  1621. }
  1622. /*
  1623. * Since the runqueue lock will be released by the next
  1624. * task (which is an invalid locking op but in the case
  1625. * of the scheduler it's an obvious special-case), so we
  1626. * do an early lockdep release here:
  1627. */
  1628. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1629. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1630. #endif
  1631. /* Here we just switch the register state and the stack. */
  1632. switch_to(prev, next, prev);
  1633. return prev;
  1634. }
  1635. /*
  1636. * nr_running, nr_uninterruptible and nr_context_switches:
  1637. *
  1638. * externally visible scheduler statistics: current number of runnable
  1639. * threads, current number of uninterruptible-sleeping threads, total
  1640. * number of context switches performed since bootup.
  1641. */
  1642. unsigned long nr_running(void)
  1643. {
  1644. unsigned long i, sum = 0;
  1645. for_each_online_cpu(i)
  1646. sum += cpu_rq(i)->nr_running;
  1647. return sum;
  1648. }
  1649. unsigned long nr_uninterruptible(void)
  1650. {
  1651. unsigned long i, sum = 0;
  1652. for_each_possible_cpu(i)
  1653. sum += cpu_rq(i)->nr_uninterruptible;
  1654. /*
  1655. * Since we read the counters lockless, it might be slightly
  1656. * inaccurate. Do not allow it to go below zero though:
  1657. */
  1658. if (unlikely((long)sum < 0))
  1659. sum = 0;
  1660. return sum;
  1661. }
  1662. unsigned long long nr_context_switches(void)
  1663. {
  1664. int i;
  1665. unsigned long long sum = 0;
  1666. for_each_possible_cpu(i)
  1667. sum += cpu_rq(i)->nr_switches;
  1668. return sum;
  1669. }
  1670. unsigned long nr_iowait(void)
  1671. {
  1672. unsigned long i, sum = 0;
  1673. for_each_possible_cpu(i)
  1674. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1675. return sum;
  1676. }
  1677. unsigned long nr_active(void)
  1678. {
  1679. unsigned long i, running = 0, uninterruptible = 0;
  1680. for_each_online_cpu(i) {
  1681. running += cpu_rq(i)->nr_running;
  1682. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1683. }
  1684. if (unlikely((long)uninterruptible < 0))
  1685. uninterruptible = 0;
  1686. return running + uninterruptible;
  1687. }
  1688. #ifdef CONFIG_SMP
  1689. /*
  1690. * Is this task likely cache-hot:
  1691. */
  1692. static inline int
  1693. task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
  1694. {
  1695. return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
  1696. }
  1697. /*
  1698. * double_rq_lock - safely lock two runqueues
  1699. *
  1700. * Note this does not disable interrupts like task_rq_lock,
  1701. * you need to do so manually before calling.
  1702. */
  1703. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1704. __acquires(rq1->lock)
  1705. __acquires(rq2->lock)
  1706. {
  1707. if (rq1 == rq2) {
  1708. spin_lock(&rq1->lock);
  1709. __acquire(rq2->lock); /* Fake it out ;) */
  1710. } else {
  1711. if (rq1 < rq2) {
  1712. spin_lock(&rq1->lock);
  1713. spin_lock(&rq2->lock);
  1714. } else {
  1715. spin_lock(&rq2->lock);
  1716. spin_lock(&rq1->lock);
  1717. }
  1718. }
  1719. }
  1720. /*
  1721. * double_rq_unlock - safely unlock two runqueues
  1722. *
  1723. * Note this does not restore interrupts like task_rq_unlock,
  1724. * you need to do so manually after calling.
  1725. */
  1726. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1727. __releases(rq1->lock)
  1728. __releases(rq2->lock)
  1729. {
  1730. spin_unlock(&rq1->lock);
  1731. if (rq1 != rq2)
  1732. spin_unlock(&rq2->lock);
  1733. else
  1734. __release(rq2->lock);
  1735. }
  1736. /*
  1737. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1738. */
  1739. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1740. __releases(this_rq->lock)
  1741. __acquires(busiest->lock)
  1742. __acquires(this_rq->lock)
  1743. {
  1744. if (unlikely(!spin_trylock(&busiest->lock))) {
  1745. if (busiest < this_rq) {
  1746. spin_unlock(&this_rq->lock);
  1747. spin_lock(&busiest->lock);
  1748. spin_lock(&this_rq->lock);
  1749. } else
  1750. spin_lock(&busiest->lock);
  1751. }
  1752. }
  1753. /*
  1754. * If dest_cpu is allowed for this process, migrate the task to it.
  1755. * This is accomplished by forcing the cpu_allowed mask to only
  1756. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1757. * the cpu_allowed mask is restored.
  1758. */
  1759. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1760. {
  1761. struct migration_req req;
  1762. unsigned long flags;
  1763. struct rq *rq;
  1764. rq = task_rq_lock(p, &flags);
  1765. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1766. || unlikely(cpu_is_offline(dest_cpu)))
  1767. goto out;
  1768. /* force the process onto the specified CPU */
  1769. if (migrate_task(p, dest_cpu, &req)) {
  1770. /* Need to wait for migration thread (might exit: take ref). */
  1771. struct task_struct *mt = rq->migration_thread;
  1772. get_task_struct(mt);
  1773. task_rq_unlock(rq, &flags);
  1774. wake_up_process(mt);
  1775. put_task_struct(mt);
  1776. wait_for_completion(&req.done);
  1777. return;
  1778. }
  1779. out:
  1780. task_rq_unlock(rq, &flags);
  1781. }
  1782. /*
  1783. * sched_exec - execve() is a valuable balancing opportunity, because at
  1784. * this point the task has the smallest effective memory and cache footprint.
  1785. */
  1786. void sched_exec(void)
  1787. {
  1788. int new_cpu, this_cpu = get_cpu();
  1789. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1790. put_cpu();
  1791. if (new_cpu != this_cpu)
  1792. sched_migrate_task(current, new_cpu);
  1793. }
  1794. /*
  1795. * pull_task - move a task from a remote runqueue to the local runqueue.
  1796. * Both runqueues must be locked.
  1797. */
  1798. static void pull_task(struct rq *src_rq, struct prio_array *src_array,
  1799. struct task_struct *p, struct rq *this_rq,
  1800. struct prio_array *this_array, int this_cpu)
  1801. {
  1802. dequeue_task(p, src_array);
  1803. dec_nr_running(p, src_rq);
  1804. set_task_cpu(p, this_cpu);
  1805. inc_nr_running(p, this_rq);
  1806. enqueue_task(p, this_array);
  1807. p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
  1808. + this_rq->timestamp_last_tick;
  1809. /*
  1810. * Note that idle threads have a prio of MAX_PRIO, for this test
  1811. * to be always true for them.
  1812. */
  1813. if (TASK_PREEMPTS_CURR(p, this_rq))
  1814. resched_task(this_rq->curr);
  1815. }
  1816. /*
  1817. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1818. */
  1819. static
  1820. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1821. struct sched_domain *sd, enum idle_type idle,
  1822. int *all_pinned)
  1823. {
  1824. /*
  1825. * We do not migrate tasks that are:
  1826. * 1) running (obviously), or
  1827. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1828. * 3) are cache-hot on their current CPU.
  1829. */
  1830. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1831. return 0;
  1832. *all_pinned = 0;
  1833. if (task_running(rq, p))
  1834. return 0;
  1835. /*
  1836. * Aggressive migration if:
  1837. * 1) task is cache cold, or
  1838. * 2) too many balance attempts have failed.
  1839. */
  1840. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1841. return 1;
  1842. if (task_hot(p, rq->timestamp_last_tick, sd))
  1843. return 0;
  1844. return 1;
  1845. }
  1846. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1847. /*
  1848. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1849. * load from busiest to this_rq, as part of a balancing operation within
  1850. * "domain". Returns the number of tasks moved.
  1851. *
  1852. * Called with both runqueues locked.
  1853. */
  1854. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1855. unsigned long max_nr_move, unsigned long max_load_move,
  1856. struct sched_domain *sd, enum idle_type idle,
  1857. int *all_pinned)
  1858. {
  1859. int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
  1860. best_prio_seen, skip_for_load;
  1861. struct prio_array *array, *dst_array;
  1862. struct list_head *head, *curr;
  1863. struct task_struct *tmp;
  1864. long rem_load_move;
  1865. if (max_nr_move == 0 || max_load_move == 0)
  1866. goto out;
  1867. rem_load_move = max_load_move;
  1868. pinned = 1;
  1869. this_best_prio = rq_best_prio(this_rq);
  1870. best_prio = rq_best_prio(busiest);
  1871. /*
  1872. * Enable handling of the case where there is more than one task
  1873. * with the best priority. If the current running task is one
  1874. * of those with prio==best_prio we know it won't be moved
  1875. * and therefore it's safe to override the skip (based on load) of
  1876. * any task we find with that prio.
  1877. */
  1878. best_prio_seen = best_prio == busiest->curr->prio;
  1879. /*
  1880. * We first consider expired tasks. Those will likely not be
  1881. * executed in the near future, and they are most likely to
  1882. * be cache-cold, thus switching CPUs has the least effect
  1883. * on them.
  1884. */
  1885. if (busiest->expired->nr_active) {
  1886. array = busiest->expired;
  1887. dst_array = this_rq->expired;
  1888. } else {
  1889. array = busiest->active;
  1890. dst_array = this_rq->active;
  1891. }
  1892. new_array:
  1893. /* Start searching at priority 0: */
  1894. idx = 0;
  1895. skip_bitmap:
  1896. if (!idx)
  1897. idx = sched_find_first_bit(array->bitmap);
  1898. else
  1899. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1900. if (idx >= MAX_PRIO) {
  1901. if (array == busiest->expired && busiest->active->nr_active) {
  1902. array = busiest->active;
  1903. dst_array = this_rq->active;
  1904. goto new_array;
  1905. }
  1906. goto out;
  1907. }
  1908. head = array->queue + idx;
  1909. curr = head->prev;
  1910. skip_queue:
  1911. tmp = list_entry(curr, struct task_struct, run_list);
  1912. curr = curr->prev;
  1913. /*
  1914. * To help distribute high priority tasks accross CPUs we don't
  1915. * skip a task if it will be the highest priority task (i.e. smallest
  1916. * prio value) on its new queue regardless of its load weight
  1917. */
  1918. skip_for_load = tmp->load_weight > rem_load_move;
  1919. if (skip_for_load && idx < this_best_prio)
  1920. skip_for_load = !best_prio_seen && idx == best_prio;
  1921. if (skip_for_load ||
  1922. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1923. best_prio_seen |= idx == best_prio;
  1924. if (curr != head)
  1925. goto skip_queue;
  1926. idx++;
  1927. goto skip_bitmap;
  1928. }
  1929. #ifdef CONFIG_SCHEDSTATS
  1930. if (task_hot(tmp, busiest->timestamp_last_tick, sd))
  1931. schedstat_inc(sd, lb_hot_gained[idle]);
  1932. #endif
  1933. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1934. pulled++;
  1935. rem_load_move -= tmp->load_weight;
  1936. /*
  1937. * We only want to steal up to the prescribed number of tasks
  1938. * and the prescribed amount of weighted load.
  1939. */
  1940. if (pulled < max_nr_move && rem_load_move > 0) {
  1941. if (idx < this_best_prio)
  1942. this_best_prio = idx;
  1943. if (curr != head)
  1944. goto skip_queue;
  1945. idx++;
  1946. goto skip_bitmap;
  1947. }
  1948. out:
  1949. /*
  1950. * Right now, this is the only place pull_task() is called,
  1951. * so we can safely collect pull_task() stats here rather than
  1952. * inside pull_task().
  1953. */
  1954. schedstat_add(sd, lb_gained[idle], pulled);
  1955. if (all_pinned)
  1956. *all_pinned = pinned;
  1957. return pulled;
  1958. }
  1959. /*
  1960. * find_busiest_group finds and returns the busiest CPU group within the
  1961. * domain. It calculates and returns the amount of weighted load which
  1962. * should be moved to restore balance via the imbalance parameter.
  1963. */
  1964. static struct sched_group *
  1965. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1966. unsigned long *imbalance, enum idle_type idle, int *sd_idle,
  1967. cpumask_t *cpus)
  1968. {
  1969. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1970. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1971. unsigned long max_pull;
  1972. unsigned long busiest_load_per_task, busiest_nr_running;
  1973. unsigned long this_load_per_task, this_nr_running;
  1974. int load_idx;
  1975. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1976. int power_savings_balance = 1;
  1977. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1978. unsigned long min_nr_running = ULONG_MAX;
  1979. struct sched_group *group_min = NULL, *group_leader = NULL;
  1980. #endif
  1981. max_load = this_load = total_load = total_pwr = 0;
  1982. busiest_load_per_task = busiest_nr_running = 0;
  1983. this_load_per_task = this_nr_running = 0;
  1984. if (idle == NOT_IDLE)
  1985. load_idx = sd->busy_idx;
  1986. else if (idle == NEWLY_IDLE)
  1987. load_idx = sd->newidle_idx;
  1988. else
  1989. load_idx = sd->idle_idx;
  1990. do {
  1991. unsigned long load, group_capacity;
  1992. int local_group;
  1993. int i;
  1994. unsigned long sum_nr_running, sum_weighted_load;
  1995. local_group = cpu_isset(this_cpu, group->cpumask);
  1996. /* Tally up the load of all CPUs in the group */
  1997. sum_weighted_load = sum_nr_running = avg_load = 0;
  1998. for_each_cpu_mask(i, group->cpumask) {
  1999. struct rq *rq;
  2000. if (!cpu_isset(i, *cpus))
  2001. continue;
  2002. rq = cpu_rq(i);
  2003. if (*sd_idle && !idle_cpu(i))
  2004. *sd_idle = 0;
  2005. /* Bias balancing toward cpus of our domain */
  2006. if (local_group)
  2007. load = target_load(i, load_idx);
  2008. else
  2009. load = source_load(i, load_idx);
  2010. avg_load += load;
  2011. sum_nr_running += rq->nr_running;
  2012. sum_weighted_load += rq->raw_weighted_load;
  2013. }
  2014. total_load += avg_load;
  2015. total_pwr += group->cpu_power;
  2016. /* Adjust by relative CPU power of the group */
  2017. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  2018. group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
  2019. if (local_group) {
  2020. this_load = avg_load;
  2021. this = group;
  2022. this_nr_running = sum_nr_running;
  2023. this_load_per_task = sum_weighted_load;
  2024. } else if (avg_load > max_load &&
  2025. sum_nr_running > group_capacity) {
  2026. max_load = avg_load;
  2027. busiest = group;
  2028. busiest_nr_running = sum_nr_running;
  2029. busiest_load_per_task = sum_weighted_load;
  2030. }
  2031. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2032. /*
  2033. * Busy processors will not participate in power savings
  2034. * balance.
  2035. */
  2036. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2037. goto group_next;
  2038. /*
  2039. * If the local group is idle or completely loaded
  2040. * no need to do power savings balance at this domain
  2041. */
  2042. if (local_group && (this_nr_running >= group_capacity ||
  2043. !this_nr_running))
  2044. power_savings_balance = 0;
  2045. /*
  2046. * If a group is already running at full capacity or idle,
  2047. * don't include that group in power savings calculations
  2048. */
  2049. if (!power_savings_balance || sum_nr_running >= group_capacity
  2050. || !sum_nr_running)
  2051. goto group_next;
  2052. /*
  2053. * Calculate the group which has the least non-idle load.
  2054. * This is the group from where we need to pick up the load
  2055. * for saving power
  2056. */
  2057. if ((sum_nr_running < min_nr_running) ||
  2058. (sum_nr_running == min_nr_running &&
  2059. first_cpu(group->cpumask) <
  2060. first_cpu(group_min->cpumask))) {
  2061. group_min = group;
  2062. min_nr_running = sum_nr_running;
  2063. min_load_per_task = sum_weighted_load /
  2064. sum_nr_running;
  2065. }
  2066. /*
  2067. * Calculate the group which is almost near its
  2068. * capacity but still has some space to pick up some load
  2069. * from other group and save more power
  2070. */
  2071. if (sum_nr_running <= group_capacity - 1) {
  2072. if (sum_nr_running > leader_nr_running ||
  2073. (sum_nr_running == leader_nr_running &&
  2074. first_cpu(group->cpumask) >
  2075. first_cpu(group_leader->cpumask))) {
  2076. group_leader = group;
  2077. leader_nr_running = sum_nr_running;
  2078. }
  2079. }
  2080. group_next:
  2081. #endif
  2082. group = group->next;
  2083. } while (group != sd->groups);
  2084. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2085. goto out_balanced;
  2086. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2087. if (this_load >= avg_load ||
  2088. 100*max_load <= sd->imbalance_pct*this_load)
  2089. goto out_balanced;
  2090. busiest_load_per_task /= busiest_nr_running;
  2091. /*
  2092. * We're trying to get all the cpus to the average_load, so we don't
  2093. * want to push ourselves above the average load, nor do we wish to
  2094. * reduce the max loaded cpu below the average load, as either of these
  2095. * actions would just result in more rebalancing later, and ping-pong
  2096. * tasks around. Thus we look for the minimum possible imbalance.
  2097. * Negative imbalances (*we* are more loaded than anyone else) will
  2098. * be counted as no imbalance for these purposes -- we can't fix that
  2099. * by pulling tasks to us. Be careful of negative numbers as they'll
  2100. * appear as very large values with unsigned longs.
  2101. */
  2102. if (max_load <= busiest_load_per_task)
  2103. goto out_balanced;
  2104. /*
  2105. * In the presence of smp nice balancing, certain scenarios can have
  2106. * max load less than avg load(as we skip the groups at or below
  2107. * its cpu_power, while calculating max_load..)
  2108. */
  2109. if (max_load < avg_load) {
  2110. *imbalance = 0;
  2111. goto small_imbalance;
  2112. }
  2113. /* Don't want to pull so many tasks that a group would go idle */
  2114. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2115. /* How much load to actually move to equalise the imbalance */
  2116. *imbalance = min(max_pull * busiest->cpu_power,
  2117. (avg_load - this_load) * this->cpu_power)
  2118. / SCHED_LOAD_SCALE;
  2119. /*
  2120. * if *imbalance is less than the average load per runnable task
  2121. * there is no gaurantee that any tasks will be moved so we'll have
  2122. * a think about bumping its value to force at least one task to be
  2123. * moved
  2124. */
  2125. if (*imbalance < busiest_load_per_task) {
  2126. unsigned long tmp, pwr_now, pwr_move;
  2127. unsigned int imbn;
  2128. small_imbalance:
  2129. pwr_move = pwr_now = 0;
  2130. imbn = 2;
  2131. if (this_nr_running) {
  2132. this_load_per_task /= this_nr_running;
  2133. if (busiest_load_per_task > this_load_per_task)
  2134. imbn = 1;
  2135. } else
  2136. this_load_per_task = SCHED_LOAD_SCALE;
  2137. if (max_load - this_load >= busiest_load_per_task * imbn) {
  2138. *imbalance = busiest_load_per_task;
  2139. return busiest;
  2140. }
  2141. /*
  2142. * OK, we don't have enough imbalance to justify moving tasks,
  2143. * however we may be able to increase total CPU power used by
  2144. * moving them.
  2145. */
  2146. pwr_now += busiest->cpu_power *
  2147. min(busiest_load_per_task, max_load);
  2148. pwr_now += this->cpu_power *
  2149. min(this_load_per_task, this_load);
  2150. pwr_now /= SCHED_LOAD_SCALE;
  2151. /* Amount of load we'd subtract */
  2152. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
  2153. if (max_load > tmp)
  2154. pwr_move += busiest->cpu_power *
  2155. min(busiest_load_per_task, max_load - tmp);
  2156. /* Amount of load we'd add */
  2157. if (max_load*busiest->cpu_power <
  2158. busiest_load_per_task*SCHED_LOAD_SCALE)
  2159. tmp = max_load*busiest->cpu_power/this->cpu_power;
  2160. else
  2161. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
  2162. pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
  2163. pwr_move /= SCHED_LOAD_SCALE;
  2164. /* Move if we gain throughput */
  2165. if (pwr_move <= pwr_now)
  2166. goto out_balanced;
  2167. *imbalance = busiest_load_per_task;
  2168. }
  2169. return busiest;
  2170. out_balanced:
  2171. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2172. if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2173. goto ret;
  2174. if (this == group_leader && group_leader != group_min) {
  2175. *imbalance = min_load_per_task;
  2176. return group_min;
  2177. }
  2178. ret:
  2179. #endif
  2180. *imbalance = 0;
  2181. return NULL;
  2182. }
  2183. /*
  2184. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2185. */
  2186. static struct rq *
  2187. find_busiest_queue(struct sched_group *group, enum idle_type idle,
  2188. unsigned long imbalance, cpumask_t *cpus)
  2189. {
  2190. struct rq *busiest = NULL, *rq;
  2191. unsigned long max_load = 0;
  2192. int i;
  2193. for_each_cpu_mask(i, group->cpumask) {
  2194. if (!cpu_isset(i, *cpus))
  2195. continue;
  2196. rq = cpu_rq(i);
  2197. if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
  2198. continue;
  2199. if (rq->raw_weighted_load > max_load) {
  2200. max_load = rq->raw_weighted_load;
  2201. busiest = rq;
  2202. }
  2203. }
  2204. return busiest;
  2205. }
  2206. /*
  2207. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2208. * so long as it is large enough.
  2209. */
  2210. #define MAX_PINNED_INTERVAL 512
  2211. static inline unsigned long minus_1_or_zero(unsigned long n)
  2212. {
  2213. return n > 0 ? n - 1 : 0;
  2214. }
  2215. /*
  2216. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2217. * tasks if there is an imbalance.
  2218. *
  2219. * Called with this_rq unlocked.
  2220. */
  2221. static int load_balance(int this_cpu, struct rq *this_rq,
  2222. struct sched_domain *sd, enum idle_type idle)
  2223. {
  2224. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2225. struct sched_group *group;
  2226. unsigned long imbalance;
  2227. struct rq *busiest;
  2228. cpumask_t cpus = CPU_MASK_ALL;
  2229. /*
  2230. * When power savings policy is enabled for the parent domain, idle
  2231. * sibling can pick up load irrespective of busy siblings. In this case,
  2232. * let the state of idle sibling percolate up as IDLE, instead of
  2233. * portraying it as NOT_IDLE.
  2234. */
  2235. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2236. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2237. sd_idle = 1;
  2238. schedstat_inc(sd, lb_cnt[idle]);
  2239. redo:
  2240. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2241. &cpus);
  2242. if (!group) {
  2243. schedstat_inc(sd, lb_nobusyg[idle]);
  2244. goto out_balanced;
  2245. }
  2246. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2247. if (!busiest) {
  2248. schedstat_inc(sd, lb_nobusyq[idle]);
  2249. goto out_balanced;
  2250. }
  2251. BUG_ON(busiest == this_rq);
  2252. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2253. nr_moved = 0;
  2254. if (busiest->nr_running > 1) {
  2255. /*
  2256. * Attempt to move tasks. If find_busiest_group has found
  2257. * an imbalance but busiest->nr_running <= 1, the group is
  2258. * still unbalanced. nr_moved simply stays zero, so it is
  2259. * correctly treated as an imbalance.
  2260. */
  2261. double_rq_lock(this_rq, busiest);
  2262. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2263. minus_1_or_zero(busiest->nr_running),
  2264. imbalance, sd, idle, &all_pinned);
  2265. double_rq_unlock(this_rq, busiest);
  2266. /* All tasks on this runqueue were pinned by CPU affinity */
  2267. if (unlikely(all_pinned)) {
  2268. cpu_clear(cpu_of(busiest), cpus);
  2269. if (!cpus_empty(cpus))
  2270. goto redo;
  2271. goto out_balanced;
  2272. }
  2273. }
  2274. if (!nr_moved) {
  2275. schedstat_inc(sd, lb_failed[idle]);
  2276. sd->nr_balance_failed++;
  2277. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2278. spin_lock(&busiest->lock);
  2279. /* don't kick the migration_thread, if the curr
  2280. * task on busiest cpu can't be moved to this_cpu
  2281. */
  2282. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2283. spin_unlock(&busiest->lock);
  2284. all_pinned = 1;
  2285. goto out_one_pinned;
  2286. }
  2287. if (!busiest->active_balance) {
  2288. busiest->active_balance = 1;
  2289. busiest->push_cpu = this_cpu;
  2290. active_balance = 1;
  2291. }
  2292. spin_unlock(&busiest->lock);
  2293. if (active_balance)
  2294. wake_up_process(busiest->migration_thread);
  2295. /*
  2296. * We've kicked active balancing, reset the failure
  2297. * counter.
  2298. */
  2299. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2300. }
  2301. } else
  2302. sd->nr_balance_failed = 0;
  2303. if (likely(!active_balance)) {
  2304. /* We were unbalanced, so reset the balancing interval */
  2305. sd->balance_interval = sd->min_interval;
  2306. } else {
  2307. /*
  2308. * If we've begun active balancing, start to back off. This
  2309. * case may not be covered by the all_pinned logic if there
  2310. * is only 1 task on the busy runqueue (because we don't call
  2311. * move_tasks).
  2312. */
  2313. if (sd->balance_interval < sd->max_interval)
  2314. sd->balance_interval *= 2;
  2315. }
  2316. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2317. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2318. return -1;
  2319. return nr_moved;
  2320. out_balanced:
  2321. schedstat_inc(sd, lb_balanced[idle]);
  2322. sd->nr_balance_failed = 0;
  2323. out_one_pinned:
  2324. /* tune up the balancing interval */
  2325. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2326. (sd->balance_interval < sd->max_interval))
  2327. sd->balance_interval *= 2;
  2328. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2329. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2330. return -1;
  2331. return 0;
  2332. }
  2333. /*
  2334. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2335. * tasks if there is an imbalance.
  2336. *
  2337. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  2338. * this_rq is locked.
  2339. */
  2340. static int
  2341. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2342. {
  2343. struct sched_group *group;
  2344. struct rq *busiest = NULL;
  2345. unsigned long imbalance;
  2346. int nr_moved = 0;
  2347. int sd_idle = 0;
  2348. cpumask_t cpus = CPU_MASK_ALL;
  2349. /*
  2350. * When power savings policy is enabled for the parent domain, idle
  2351. * sibling can pick up load irrespective of busy siblings. In this case,
  2352. * let the state of idle sibling percolate up as IDLE, instead of
  2353. * portraying it as NOT_IDLE.
  2354. */
  2355. if (sd->flags & SD_SHARE_CPUPOWER &&
  2356. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2357. sd_idle = 1;
  2358. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  2359. redo:
  2360. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
  2361. &sd_idle, &cpus);
  2362. if (!group) {
  2363. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  2364. goto out_balanced;
  2365. }
  2366. busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
  2367. &cpus);
  2368. if (!busiest) {
  2369. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  2370. goto out_balanced;
  2371. }
  2372. BUG_ON(busiest == this_rq);
  2373. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  2374. nr_moved = 0;
  2375. if (busiest->nr_running > 1) {
  2376. /* Attempt to move tasks */
  2377. double_lock_balance(this_rq, busiest);
  2378. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2379. minus_1_or_zero(busiest->nr_running),
  2380. imbalance, sd, NEWLY_IDLE, NULL);
  2381. spin_unlock(&busiest->lock);
  2382. if (!nr_moved) {
  2383. cpu_clear(cpu_of(busiest), cpus);
  2384. if (!cpus_empty(cpus))
  2385. goto redo;
  2386. }
  2387. }
  2388. if (!nr_moved) {
  2389. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  2390. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2391. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2392. return -1;
  2393. } else
  2394. sd->nr_balance_failed = 0;
  2395. return nr_moved;
  2396. out_balanced:
  2397. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  2398. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2399. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2400. return -1;
  2401. sd->nr_balance_failed = 0;
  2402. return 0;
  2403. }
  2404. /*
  2405. * idle_balance is called by schedule() if this_cpu is about to become
  2406. * idle. Attempts to pull tasks from other CPUs.
  2407. */
  2408. static void idle_balance(int this_cpu, struct rq *this_rq)
  2409. {
  2410. struct sched_domain *sd;
  2411. for_each_domain(this_cpu, sd) {
  2412. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2413. /* If we've pulled tasks over stop searching: */
  2414. if (load_balance_newidle(this_cpu, this_rq, sd))
  2415. break;
  2416. }
  2417. }
  2418. }
  2419. /*
  2420. * active_load_balance is run by migration threads. It pushes running tasks
  2421. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2422. * running on each physical CPU where possible, and avoids physical /
  2423. * logical imbalances.
  2424. *
  2425. * Called with busiest_rq locked.
  2426. */
  2427. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2428. {
  2429. int target_cpu = busiest_rq->push_cpu;
  2430. struct sched_domain *sd;
  2431. struct rq *target_rq;
  2432. /* Is there any task to move? */
  2433. if (busiest_rq->nr_running <= 1)
  2434. return;
  2435. target_rq = cpu_rq(target_cpu);
  2436. /*
  2437. * This condition is "impossible", if it occurs
  2438. * we need to fix it. Originally reported by
  2439. * Bjorn Helgaas on a 128-cpu setup.
  2440. */
  2441. BUG_ON(busiest_rq == target_rq);
  2442. /* move a task from busiest_rq to target_rq */
  2443. double_lock_balance(busiest_rq, target_rq);
  2444. /* Search for an sd spanning us and the target CPU. */
  2445. for_each_domain(target_cpu, sd) {
  2446. if ((sd->flags & SD_LOAD_BALANCE) &&
  2447. cpu_isset(busiest_cpu, sd->span))
  2448. break;
  2449. }
  2450. if (likely(sd)) {
  2451. schedstat_inc(sd, alb_cnt);
  2452. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2453. RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
  2454. NULL))
  2455. schedstat_inc(sd, alb_pushed);
  2456. else
  2457. schedstat_inc(sd, alb_failed);
  2458. }
  2459. spin_unlock(&target_rq->lock);
  2460. }
  2461. /*
  2462. * rebalance_tick will get called every timer tick, on every CPU.
  2463. *
  2464. * It checks each scheduling domain to see if it is due to be balanced,
  2465. * and initiates a balancing operation if so.
  2466. *
  2467. * Balancing parameters are set up in arch_init_sched_domains.
  2468. */
  2469. /* Don't have all balancing operations going off at once: */
  2470. static inline unsigned long cpu_offset(int cpu)
  2471. {
  2472. return jiffies + cpu * HZ / NR_CPUS;
  2473. }
  2474. static void
  2475. rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
  2476. {
  2477. unsigned long this_load, interval, j = cpu_offset(this_cpu);
  2478. struct sched_domain *sd;
  2479. int i, scale;
  2480. this_load = this_rq->raw_weighted_load;
  2481. /* Update our load: */
  2482. for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
  2483. unsigned long old_load, new_load;
  2484. old_load = this_rq->cpu_load[i];
  2485. new_load = this_load;
  2486. /*
  2487. * Round up the averaging division if load is increasing. This
  2488. * prevents us from getting stuck on 9 if the load is 10, for
  2489. * example.
  2490. */
  2491. if (new_load > old_load)
  2492. new_load += scale-1;
  2493. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  2494. }
  2495. for_each_domain(this_cpu, sd) {
  2496. if (!(sd->flags & SD_LOAD_BALANCE))
  2497. continue;
  2498. interval = sd->balance_interval;
  2499. if (idle != SCHED_IDLE)
  2500. interval *= sd->busy_factor;
  2501. /* scale ms to jiffies */
  2502. interval = msecs_to_jiffies(interval);
  2503. if (unlikely(!interval))
  2504. interval = 1;
  2505. if (j - sd->last_balance >= interval) {
  2506. if (load_balance(this_cpu, this_rq, sd, idle)) {
  2507. /*
  2508. * We've pulled tasks over so either we're no
  2509. * longer idle, or one of our SMT siblings is
  2510. * not idle.
  2511. */
  2512. idle = NOT_IDLE;
  2513. }
  2514. sd->last_balance += interval;
  2515. }
  2516. }
  2517. }
  2518. #else
  2519. /*
  2520. * on UP we do not need to balance between CPUs:
  2521. */
  2522. static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
  2523. {
  2524. }
  2525. static inline void idle_balance(int cpu, struct rq *rq)
  2526. {
  2527. }
  2528. #endif
  2529. static inline int wake_priority_sleeper(struct rq *rq)
  2530. {
  2531. int ret = 0;
  2532. #ifdef CONFIG_SCHED_SMT
  2533. spin_lock(&rq->lock);
  2534. /*
  2535. * If an SMT sibling task has been put to sleep for priority
  2536. * reasons reschedule the idle task to see if it can now run.
  2537. */
  2538. if (rq->nr_running) {
  2539. resched_task(rq->idle);
  2540. ret = 1;
  2541. }
  2542. spin_unlock(&rq->lock);
  2543. #endif
  2544. return ret;
  2545. }
  2546. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2547. EXPORT_PER_CPU_SYMBOL(kstat);
  2548. /*
  2549. * This is called on clock ticks and on context switches.
  2550. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2551. */
  2552. static inline void
  2553. update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
  2554. {
  2555. p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
  2556. }
  2557. /*
  2558. * Return current->sched_time plus any more ns on the sched_clock
  2559. * that have not yet been banked.
  2560. */
  2561. unsigned long long current_sched_time(const struct task_struct *p)
  2562. {
  2563. unsigned long long ns;
  2564. unsigned long flags;
  2565. local_irq_save(flags);
  2566. ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
  2567. ns = p->sched_time + sched_clock() - ns;
  2568. local_irq_restore(flags);
  2569. return ns;
  2570. }
  2571. /*
  2572. * We place interactive tasks back into the active array, if possible.
  2573. *
  2574. * To guarantee that this does not starve expired tasks we ignore the
  2575. * interactivity of a task if the first expired task had to wait more
  2576. * than a 'reasonable' amount of time. This deadline timeout is
  2577. * load-dependent, as the frequency of array switched decreases with
  2578. * increasing number of running tasks. We also ignore the interactivity
  2579. * if a better static_prio task has expired:
  2580. */
  2581. static inline int expired_starving(struct rq *rq)
  2582. {
  2583. if (rq->curr->static_prio > rq->best_expired_prio)
  2584. return 1;
  2585. if (!STARVATION_LIMIT || !rq->expired_timestamp)
  2586. return 0;
  2587. if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
  2588. return 1;
  2589. return 0;
  2590. }
  2591. /*
  2592. * Account user cpu time to a process.
  2593. * @p: the process that the cpu time gets accounted to
  2594. * @hardirq_offset: the offset to subtract from hardirq_count()
  2595. * @cputime: the cpu time spent in user space since the last update
  2596. */
  2597. void account_user_time(struct task_struct *p, cputime_t cputime)
  2598. {
  2599. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2600. cputime64_t tmp;
  2601. p->utime = cputime_add(p->utime, cputime);
  2602. /* Add user time to cpustat. */
  2603. tmp = cputime_to_cputime64(cputime);
  2604. if (TASK_NICE(p) > 0)
  2605. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2606. else
  2607. cpustat->user = cputime64_add(cpustat->user, tmp);
  2608. }
  2609. /*
  2610. * Account system cpu time to a process.
  2611. * @p: the process that the cpu time gets accounted to
  2612. * @hardirq_offset: the offset to subtract from hardirq_count()
  2613. * @cputime: the cpu time spent in kernel space since the last update
  2614. */
  2615. void account_system_time(struct task_struct *p, int hardirq_offset,
  2616. cputime_t cputime)
  2617. {
  2618. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2619. struct rq *rq = this_rq();
  2620. cputime64_t tmp;
  2621. p->stime = cputime_add(p->stime, cputime);
  2622. /* Add system time to cpustat. */
  2623. tmp = cputime_to_cputime64(cputime);
  2624. if (hardirq_count() - hardirq_offset)
  2625. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2626. else if (softirq_count())
  2627. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2628. else if (p != rq->idle)
  2629. cpustat->system = cputime64_add(cpustat->system, tmp);
  2630. else if (atomic_read(&rq->nr_iowait) > 0)
  2631. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2632. else
  2633. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2634. /* Account for system time used */
  2635. acct_update_integrals(p);
  2636. }
  2637. /*
  2638. * Account for involuntary wait time.
  2639. * @p: the process from which the cpu time has been stolen
  2640. * @steal: the cpu time spent in involuntary wait
  2641. */
  2642. void account_steal_time(struct task_struct *p, cputime_t steal)
  2643. {
  2644. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2645. cputime64_t tmp = cputime_to_cputime64(steal);
  2646. struct rq *rq = this_rq();
  2647. if (p == rq->idle) {
  2648. p->stime = cputime_add(p->stime, steal);
  2649. if (atomic_read(&rq->nr_iowait) > 0)
  2650. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2651. else
  2652. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2653. } else
  2654. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2655. }
  2656. /*
  2657. * This function gets called by the timer code, with HZ frequency.
  2658. * We call it with interrupts disabled.
  2659. *
  2660. * It also gets called by the fork code, when changing the parent's
  2661. * timeslices.
  2662. */
  2663. void scheduler_tick(void)
  2664. {
  2665. unsigned long long now = sched_clock();
  2666. struct task_struct *p = current;
  2667. int cpu = smp_processor_id();
  2668. struct rq *rq = cpu_rq(cpu);
  2669. update_cpu_clock(p, rq, now);
  2670. rq->timestamp_last_tick = now;
  2671. if (p == rq->idle) {
  2672. if (wake_priority_sleeper(rq))
  2673. goto out;
  2674. rebalance_tick(cpu, rq, SCHED_IDLE);
  2675. return;
  2676. }
  2677. /* Task might have expired already, but not scheduled off yet */
  2678. if (p->array != rq->active) {
  2679. set_tsk_need_resched(p);
  2680. goto out;
  2681. }
  2682. spin_lock(&rq->lock);
  2683. /*
  2684. * The task was running during this tick - update the
  2685. * time slice counter. Note: we do not update a thread's
  2686. * priority until it either goes to sleep or uses up its
  2687. * timeslice. This makes it possible for interactive tasks
  2688. * to use up their timeslices at their highest priority levels.
  2689. */
  2690. if (rt_task(p)) {
  2691. /*
  2692. * RR tasks need a special form of timeslice management.
  2693. * FIFO tasks have no timeslices.
  2694. */
  2695. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2696. p->time_slice = task_timeslice(p);
  2697. p->first_time_slice = 0;
  2698. set_tsk_need_resched(p);
  2699. /* put it at the end of the queue: */
  2700. requeue_task(p, rq->active);
  2701. }
  2702. goto out_unlock;
  2703. }
  2704. if (!--p->time_slice) {
  2705. dequeue_task(p, rq->active);
  2706. set_tsk_need_resched(p);
  2707. p->prio = effective_prio(p);
  2708. p->time_slice = task_timeslice(p);
  2709. p->first_time_slice = 0;
  2710. if (!rq->expired_timestamp)
  2711. rq->expired_timestamp = jiffies;
  2712. if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
  2713. enqueue_task(p, rq->expired);
  2714. if (p->static_prio < rq->best_expired_prio)
  2715. rq->best_expired_prio = p->static_prio;
  2716. } else
  2717. enqueue_task(p, rq->active);
  2718. } else {
  2719. /*
  2720. * Prevent a too long timeslice allowing a task to monopolize
  2721. * the CPU. We do this by splitting up the timeslice into
  2722. * smaller pieces.
  2723. *
  2724. * Note: this does not mean the task's timeslices expire or
  2725. * get lost in any way, they just might be preempted by
  2726. * another task of equal priority. (one with higher
  2727. * priority would have preempted this task already.) We
  2728. * requeue this task to the end of the list on this priority
  2729. * level, which is in essence a round-robin of tasks with
  2730. * equal priority.
  2731. *
  2732. * This only applies to tasks in the interactive
  2733. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2734. */
  2735. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2736. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2737. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2738. (p->array == rq->active)) {
  2739. requeue_task(p, rq->active);
  2740. set_tsk_need_resched(p);
  2741. }
  2742. }
  2743. out_unlock:
  2744. spin_unlock(&rq->lock);
  2745. out:
  2746. rebalance_tick(cpu, rq, NOT_IDLE);
  2747. }
  2748. #ifdef CONFIG_SCHED_SMT
  2749. static inline void wakeup_busy_runqueue(struct rq *rq)
  2750. {
  2751. /* If an SMT runqueue is sleeping due to priority reasons wake it up */
  2752. if (rq->curr == rq->idle && rq->nr_running)
  2753. resched_task(rq->idle);
  2754. }
  2755. /*
  2756. * Called with interrupt disabled and this_rq's runqueue locked.
  2757. */
  2758. static void wake_sleeping_dependent(int this_cpu)
  2759. {
  2760. struct sched_domain *tmp, *sd = NULL;
  2761. int i;
  2762. for_each_domain(this_cpu, tmp) {
  2763. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2764. sd = tmp;
  2765. break;
  2766. }
  2767. }
  2768. if (!sd)
  2769. return;
  2770. for_each_cpu_mask(i, sd->span) {
  2771. struct rq *smt_rq = cpu_rq(i);
  2772. if (i == this_cpu)
  2773. continue;
  2774. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2775. continue;
  2776. wakeup_busy_runqueue(smt_rq);
  2777. spin_unlock(&smt_rq->lock);
  2778. }
  2779. }
  2780. /*
  2781. * number of 'lost' timeslices this task wont be able to fully
  2782. * utilize, if another task runs on a sibling. This models the
  2783. * slowdown effect of other tasks running on siblings:
  2784. */
  2785. static inline unsigned long
  2786. smt_slice(struct task_struct *p, struct sched_domain *sd)
  2787. {
  2788. return p->time_slice * (100 - sd->per_cpu_gain) / 100;
  2789. }
  2790. /*
  2791. * To minimise lock contention and not have to drop this_rq's runlock we only
  2792. * trylock the sibling runqueues and bypass those runqueues if we fail to
  2793. * acquire their lock. As we only trylock the normal locking order does not
  2794. * need to be obeyed.
  2795. */
  2796. static int
  2797. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2798. {
  2799. struct sched_domain *tmp, *sd = NULL;
  2800. int ret = 0, i;
  2801. /* kernel/rt threads do not participate in dependent sleeping */
  2802. if (!p->mm || rt_task(p))
  2803. return 0;
  2804. for_each_domain(this_cpu, tmp) {
  2805. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2806. sd = tmp;
  2807. break;
  2808. }
  2809. }
  2810. if (!sd)
  2811. return 0;
  2812. for_each_cpu_mask(i, sd->span) {
  2813. struct task_struct *smt_curr;
  2814. struct rq *smt_rq;
  2815. if (i == this_cpu)
  2816. continue;
  2817. smt_rq = cpu_rq(i);
  2818. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2819. continue;
  2820. smt_curr = smt_rq->curr;
  2821. if (!smt_curr->mm)
  2822. goto unlock;
  2823. /*
  2824. * If a user task with lower static priority than the
  2825. * running task on the SMT sibling is trying to schedule,
  2826. * delay it till there is proportionately less timeslice
  2827. * left of the sibling task to prevent a lower priority
  2828. * task from using an unfair proportion of the
  2829. * physical cpu's resources. -ck
  2830. */
  2831. if (rt_task(smt_curr)) {
  2832. /*
  2833. * With real time tasks we run non-rt tasks only
  2834. * per_cpu_gain% of the time.
  2835. */
  2836. if ((jiffies % DEF_TIMESLICE) >
  2837. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2838. ret = 1;
  2839. } else {
  2840. if (smt_curr->static_prio < p->static_prio &&
  2841. !TASK_PREEMPTS_CURR(p, smt_rq) &&
  2842. smt_slice(smt_curr, sd) > task_timeslice(p))
  2843. ret = 1;
  2844. }
  2845. unlock:
  2846. spin_unlock(&smt_rq->lock);
  2847. }
  2848. return ret;
  2849. }
  2850. #else
  2851. static inline void wake_sleeping_dependent(int this_cpu)
  2852. {
  2853. }
  2854. static inline int
  2855. dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
  2856. {
  2857. return 0;
  2858. }
  2859. #endif
  2860. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2861. void fastcall add_preempt_count(int val)
  2862. {
  2863. /*
  2864. * Underflow?
  2865. */
  2866. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2867. return;
  2868. preempt_count() += val;
  2869. /*
  2870. * Spinlock count overflowing soon?
  2871. */
  2872. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
  2873. }
  2874. EXPORT_SYMBOL(add_preempt_count);
  2875. void fastcall sub_preempt_count(int val)
  2876. {
  2877. /*
  2878. * Underflow?
  2879. */
  2880. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2881. return;
  2882. /*
  2883. * Is the spinlock portion underflowing?
  2884. */
  2885. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2886. !(preempt_count() & PREEMPT_MASK)))
  2887. return;
  2888. preempt_count() -= val;
  2889. }
  2890. EXPORT_SYMBOL(sub_preempt_count);
  2891. #endif
  2892. static inline int interactive_sleep(enum sleep_type sleep_type)
  2893. {
  2894. return (sleep_type == SLEEP_INTERACTIVE ||
  2895. sleep_type == SLEEP_INTERRUPTED);
  2896. }
  2897. /*
  2898. * schedule() is the main scheduler function.
  2899. */
  2900. asmlinkage void __sched schedule(void)
  2901. {
  2902. struct task_struct *prev, *next;
  2903. struct prio_array *array;
  2904. struct list_head *queue;
  2905. unsigned long long now;
  2906. unsigned long run_time;
  2907. int cpu, idx, new_prio;
  2908. long *switch_count;
  2909. struct rq *rq;
  2910. /*
  2911. * Test if we are atomic. Since do_exit() needs to call into
  2912. * schedule() atomically, we ignore that path for now.
  2913. * Otherwise, whine if we are scheduling when we should not be.
  2914. */
  2915. if (unlikely(in_atomic() && !current->exit_state)) {
  2916. printk(KERN_ERR "BUG: scheduling while atomic: "
  2917. "%s/0x%08x/%d\n",
  2918. current->comm, preempt_count(), current->pid);
  2919. dump_stack();
  2920. }
  2921. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2922. need_resched:
  2923. preempt_disable();
  2924. prev = current;
  2925. release_kernel_lock(prev);
  2926. need_resched_nonpreemptible:
  2927. rq = this_rq();
  2928. /*
  2929. * The idle thread is not allowed to schedule!
  2930. * Remove this check after it has been exercised a bit.
  2931. */
  2932. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2933. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2934. dump_stack();
  2935. }
  2936. schedstat_inc(rq, sched_cnt);
  2937. now = sched_clock();
  2938. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2939. run_time = now - prev->timestamp;
  2940. if (unlikely((long long)(now - prev->timestamp) < 0))
  2941. run_time = 0;
  2942. } else
  2943. run_time = NS_MAX_SLEEP_AVG;
  2944. /*
  2945. * Tasks charged proportionately less run_time at high sleep_avg to
  2946. * delay them losing their interactive status
  2947. */
  2948. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2949. spin_lock_irq(&rq->lock);
  2950. switch_count = &prev->nivcsw;
  2951. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2952. switch_count = &prev->nvcsw;
  2953. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2954. unlikely(signal_pending(prev))))
  2955. prev->state = TASK_RUNNING;
  2956. else {
  2957. if (prev->state == TASK_UNINTERRUPTIBLE)
  2958. rq->nr_uninterruptible++;
  2959. deactivate_task(prev, rq);
  2960. }
  2961. }
  2962. cpu = smp_processor_id();
  2963. if (unlikely(!rq->nr_running)) {
  2964. idle_balance(cpu, rq);
  2965. if (!rq->nr_running) {
  2966. next = rq->idle;
  2967. rq->expired_timestamp = 0;
  2968. wake_sleeping_dependent(cpu);
  2969. goto switch_tasks;
  2970. }
  2971. }
  2972. array = rq->active;
  2973. if (unlikely(!array->nr_active)) {
  2974. /*
  2975. * Switch the active and expired arrays.
  2976. */
  2977. schedstat_inc(rq, sched_switch);
  2978. rq->active = rq->expired;
  2979. rq->expired = array;
  2980. array = rq->active;
  2981. rq->expired_timestamp = 0;
  2982. rq->best_expired_prio = MAX_PRIO;
  2983. }
  2984. idx = sched_find_first_bit(array->bitmap);
  2985. queue = array->queue + idx;
  2986. next = list_entry(queue->next, struct task_struct, run_list);
  2987. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  2988. unsigned long long delta = now - next->timestamp;
  2989. if (unlikely((long long)(now - next->timestamp) < 0))
  2990. delta = 0;
  2991. if (next->sleep_type == SLEEP_INTERACTIVE)
  2992. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  2993. array = next->array;
  2994. new_prio = recalc_task_prio(next, next->timestamp + delta);
  2995. if (unlikely(next->prio != new_prio)) {
  2996. dequeue_task(next, array);
  2997. next->prio = new_prio;
  2998. enqueue_task(next, array);
  2999. }
  3000. }
  3001. next->sleep_type = SLEEP_NORMAL;
  3002. if (dependent_sleeper(cpu, rq, next))
  3003. next = rq->idle;
  3004. switch_tasks:
  3005. if (next == rq->idle)
  3006. schedstat_inc(rq, sched_goidle);
  3007. prefetch(next);
  3008. prefetch_stack(next);
  3009. clear_tsk_need_resched(prev);
  3010. rcu_qsctr_inc(task_cpu(prev));
  3011. update_cpu_clock(prev, rq, now);
  3012. prev->sleep_avg -= run_time;
  3013. if ((long)prev->sleep_avg <= 0)
  3014. prev->sleep_avg = 0;
  3015. prev->timestamp = prev->last_ran = now;
  3016. sched_info_switch(prev, next);
  3017. if (likely(prev != next)) {
  3018. next->timestamp = now;
  3019. rq->nr_switches++;
  3020. rq->curr = next;
  3021. ++*switch_count;
  3022. prepare_task_switch(rq, next);
  3023. prev = context_switch(rq, prev, next);
  3024. barrier();
  3025. /*
  3026. * this_rq must be evaluated again because prev may have moved
  3027. * CPUs since it called schedule(), thus the 'rq' on its stack
  3028. * frame will be invalid.
  3029. */
  3030. finish_task_switch(this_rq(), prev);
  3031. } else
  3032. spin_unlock_irq(&rq->lock);
  3033. prev = current;
  3034. if (unlikely(reacquire_kernel_lock(prev) < 0))
  3035. goto need_resched_nonpreemptible;
  3036. preempt_enable_no_resched();
  3037. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3038. goto need_resched;
  3039. }
  3040. EXPORT_SYMBOL(schedule);
  3041. #ifdef CONFIG_PREEMPT
  3042. /*
  3043. * this is the entry point to schedule() from in-kernel preemption
  3044. * off of preempt_enable. Kernel preemptions off return from interrupt
  3045. * occur there and call schedule directly.
  3046. */
  3047. asmlinkage void __sched preempt_schedule(void)
  3048. {
  3049. struct thread_info *ti = current_thread_info();
  3050. #ifdef CONFIG_PREEMPT_BKL
  3051. struct task_struct *task = current;
  3052. int saved_lock_depth;
  3053. #endif
  3054. /*
  3055. * If there is a non-zero preempt_count or interrupts are disabled,
  3056. * we do not want to preempt the current task. Just return..
  3057. */
  3058. if (likely(ti->preempt_count || irqs_disabled()))
  3059. return;
  3060. need_resched:
  3061. add_preempt_count(PREEMPT_ACTIVE);
  3062. /*
  3063. * We keep the big kernel semaphore locked, but we
  3064. * clear ->lock_depth so that schedule() doesnt
  3065. * auto-release the semaphore:
  3066. */
  3067. #ifdef CONFIG_PREEMPT_BKL
  3068. saved_lock_depth = task->lock_depth;
  3069. task->lock_depth = -1;
  3070. #endif
  3071. schedule();
  3072. #ifdef CONFIG_PREEMPT_BKL
  3073. task->lock_depth = saved_lock_depth;
  3074. #endif
  3075. sub_preempt_count(PREEMPT_ACTIVE);
  3076. /* we could miss a preemption opportunity between schedule and now */
  3077. barrier();
  3078. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3079. goto need_resched;
  3080. }
  3081. EXPORT_SYMBOL(preempt_schedule);
  3082. /*
  3083. * this is the entry point to schedule() from kernel preemption
  3084. * off of irq context.
  3085. * Note, that this is called and return with irqs disabled. This will
  3086. * protect us against recursive calling from irq.
  3087. */
  3088. asmlinkage void __sched preempt_schedule_irq(void)
  3089. {
  3090. struct thread_info *ti = current_thread_info();
  3091. #ifdef CONFIG_PREEMPT_BKL
  3092. struct task_struct *task = current;
  3093. int saved_lock_depth;
  3094. #endif
  3095. /* Catch callers which need to be fixed */
  3096. BUG_ON(ti->preempt_count || !irqs_disabled());
  3097. need_resched:
  3098. add_preempt_count(PREEMPT_ACTIVE);
  3099. /*
  3100. * We keep the big kernel semaphore locked, but we
  3101. * clear ->lock_depth so that schedule() doesnt
  3102. * auto-release the semaphore:
  3103. */
  3104. #ifdef CONFIG_PREEMPT_BKL
  3105. saved_lock_depth = task->lock_depth;
  3106. task->lock_depth = -1;
  3107. #endif
  3108. local_irq_enable();
  3109. schedule();
  3110. local_irq_disable();
  3111. #ifdef CONFIG_PREEMPT_BKL
  3112. task->lock_depth = saved_lock_depth;
  3113. #endif
  3114. sub_preempt_count(PREEMPT_ACTIVE);
  3115. /* we could miss a preemption opportunity between schedule and now */
  3116. barrier();
  3117. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3118. goto need_resched;
  3119. }
  3120. #endif /* CONFIG_PREEMPT */
  3121. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3122. void *key)
  3123. {
  3124. return try_to_wake_up(curr->private, mode, sync);
  3125. }
  3126. EXPORT_SYMBOL(default_wake_function);
  3127. /*
  3128. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3129. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3130. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3131. *
  3132. * There are circumstances in which we can try to wake a task which has already
  3133. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3134. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3135. */
  3136. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3137. int nr_exclusive, int sync, void *key)
  3138. {
  3139. struct list_head *tmp, *next;
  3140. list_for_each_safe(tmp, next, &q->task_list) {
  3141. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3142. unsigned flags = curr->flags;
  3143. if (curr->func(curr, mode, sync, key) &&
  3144. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3145. break;
  3146. }
  3147. }
  3148. /**
  3149. * __wake_up - wake up threads blocked on a waitqueue.
  3150. * @q: the waitqueue
  3151. * @mode: which threads
  3152. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3153. * @key: is directly passed to the wakeup function
  3154. */
  3155. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3156. int nr_exclusive, void *key)
  3157. {
  3158. unsigned long flags;
  3159. spin_lock_irqsave(&q->lock, flags);
  3160. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3161. spin_unlock_irqrestore(&q->lock, flags);
  3162. }
  3163. EXPORT_SYMBOL(__wake_up);
  3164. /*
  3165. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3166. */
  3167. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3168. {
  3169. __wake_up_common(q, mode, 1, 0, NULL);
  3170. }
  3171. /**
  3172. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3173. * @q: the waitqueue
  3174. * @mode: which threads
  3175. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3176. *
  3177. * The sync wakeup differs that the waker knows that it will schedule
  3178. * away soon, so while the target thread will be woken up, it will not
  3179. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3180. * with each other. This can prevent needless bouncing between CPUs.
  3181. *
  3182. * On UP it can prevent extra preemption.
  3183. */
  3184. void fastcall
  3185. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3186. {
  3187. unsigned long flags;
  3188. int sync = 1;
  3189. if (unlikely(!q))
  3190. return;
  3191. if (unlikely(!nr_exclusive))
  3192. sync = 0;
  3193. spin_lock_irqsave(&q->lock, flags);
  3194. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3195. spin_unlock_irqrestore(&q->lock, flags);
  3196. }
  3197. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3198. void fastcall complete(struct completion *x)
  3199. {
  3200. unsigned long flags;
  3201. spin_lock_irqsave(&x->wait.lock, flags);
  3202. x->done++;
  3203. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3204. 1, 0, NULL);
  3205. spin_unlock_irqrestore(&x->wait.lock, flags);
  3206. }
  3207. EXPORT_SYMBOL(complete);
  3208. void fastcall complete_all(struct completion *x)
  3209. {
  3210. unsigned long flags;
  3211. spin_lock_irqsave(&x->wait.lock, flags);
  3212. x->done += UINT_MAX/2;
  3213. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3214. 0, 0, NULL);
  3215. spin_unlock_irqrestore(&x->wait.lock, flags);
  3216. }
  3217. EXPORT_SYMBOL(complete_all);
  3218. void fastcall __sched wait_for_completion(struct completion *x)
  3219. {
  3220. might_sleep();
  3221. spin_lock_irq(&x->wait.lock);
  3222. if (!x->done) {
  3223. DECLARE_WAITQUEUE(wait, current);
  3224. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3225. __add_wait_queue_tail(&x->wait, &wait);
  3226. do {
  3227. __set_current_state(TASK_UNINTERRUPTIBLE);
  3228. spin_unlock_irq(&x->wait.lock);
  3229. schedule();
  3230. spin_lock_irq(&x->wait.lock);
  3231. } while (!x->done);
  3232. __remove_wait_queue(&x->wait, &wait);
  3233. }
  3234. x->done--;
  3235. spin_unlock_irq(&x->wait.lock);
  3236. }
  3237. EXPORT_SYMBOL(wait_for_completion);
  3238. unsigned long fastcall __sched
  3239. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3240. {
  3241. might_sleep();
  3242. spin_lock_irq(&x->wait.lock);
  3243. if (!x->done) {
  3244. DECLARE_WAITQUEUE(wait, current);
  3245. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3246. __add_wait_queue_tail(&x->wait, &wait);
  3247. do {
  3248. __set_current_state(TASK_UNINTERRUPTIBLE);
  3249. spin_unlock_irq(&x->wait.lock);
  3250. timeout = schedule_timeout(timeout);
  3251. spin_lock_irq(&x->wait.lock);
  3252. if (!timeout) {
  3253. __remove_wait_queue(&x->wait, &wait);
  3254. goto out;
  3255. }
  3256. } while (!x->done);
  3257. __remove_wait_queue(&x->wait, &wait);
  3258. }
  3259. x->done--;
  3260. out:
  3261. spin_unlock_irq(&x->wait.lock);
  3262. return timeout;
  3263. }
  3264. EXPORT_SYMBOL(wait_for_completion_timeout);
  3265. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3266. {
  3267. int ret = 0;
  3268. might_sleep();
  3269. spin_lock_irq(&x->wait.lock);
  3270. if (!x->done) {
  3271. DECLARE_WAITQUEUE(wait, current);
  3272. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3273. __add_wait_queue_tail(&x->wait, &wait);
  3274. do {
  3275. if (signal_pending(current)) {
  3276. ret = -ERESTARTSYS;
  3277. __remove_wait_queue(&x->wait, &wait);
  3278. goto out;
  3279. }
  3280. __set_current_state(TASK_INTERRUPTIBLE);
  3281. spin_unlock_irq(&x->wait.lock);
  3282. schedule();
  3283. spin_lock_irq(&x->wait.lock);
  3284. } while (!x->done);
  3285. __remove_wait_queue(&x->wait, &wait);
  3286. }
  3287. x->done--;
  3288. out:
  3289. spin_unlock_irq(&x->wait.lock);
  3290. return ret;
  3291. }
  3292. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3293. unsigned long fastcall __sched
  3294. wait_for_completion_interruptible_timeout(struct completion *x,
  3295. unsigned long timeout)
  3296. {
  3297. might_sleep();
  3298. spin_lock_irq(&x->wait.lock);
  3299. if (!x->done) {
  3300. DECLARE_WAITQUEUE(wait, current);
  3301. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3302. __add_wait_queue_tail(&x->wait, &wait);
  3303. do {
  3304. if (signal_pending(current)) {
  3305. timeout = -ERESTARTSYS;
  3306. __remove_wait_queue(&x->wait, &wait);
  3307. goto out;
  3308. }
  3309. __set_current_state(TASK_INTERRUPTIBLE);
  3310. spin_unlock_irq(&x->wait.lock);
  3311. timeout = schedule_timeout(timeout);
  3312. spin_lock_irq(&x->wait.lock);
  3313. if (!timeout) {
  3314. __remove_wait_queue(&x->wait, &wait);
  3315. goto out;
  3316. }
  3317. } while (!x->done);
  3318. __remove_wait_queue(&x->wait, &wait);
  3319. }
  3320. x->done--;
  3321. out:
  3322. spin_unlock_irq(&x->wait.lock);
  3323. return timeout;
  3324. }
  3325. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3326. #define SLEEP_ON_VAR \
  3327. unsigned long flags; \
  3328. wait_queue_t wait; \
  3329. init_waitqueue_entry(&wait, current);
  3330. #define SLEEP_ON_HEAD \
  3331. spin_lock_irqsave(&q->lock,flags); \
  3332. __add_wait_queue(q, &wait); \
  3333. spin_unlock(&q->lock);
  3334. #define SLEEP_ON_TAIL \
  3335. spin_lock_irq(&q->lock); \
  3336. __remove_wait_queue(q, &wait); \
  3337. spin_unlock_irqrestore(&q->lock, flags);
  3338. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3339. {
  3340. SLEEP_ON_VAR
  3341. current->state = TASK_INTERRUPTIBLE;
  3342. SLEEP_ON_HEAD
  3343. schedule();
  3344. SLEEP_ON_TAIL
  3345. }
  3346. EXPORT_SYMBOL(interruptible_sleep_on);
  3347. long fastcall __sched
  3348. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3349. {
  3350. SLEEP_ON_VAR
  3351. current->state = TASK_INTERRUPTIBLE;
  3352. SLEEP_ON_HEAD
  3353. timeout = schedule_timeout(timeout);
  3354. SLEEP_ON_TAIL
  3355. return timeout;
  3356. }
  3357. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3358. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3359. {
  3360. SLEEP_ON_VAR
  3361. current->state = TASK_UNINTERRUPTIBLE;
  3362. SLEEP_ON_HEAD
  3363. schedule();
  3364. SLEEP_ON_TAIL
  3365. }
  3366. EXPORT_SYMBOL(sleep_on);
  3367. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3368. {
  3369. SLEEP_ON_VAR
  3370. current->state = TASK_UNINTERRUPTIBLE;
  3371. SLEEP_ON_HEAD
  3372. timeout = schedule_timeout(timeout);
  3373. SLEEP_ON_TAIL
  3374. return timeout;
  3375. }
  3376. EXPORT_SYMBOL(sleep_on_timeout);
  3377. #ifdef CONFIG_RT_MUTEXES
  3378. /*
  3379. * rt_mutex_setprio - set the current priority of a task
  3380. * @p: task
  3381. * @prio: prio value (kernel-internal form)
  3382. *
  3383. * This function changes the 'effective' priority of a task. It does
  3384. * not touch ->normal_prio like __setscheduler().
  3385. *
  3386. * Used by the rt_mutex code to implement priority inheritance logic.
  3387. */
  3388. void rt_mutex_setprio(struct task_struct *p, int prio)
  3389. {
  3390. struct prio_array *array;
  3391. unsigned long flags;
  3392. struct rq *rq;
  3393. int oldprio;
  3394. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3395. rq = task_rq_lock(p, &flags);
  3396. oldprio = p->prio;
  3397. array = p->array;
  3398. if (array)
  3399. dequeue_task(p, array);
  3400. p->prio = prio;
  3401. if (array) {
  3402. /*
  3403. * If changing to an RT priority then queue it
  3404. * in the active array!
  3405. */
  3406. if (rt_task(p))
  3407. array = rq->active;
  3408. enqueue_task(p, array);
  3409. /*
  3410. * Reschedule if we are currently running on this runqueue and
  3411. * our priority decreased, or if we are not currently running on
  3412. * this runqueue and our priority is higher than the current's
  3413. */
  3414. if (task_running(rq, p)) {
  3415. if (p->prio > oldprio)
  3416. resched_task(rq->curr);
  3417. } else if (TASK_PREEMPTS_CURR(p, rq))
  3418. resched_task(rq->curr);
  3419. }
  3420. task_rq_unlock(rq, &flags);
  3421. }
  3422. #endif
  3423. void set_user_nice(struct task_struct *p, long nice)
  3424. {
  3425. struct prio_array *array;
  3426. int old_prio, delta;
  3427. unsigned long flags;
  3428. struct rq *rq;
  3429. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3430. return;
  3431. /*
  3432. * We have to be careful, if called from sys_setpriority(),
  3433. * the task might be in the middle of scheduling on another CPU.
  3434. */
  3435. rq = task_rq_lock(p, &flags);
  3436. /*
  3437. * The RT priorities are set via sched_setscheduler(), but we still
  3438. * allow the 'normal' nice value to be set - but as expected
  3439. * it wont have any effect on scheduling until the task is
  3440. * not SCHED_NORMAL/SCHED_BATCH:
  3441. */
  3442. if (has_rt_policy(p)) {
  3443. p->static_prio = NICE_TO_PRIO(nice);
  3444. goto out_unlock;
  3445. }
  3446. array = p->array;
  3447. if (array) {
  3448. dequeue_task(p, array);
  3449. dec_raw_weighted_load(rq, p);
  3450. }
  3451. p->static_prio = NICE_TO_PRIO(nice);
  3452. set_load_weight(p);
  3453. old_prio = p->prio;
  3454. p->prio = effective_prio(p);
  3455. delta = p->prio - old_prio;
  3456. if (array) {
  3457. enqueue_task(p, array);
  3458. inc_raw_weighted_load(rq, p);
  3459. /*
  3460. * If the task increased its priority or is running and
  3461. * lowered its priority, then reschedule its CPU:
  3462. */
  3463. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3464. resched_task(rq->curr);
  3465. }
  3466. out_unlock:
  3467. task_rq_unlock(rq, &flags);
  3468. }
  3469. EXPORT_SYMBOL(set_user_nice);
  3470. /*
  3471. * can_nice - check if a task can reduce its nice value
  3472. * @p: task
  3473. * @nice: nice value
  3474. */
  3475. int can_nice(const struct task_struct *p, const int nice)
  3476. {
  3477. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3478. int nice_rlim = 20 - nice;
  3479. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3480. capable(CAP_SYS_NICE));
  3481. }
  3482. #ifdef __ARCH_WANT_SYS_NICE
  3483. /*
  3484. * sys_nice - change the priority of the current process.
  3485. * @increment: priority increment
  3486. *
  3487. * sys_setpriority is a more generic, but much slower function that
  3488. * does similar things.
  3489. */
  3490. asmlinkage long sys_nice(int increment)
  3491. {
  3492. long nice, retval;
  3493. /*
  3494. * Setpriority might change our priority at the same moment.
  3495. * We don't have to worry. Conceptually one call occurs first
  3496. * and we have a single winner.
  3497. */
  3498. if (increment < -40)
  3499. increment = -40;
  3500. if (increment > 40)
  3501. increment = 40;
  3502. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3503. if (nice < -20)
  3504. nice = -20;
  3505. if (nice > 19)
  3506. nice = 19;
  3507. if (increment < 0 && !can_nice(current, nice))
  3508. return -EPERM;
  3509. retval = security_task_setnice(current, nice);
  3510. if (retval)
  3511. return retval;
  3512. set_user_nice(current, nice);
  3513. return 0;
  3514. }
  3515. #endif
  3516. /**
  3517. * task_prio - return the priority value of a given task.
  3518. * @p: the task in question.
  3519. *
  3520. * This is the priority value as seen by users in /proc.
  3521. * RT tasks are offset by -200. Normal tasks are centered
  3522. * around 0, value goes from -16 to +15.
  3523. */
  3524. int task_prio(const struct task_struct *p)
  3525. {
  3526. return p->prio - MAX_RT_PRIO;
  3527. }
  3528. /**
  3529. * task_nice - return the nice value of a given task.
  3530. * @p: the task in question.
  3531. */
  3532. int task_nice(const struct task_struct *p)
  3533. {
  3534. return TASK_NICE(p);
  3535. }
  3536. EXPORT_SYMBOL_GPL(task_nice);
  3537. /**
  3538. * idle_cpu - is a given cpu idle currently?
  3539. * @cpu: the processor in question.
  3540. */
  3541. int idle_cpu(int cpu)
  3542. {
  3543. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3544. }
  3545. /**
  3546. * idle_task - return the idle task for a given cpu.
  3547. * @cpu: the processor in question.
  3548. */
  3549. struct task_struct *idle_task(int cpu)
  3550. {
  3551. return cpu_rq(cpu)->idle;
  3552. }
  3553. /**
  3554. * find_process_by_pid - find a process with a matching PID value.
  3555. * @pid: the pid in question.
  3556. */
  3557. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3558. {
  3559. return pid ? find_task_by_pid(pid) : current;
  3560. }
  3561. /* Actually do priority change: must hold rq lock. */
  3562. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3563. {
  3564. BUG_ON(p->array);
  3565. p->policy = policy;
  3566. p->rt_priority = prio;
  3567. p->normal_prio = normal_prio(p);
  3568. /* we are holding p->pi_lock already */
  3569. p->prio = rt_mutex_getprio(p);
  3570. /*
  3571. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3572. */
  3573. if (policy == SCHED_BATCH)
  3574. p->sleep_avg = 0;
  3575. set_load_weight(p);
  3576. }
  3577. /**
  3578. * sched_setscheduler - change the scheduling policy and/or RT priority of
  3579. * a thread.
  3580. * @p: the task in question.
  3581. * @policy: new policy.
  3582. * @param: structure containing the new RT priority.
  3583. *
  3584. * NOTE: the task may be already dead
  3585. */
  3586. int sched_setscheduler(struct task_struct *p, int policy,
  3587. struct sched_param *param)
  3588. {
  3589. int retval, oldprio, oldpolicy = -1;
  3590. struct prio_array *array;
  3591. unsigned long flags;
  3592. struct rq *rq;
  3593. /* may grab non-irq protected spin_locks */
  3594. BUG_ON(in_interrupt());
  3595. recheck:
  3596. /* double check policy once rq lock held */
  3597. if (policy < 0)
  3598. policy = oldpolicy = p->policy;
  3599. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3600. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3601. return -EINVAL;
  3602. /*
  3603. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3604. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3605. * SCHED_BATCH is 0.
  3606. */
  3607. if (param->sched_priority < 0 ||
  3608. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3609. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3610. return -EINVAL;
  3611. if (is_rt_policy(policy) != (param->sched_priority != 0))
  3612. return -EINVAL;
  3613. /*
  3614. * Allow unprivileged RT tasks to decrease priority:
  3615. */
  3616. if (!capable(CAP_SYS_NICE)) {
  3617. if (is_rt_policy(policy)) {
  3618. unsigned long rlim_rtprio;
  3619. unsigned long flags;
  3620. if (!lock_task_sighand(p, &flags))
  3621. return -ESRCH;
  3622. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3623. unlock_task_sighand(p, &flags);
  3624. /* can't set/change the rt policy */
  3625. if (policy != p->policy && !rlim_rtprio)
  3626. return -EPERM;
  3627. /* can't increase priority */
  3628. if (param->sched_priority > p->rt_priority &&
  3629. param->sched_priority > rlim_rtprio)
  3630. return -EPERM;
  3631. }
  3632. /* can't change other user's priorities */
  3633. if ((current->euid != p->euid) &&
  3634. (current->euid != p->uid))
  3635. return -EPERM;
  3636. }
  3637. retval = security_task_setscheduler(p, policy, param);
  3638. if (retval)
  3639. return retval;
  3640. /*
  3641. * make sure no PI-waiters arrive (or leave) while we are
  3642. * changing the priority of the task:
  3643. */
  3644. spin_lock_irqsave(&p->pi_lock, flags);
  3645. /*
  3646. * To be able to change p->policy safely, the apropriate
  3647. * runqueue lock must be held.
  3648. */
  3649. rq = __task_rq_lock(p);
  3650. /* recheck policy now with rq lock held */
  3651. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3652. policy = oldpolicy = -1;
  3653. __task_rq_unlock(rq);
  3654. spin_unlock_irqrestore(&p->pi_lock, flags);
  3655. goto recheck;
  3656. }
  3657. array = p->array;
  3658. if (array)
  3659. deactivate_task(p, rq);
  3660. oldprio = p->prio;
  3661. __setscheduler(p, policy, param->sched_priority);
  3662. if (array) {
  3663. __activate_task(p, rq);
  3664. /*
  3665. * Reschedule if we are currently running on this runqueue and
  3666. * our priority decreased, or if we are not currently running on
  3667. * this runqueue and our priority is higher than the current's
  3668. */
  3669. if (task_running(rq, p)) {
  3670. if (p->prio > oldprio)
  3671. resched_task(rq->curr);
  3672. } else if (TASK_PREEMPTS_CURR(p, rq))
  3673. resched_task(rq->curr);
  3674. }
  3675. __task_rq_unlock(rq);
  3676. spin_unlock_irqrestore(&p->pi_lock, flags);
  3677. rt_mutex_adjust_pi(p);
  3678. return 0;
  3679. }
  3680. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3681. static int
  3682. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3683. {
  3684. struct sched_param lparam;
  3685. struct task_struct *p;
  3686. int retval;
  3687. if (!param || pid < 0)
  3688. return -EINVAL;
  3689. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3690. return -EFAULT;
  3691. rcu_read_lock();
  3692. retval = -ESRCH;
  3693. p = find_process_by_pid(pid);
  3694. if (p != NULL)
  3695. retval = sched_setscheduler(p, policy, &lparam);
  3696. rcu_read_unlock();
  3697. return retval;
  3698. }
  3699. /**
  3700. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3701. * @pid: the pid in question.
  3702. * @policy: new policy.
  3703. * @param: structure containing the new RT priority.
  3704. */
  3705. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3706. struct sched_param __user *param)
  3707. {
  3708. /* negative values for policy are not valid */
  3709. if (policy < 0)
  3710. return -EINVAL;
  3711. return do_sched_setscheduler(pid, policy, param);
  3712. }
  3713. /**
  3714. * sys_sched_setparam - set/change the RT priority of a thread
  3715. * @pid: the pid in question.
  3716. * @param: structure containing the new RT priority.
  3717. */
  3718. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3719. {
  3720. return do_sched_setscheduler(pid, -1, param);
  3721. }
  3722. /**
  3723. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3724. * @pid: the pid in question.
  3725. */
  3726. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3727. {
  3728. struct task_struct *p;
  3729. int retval = -EINVAL;
  3730. if (pid < 0)
  3731. goto out_nounlock;
  3732. retval = -ESRCH;
  3733. read_lock(&tasklist_lock);
  3734. p = find_process_by_pid(pid);
  3735. if (p) {
  3736. retval = security_task_getscheduler(p);
  3737. if (!retval)
  3738. retval = p->policy;
  3739. }
  3740. read_unlock(&tasklist_lock);
  3741. out_nounlock:
  3742. return retval;
  3743. }
  3744. /**
  3745. * sys_sched_getscheduler - get the RT priority of a thread
  3746. * @pid: the pid in question.
  3747. * @param: structure containing the RT priority.
  3748. */
  3749. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3750. {
  3751. struct sched_param lp;
  3752. struct task_struct *p;
  3753. int retval = -EINVAL;
  3754. if (!param || pid < 0)
  3755. goto out_nounlock;
  3756. read_lock(&tasklist_lock);
  3757. p = find_process_by_pid(pid);
  3758. retval = -ESRCH;
  3759. if (!p)
  3760. goto out_unlock;
  3761. retval = security_task_getscheduler(p);
  3762. if (retval)
  3763. goto out_unlock;
  3764. lp.sched_priority = p->rt_priority;
  3765. read_unlock(&tasklist_lock);
  3766. /*
  3767. * This one might sleep, we cannot do it with a spinlock held ...
  3768. */
  3769. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3770. out_nounlock:
  3771. return retval;
  3772. out_unlock:
  3773. read_unlock(&tasklist_lock);
  3774. return retval;
  3775. }
  3776. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3777. {
  3778. cpumask_t cpus_allowed;
  3779. struct task_struct *p;
  3780. int retval;
  3781. lock_cpu_hotplug();
  3782. read_lock(&tasklist_lock);
  3783. p = find_process_by_pid(pid);
  3784. if (!p) {
  3785. read_unlock(&tasklist_lock);
  3786. unlock_cpu_hotplug();
  3787. return -ESRCH;
  3788. }
  3789. /*
  3790. * It is not safe to call set_cpus_allowed with the
  3791. * tasklist_lock held. We will bump the task_struct's
  3792. * usage count and then drop tasklist_lock.
  3793. */
  3794. get_task_struct(p);
  3795. read_unlock(&tasklist_lock);
  3796. retval = -EPERM;
  3797. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3798. !capable(CAP_SYS_NICE))
  3799. goto out_unlock;
  3800. retval = security_task_setscheduler(p, 0, NULL);
  3801. if (retval)
  3802. goto out_unlock;
  3803. cpus_allowed = cpuset_cpus_allowed(p);
  3804. cpus_and(new_mask, new_mask, cpus_allowed);
  3805. retval = set_cpus_allowed(p, new_mask);
  3806. out_unlock:
  3807. put_task_struct(p);
  3808. unlock_cpu_hotplug();
  3809. return retval;
  3810. }
  3811. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3812. cpumask_t *new_mask)
  3813. {
  3814. if (len < sizeof(cpumask_t)) {
  3815. memset(new_mask, 0, sizeof(cpumask_t));
  3816. } else if (len > sizeof(cpumask_t)) {
  3817. len = sizeof(cpumask_t);
  3818. }
  3819. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3820. }
  3821. /**
  3822. * sys_sched_setaffinity - set the cpu affinity of a process
  3823. * @pid: pid of the process
  3824. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3825. * @user_mask_ptr: user-space pointer to the new cpu mask
  3826. */
  3827. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3828. unsigned long __user *user_mask_ptr)
  3829. {
  3830. cpumask_t new_mask;
  3831. int retval;
  3832. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3833. if (retval)
  3834. return retval;
  3835. return sched_setaffinity(pid, new_mask);
  3836. }
  3837. /*
  3838. * Represents all cpu's present in the system
  3839. * In systems capable of hotplug, this map could dynamically grow
  3840. * as new cpu's are detected in the system via any platform specific
  3841. * method, such as ACPI for e.g.
  3842. */
  3843. cpumask_t cpu_present_map __read_mostly;
  3844. EXPORT_SYMBOL(cpu_present_map);
  3845. #ifndef CONFIG_SMP
  3846. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3847. EXPORT_SYMBOL(cpu_online_map);
  3848. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3849. EXPORT_SYMBOL(cpu_possible_map);
  3850. #endif
  3851. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3852. {
  3853. struct task_struct *p;
  3854. int retval;
  3855. lock_cpu_hotplug();
  3856. read_lock(&tasklist_lock);
  3857. retval = -ESRCH;
  3858. p = find_process_by_pid(pid);
  3859. if (!p)
  3860. goto out_unlock;
  3861. retval = security_task_getscheduler(p);
  3862. if (retval)
  3863. goto out_unlock;
  3864. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3865. out_unlock:
  3866. read_unlock(&tasklist_lock);
  3867. unlock_cpu_hotplug();
  3868. if (retval)
  3869. return retval;
  3870. return 0;
  3871. }
  3872. /**
  3873. * sys_sched_getaffinity - get the cpu affinity of a process
  3874. * @pid: pid of the process
  3875. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3876. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3877. */
  3878. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3879. unsigned long __user *user_mask_ptr)
  3880. {
  3881. int ret;
  3882. cpumask_t mask;
  3883. if (len < sizeof(cpumask_t))
  3884. return -EINVAL;
  3885. ret = sched_getaffinity(pid, &mask);
  3886. if (ret < 0)
  3887. return ret;
  3888. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3889. return -EFAULT;
  3890. return sizeof(cpumask_t);
  3891. }
  3892. /**
  3893. * sys_sched_yield - yield the current processor to other threads.
  3894. *
  3895. * this function yields the current CPU by moving the calling thread
  3896. * to the expired array. If there are no other threads running on this
  3897. * CPU then this function will return.
  3898. */
  3899. asmlinkage long sys_sched_yield(void)
  3900. {
  3901. struct rq *rq = this_rq_lock();
  3902. struct prio_array *array = current->array, *target = rq->expired;
  3903. schedstat_inc(rq, yld_cnt);
  3904. /*
  3905. * We implement yielding by moving the task into the expired
  3906. * queue.
  3907. *
  3908. * (special rule: RT tasks will just roundrobin in the active
  3909. * array.)
  3910. */
  3911. if (rt_task(current))
  3912. target = rq->active;
  3913. if (array->nr_active == 1) {
  3914. schedstat_inc(rq, yld_act_empty);
  3915. if (!rq->expired->nr_active)
  3916. schedstat_inc(rq, yld_both_empty);
  3917. } else if (!rq->expired->nr_active)
  3918. schedstat_inc(rq, yld_exp_empty);
  3919. if (array != target) {
  3920. dequeue_task(current, array);
  3921. enqueue_task(current, target);
  3922. } else
  3923. /*
  3924. * requeue_task is cheaper so perform that if possible.
  3925. */
  3926. requeue_task(current, array);
  3927. /*
  3928. * Since we are going to call schedule() anyway, there's
  3929. * no need to preempt or enable interrupts:
  3930. */
  3931. __release(rq->lock);
  3932. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3933. _raw_spin_unlock(&rq->lock);
  3934. preempt_enable_no_resched();
  3935. schedule();
  3936. return 0;
  3937. }
  3938. static inline int __resched_legal(int expected_preempt_count)
  3939. {
  3940. if (unlikely(preempt_count() != expected_preempt_count))
  3941. return 0;
  3942. if (unlikely(system_state != SYSTEM_RUNNING))
  3943. return 0;
  3944. return 1;
  3945. }
  3946. static void __cond_resched(void)
  3947. {
  3948. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3949. __might_sleep(__FILE__, __LINE__);
  3950. #endif
  3951. /*
  3952. * The BKS might be reacquired before we have dropped
  3953. * PREEMPT_ACTIVE, which could trigger a second
  3954. * cond_resched() call.
  3955. */
  3956. do {
  3957. add_preempt_count(PREEMPT_ACTIVE);
  3958. schedule();
  3959. sub_preempt_count(PREEMPT_ACTIVE);
  3960. } while (need_resched());
  3961. }
  3962. int __sched cond_resched(void)
  3963. {
  3964. if (need_resched() && __resched_legal(0)) {
  3965. __cond_resched();
  3966. return 1;
  3967. }
  3968. return 0;
  3969. }
  3970. EXPORT_SYMBOL(cond_resched);
  3971. /*
  3972. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3973. * call schedule, and on return reacquire the lock.
  3974. *
  3975. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3976. * operations here to prevent schedule() from being called twice (once via
  3977. * spin_unlock(), once by hand).
  3978. */
  3979. int cond_resched_lock(spinlock_t *lock)
  3980. {
  3981. int ret = 0;
  3982. if (need_lockbreak(lock)) {
  3983. spin_unlock(lock);
  3984. cpu_relax();
  3985. ret = 1;
  3986. spin_lock(lock);
  3987. }
  3988. if (need_resched() && __resched_legal(1)) {
  3989. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3990. _raw_spin_unlock(lock);
  3991. preempt_enable_no_resched();
  3992. __cond_resched();
  3993. ret = 1;
  3994. spin_lock(lock);
  3995. }
  3996. return ret;
  3997. }
  3998. EXPORT_SYMBOL(cond_resched_lock);
  3999. int __sched cond_resched_softirq(void)
  4000. {
  4001. BUG_ON(!in_softirq());
  4002. if (need_resched() && __resched_legal(0)) {
  4003. raw_local_irq_disable();
  4004. _local_bh_enable();
  4005. raw_local_irq_enable();
  4006. __cond_resched();
  4007. local_bh_disable();
  4008. return 1;
  4009. }
  4010. return 0;
  4011. }
  4012. EXPORT_SYMBOL(cond_resched_softirq);
  4013. /**
  4014. * yield - yield the current processor to other threads.
  4015. *
  4016. * this is a shortcut for kernel-space yielding - it marks the
  4017. * thread runnable and calls sys_sched_yield().
  4018. */
  4019. void __sched yield(void)
  4020. {
  4021. set_current_state(TASK_RUNNING);
  4022. sys_sched_yield();
  4023. }
  4024. EXPORT_SYMBOL(yield);
  4025. /*
  4026. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4027. * that process accounting knows that this is a task in IO wait state.
  4028. *
  4029. * But don't do that if it is a deliberate, throttling IO wait (this task
  4030. * has set its backing_dev_info: the queue against which it should throttle)
  4031. */
  4032. void __sched io_schedule(void)
  4033. {
  4034. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4035. delayacct_blkio_start();
  4036. atomic_inc(&rq->nr_iowait);
  4037. schedule();
  4038. atomic_dec(&rq->nr_iowait);
  4039. delayacct_blkio_end();
  4040. }
  4041. EXPORT_SYMBOL(io_schedule);
  4042. long __sched io_schedule_timeout(long timeout)
  4043. {
  4044. struct rq *rq = &__raw_get_cpu_var(runqueues);
  4045. long ret;
  4046. delayacct_blkio_start();
  4047. atomic_inc(&rq->nr_iowait);
  4048. ret = schedule_timeout(timeout);
  4049. atomic_dec(&rq->nr_iowait);
  4050. delayacct_blkio_end();
  4051. return ret;
  4052. }
  4053. /**
  4054. * sys_sched_get_priority_max - return maximum RT priority.
  4055. * @policy: scheduling class.
  4056. *
  4057. * this syscall returns the maximum rt_priority that can be used
  4058. * by a given scheduling class.
  4059. */
  4060. asmlinkage long sys_sched_get_priority_max(int policy)
  4061. {
  4062. int ret = -EINVAL;
  4063. switch (policy) {
  4064. case SCHED_FIFO:
  4065. case SCHED_RR:
  4066. ret = MAX_USER_RT_PRIO-1;
  4067. break;
  4068. case SCHED_NORMAL:
  4069. case SCHED_BATCH:
  4070. ret = 0;
  4071. break;
  4072. }
  4073. return ret;
  4074. }
  4075. /**
  4076. * sys_sched_get_priority_min - return minimum RT priority.
  4077. * @policy: scheduling class.
  4078. *
  4079. * this syscall returns the minimum rt_priority that can be used
  4080. * by a given scheduling class.
  4081. */
  4082. asmlinkage long sys_sched_get_priority_min(int policy)
  4083. {
  4084. int ret = -EINVAL;
  4085. switch (policy) {
  4086. case SCHED_FIFO:
  4087. case SCHED_RR:
  4088. ret = 1;
  4089. break;
  4090. case SCHED_NORMAL:
  4091. case SCHED_BATCH:
  4092. ret = 0;
  4093. }
  4094. return ret;
  4095. }
  4096. /**
  4097. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4098. * @pid: pid of the process.
  4099. * @interval: userspace pointer to the timeslice value.
  4100. *
  4101. * this syscall writes the default timeslice value of a given process
  4102. * into the user-space timespec buffer. A value of '0' means infinity.
  4103. */
  4104. asmlinkage
  4105. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4106. {
  4107. struct task_struct *p;
  4108. int retval = -EINVAL;
  4109. struct timespec t;
  4110. if (pid < 0)
  4111. goto out_nounlock;
  4112. retval = -ESRCH;
  4113. read_lock(&tasklist_lock);
  4114. p = find_process_by_pid(pid);
  4115. if (!p)
  4116. goto out_unlock;
  4117. retval = security_task_getscheduler(p);
  4118. if (retval)
  4119. goto out_unlock;
  4120. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4121. 0 : task_timeslice(p), &t);
  4122. read_unlock(&tasklist_lock);
  4123. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4124. out_nounlock:
  4125. return retval;
  4126. out_unlock:
  4127. read_unlock(&tasklist_lock);
  4128. return retval;
  4129. }
  4130. static inline struct task_struct *eldest_child(struct task_struct *p)
  4131. {
  4132. if (list_empty(&p->children))
  4133. return NULL;
  4134. return list_entry(p->children.next,struct task_struct,sibling);
  4135. }
  4136. static inline struct task_struct *older_sibling(struct task_struct *p)
  4137. {
  4138. if (p->sibling.prev==&p->parent->children)
  4139. return NULL;
  4140. return list_entry(p->sibling.prev,struct task_struct,sibling);
  4141. }
  4142. static inline struct task_struct *younger_sibling(struct task_struct *p)
  4143. {
  4144. if (p->sibling.next==&p->parent->children)
  4145. return NULL;
  4146. return list_entry(p->sibling.next,struct task_struct,sibling);
  4147. }
  4148. static const char stat_nam[] = "RSDTtZX";
  4149. static void show_task(struct task_struct *p)
  4150. {
  4151. struct task_struct *relative;
  4152. unsigned long free = 0;
  4153. unsigned state;
  4154. state = p->state ? __ffs(p->state) + 1 : 0;
  4155. printk("%-13.13s %c", p->comm,
  4156. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4157. #if (BITS_PER_LONG == 32)
  4158. if (state == TASK_RUNNING)
  4159. printk(" running ");
  4160. else
  4161. printk(" %08lX ", thread_saved_pc(p));
  4162. #else
  4163. if (state == TASK_RUNNING)
  4164. printk(" running task ");
  4165. else
  4166. printk(" %016lx ", thread_saved_pc(p));
  4167. #endif
  4168. #ifdef CONFIG_DEBUG_STACK_USAGE
  4169. {
  4170. unsigned long *n = end_of_stack(p);
  4171. while (!*n)
  4172. n++;
  4173. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4174. }
  4175. #endif
  4176. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  4177. if ((relative = eldest_child(p)))
  4178. printk("%5d ", relative->pid);
  4179. else
  4180. printk(" ");
  4181. if ((relative = younger_sibling(p)))
  4182. printk("%7d", relative->pid);
  4183. else
  4184. printk(" ");
  4185. if ((relative = older_sibling(p)))
  4186. printk(" %5d", relative->pid);
  4187. else
  4188. printk(" ");
  4189. if (!p->mm)
  4190. printk(" (L-TLB)\n");
  4191. else
  4192. printk(" (NOTLB)\n");
  4193. if (state != TASK_RUNNING)
  4194. show_stack(p, NULL);
  4195. }
  4196. void show_state(void)
  4197. {
  4198. struct task_struct *g, *p;
  4199. #if (BITS_PER_LONG == 32)
  4200. printk("\n"
  4201. " sibling\n");
  4202. printk(" task PC pid father child younger older\n");
  4203. #else
  4204. printk("\n"
  4205. " sibling\n");
  4206. printk(" task PC pid father child younger older\n");
  4207. #endif
  4208. read_lock(&tasklist_lock);
  4209. do_each_thread(g, p) {
  4210. /*
  4211. * reset the NMI-timeout, listing all files on a slow
  4212. * console might take alot of time:
  4213. */
  4214. touch_nmi_watchdog();
  4215. show_task(p);
  4216. } while_each_thread(g, p);
  4217. read_unlock(&tasklist_lock);
  4218. debug_show_all_locks();
  4219. }
  4220. /**
  4221. * init_idle - set up an idle thread for a given CPU
  4222. * @idle: task in question
  4223. * @cpu: cpu the idle task belongs to
  4224. *
  4225. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4226. * flag, to make booting more robust.
  4227. */
  4228. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4229. {
  4230. struct rq *rq = cpu_rq(cpu);
  4231. unsigned long flags;
  4232. idle->timestamp = sched_clock();
  4233. idle->sleep_avg = 0;
  4234. idle->array = NULL;
  4235. idle->prio = idle->normal_prio = MAX_PRIO;
  4236. idle->state = TASK_RUNNING;
  4237. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4238. set_task_cpu(idle, cpu);
  4239. spin_lock_irqsave(&rq->lock, flags);
  4240. rq->curr = rq->idle = idle;
  4241. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4242. idle->oncpu = 1;
  4243. #endif
  4244. spin_unlock_irqrestore(&rq->lock, flags);
  4245. /* Set the preempt count _outside_ the spinlocks! */
  4246. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4247. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4248. #else
  4249. task_thread_info(idle)->preempt_count = 0;
  4250. #endif
  4251. }
  4252. /*
  4253. * In a system that switches off the HZ timer nohz_cpu_mask
  4254. * indicates which cpus entered this state. This is used
  4255. * in the rcu update to wait only for active cpus. For system
  4256. * which do not switch off the HZ timer nohz_cpu_mask should
  4257. * always be CPU_MASK_NONE.
  4258. */
  4259. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4260. #ifdef CONFIG_SMP
  4261. /*
  4262. * This is how migration works:
  4263. *
  4264. * 1) we queue a struct migration_req structure in the source CPU's
  4265. * runqueue and wake up that CPU's migration thread.
  4266. * 2) we down() the locked semaphore => thread blocks.
  4267. * 3) migration thread wakes up (implicitly it forces the migrated
  4268. * thread off the CPU)
  4269. * 4) it gets the migration request and checks whether the migrated
  4270. * task is still in the wrong runqueue.
  4271. * 5) if it's in the wrong runqueue then the migration thread removes
  4272. * it and puts it into the right queue.
  4273. * 6) migration thread up()s the semaphore.
  4274. * 7) we wake up and the migration is done.
  4275. */
  4276. /*
  4277. * Change a given task's CPU affinity. Migrate the thread to a
  4278. * proper CPU and schedule it away if the CPU it's executing on
  4279. * is removed from the allowed bitmask.
  4280. *
  4281. * NOTE: the caller must have a valid reference to the task, the
  4282. * task must not exit() & deallocate itself prematurely. The
  4283. * call is not atomic; no spinlocks may be held.
  4284. */
  4285. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4286. {
  4287. struct migration_req req;
  4288. unsigned long flags;
  4289. struct rq *rq;
  4290. int ret = 0;
  4291. rq = task_rq_lock(p, &flags);
  4292. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4293. ret = -EINVAL;
  4294. goto out;
  4295. }
  4296. p->cpus_allowed = new_mask;
  4297. /* Can the task run on the task's current CPU? If so, we're done */
  4298. if (cpu_isset(task_cpu(p), new_mask))
  4299. goto out;
  4300. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4301. /* Need help from migration thread: drop lock and wait. */
  4302. task_rq_unlock(rq, &flags);
  4303. wake_up_process(rq->migration_thread);
  4304. wait_for_completion(&req.done);
  4305. tlb_migrate_finish(p->mm);
  4306. return 0;
  4307. }
  4308. out:
  4309. task_rq_unlock(rq, &flags);
  4310. return ret;
  4311. }
  4312. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4313. /*
  4314. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4315. * this because either it can't run here any more (set_cpus_allowed()
  4316. * away from this CPU, or CPU going down), or because we're
  4317. * attempting to rebalance this task on exec (sched_exec).
  4318. *
  4319. * So we race with normal scheduler movements, but that's OK, as long
  4320. * as the task is no longer on this CPU.
  4321. *
  4322. * Returns non-zero if task was successfully migrated.
  4323. */
  4324. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4325. {
  4326. struct rq *rq_dest, *rq_src;
  4327. int ret = 0;
  4328. if (unlikely(cpu_is_offline(dest_cpu)))
  4329. return ret;
  4330. rq_src = cpu_rq(src_cpu);
  4331. rq_dest = cpu_rq(dest_cpu);
  4332. double_rq_lock(rq_src, rq_dest);
  4333. /* Already moved. */
  4334. if (task_cpu(p) != src_cpu)
  4335. goto out;
  4336. /* Affinity changed (again). */
  4337. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4338. goto out;
  4339. set_task_cpu(p, dest_cpu);
  4340. if (p->array) {
  4341. /*
  4342. * Sync timestamp with rq_dest's before activating.
  4343. * The same thing could be achieved by doing this step
  4344. * afterwards, and pretending it was a local activate.
  4345. * This way is cleaner and logically correct.
  4346. */
  4347. p->timestamp = p->timestamp - rq_src->timestamp_last_tick
  4348. + rq_dest->timestamp_last_tick;
  4349. deactivate_task(p, rq_src);
  4350. __activate_task(p, rq_dest);
  4351. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4352. resched_task(rq_dest->curr);
  4353. }
  4354. ret = 1;
  4355. out:
  4356. double_rq_unlock(rq_src, rq_dest);
  4357. return ret;
  4358. }
  4359. /*
  4360. * migration_thread - this is a highprio system thread that performs
  4361. * thread migration by bumping thread off CPU then 'pushing' onto
  4362. * another runqueue.
  4363. */
  4364. static int migration_thread(void *data)
  4365. {
  4366. int cpu = (long)data;
  4367. struct rq *rq;
  4368. rq = cpu_rq(cpu);
  4369. BUG_ON(rq->migration_thread != current);
  4370. set_current_state(TASK_INTERRUPTIBLE);
  4371. while (!kthread_should_stop()) {
  4372. struct migration_req *req;
  4373. struct list_head *head;
  4374. try_to_freeze();
  4375. spin_lock_irq(&rq->lock);
  4376. if (cpu_is_offline(cpu)) {
  4377. spin_unlock_irq(&rq->lock);
  4378. goto wait_to_die;
  4379. }
  4380. if (rq->active_balance) {
  4381. active_load_balance(rq, cpu);
  4382. rq->active_balance = 0;
  4383. }
  4384. head = &rq->migration_queue;
  4385. if (list_empty(head)) {
  4386. spin_unlock_irq(&rq->lock);
  4387. schedule();
  4388. set_current_state(TASK_INTERRUPTIBLE);
  4389. continue;
  4390. }
  4391. req = list_entry(head->next, struct migration_req, list);
  4392. list_del_init(head->next);
  4393. spin_unlock(&rq->lock);
  4394. __migrate_task(req->task, cpu, req->dest_cpu);
  4395. local_irq_enable();
  4396. complete(&req->done);
  4397. }
  4398. __set_current_state(TASK_RUNNING);
  4399. return 0;
  4400. wait_to_die:
  4401. /* Wait for kthread_stop */
  4402. set_current_state(TASK_INTERRUPTIBLE);
  4403. while (!kthread_should_stop()) {
  4404. schedule();
  4405. set_current_state(TASK_INTERRUPTIBLE);
  4406. }
  4407. __set_current_state(TASK_RUNNING);
  4408. return 0;
  4409. }
  4410. #ifdef CONFIG_HOTPLUG_CPU
  4411. /* Figure out where task on dead CPU should go, use force if neccessary. */
  4412. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4413. {
  4414. unsigned long flags;
  4415. cpumask_t mask;
  4416. struct rq *rq;
  4417. int dest_cpu;
  4418. restart:
  4419. /* On same node? */
  4420. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4421. cpus_and(mask, mask, p->cpus_allowed);
  4422. dest_cpu = any_online_cpu(mask);
  4423. /* On any allowed CPU? */
  4424. if (dest_cpu == NR_CPUS)
  4425. dest_cpu = any_online_cpu(p->cpus_allowed);
  4426. /* No more Mr. Nice Guy. */
  4427. if (dest_cpu == NR_CPUS) {
  4428. rq = task_rq_lock(p, &flags);
  4429. cpus_setall(p->cpus_allowed);
  4430. dest_cpu = any_online_cpu(p->cpus_allowed);
  4431. task_rq_unlock(rq, &flags);
  4432. /*
  4433. * Don't tell them about moving exiting tasks or
  4434. * kernel threads (both mm NULL), since they never
  4435. * leave kernel.
  4436. */
  4437. if (p->mm && printk_ratelimit())
  4438. printk(KERN_INFO "process %d (%s) no "
  4439. "longer affine to cpu%d\n",
  4440. p->pid, p->comm, dead_cpu);
  4441. }
  4442. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4443. goto restart;
  4444. }
  4445. /*
  4446. * While a dead CPU has no uninterruptible tasks queued at this point,
  4447. * it might still have a nonzero ->nr_uninterruptible counter, because
  4448. * for performance reasons the counter is not stricly tracking tasks to
  4449. * their home CPUs. So we just add the counter to another CPU's counter,
  4450. * to keep the global sum constant after CPU-down:
  4451. */
  4452. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4453. {
  4454. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4455. unsigned long flags;
  4456. local_irq_save(flags);
  4457. double_rq_lock(rq_src, rq_dest);
  4458. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4459. rq_src->nr_uninterruptible = 0;
  4460. double_rq_unlock(rq_src, rq_dest);
  4461. local_irq_restore(flags);
  4462. }
  4463. /* Run through task list and migrate tasks from the dead cpu. */
  4464. static void migrate_live_tasks(int src_cpu)
  4465. {
  4466. struct task_struct *p, *t;
  4467. write_lock_irq(&tasklist_lock);
  4468. do_each_thread(t, p) {
  4469. if (p == current)
  4470. continue;
  4471. if (task_cpu(p) == src_cpu)
  4472. move_task_off_dead_cpu(src_cpu, p);
  4473. } while_each_thread(t, p);
  4474. write_unlock_irq(&tasklist_lock);
  4475. }
  4476. /* Schedules idle task to be the next runnable task on current CPU.
  4477. * It does so by boosting its priority to highest possible and adding it to
  4478. * the _front_ of the runqueue. Used by CPU offline code.
  4479. */
  4480. void sched_idle_next(void)
  4481. {
  4482. int this_cpu = smp_processor_id();
  4483. struct rq *rq = cpu_rq(this_cpu);
  4484. struct task_struct *p = rq->idle;
  4485. unsigned long flags;
  4486. /* cpu has to be offline */
  4487. BUG_ON(cpu_online(this_cpu));
  4488. /*
  4489. * Strictly not necessary since rest of the CPUs are stopped by now
  4490. * and interrupts disabled on the current cpu.
  4491. */
  4492. spin_lock_irqsave(&rq->lock, flags);
  4493. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4494. /* Add idle task to the _front_ of its priority queue: */
  4495. __activate_idle_task(p, rq);
  4496. spin_unlock_irqrestore(&rq->lock, flags);
  4497. }
  4498. /*
  4499. * Ensures that the idle task is using init_mm right before its cpu goes
  4500. * offline.
  4501. */
  4502. void idle_task_exit(void)
  4503. {
  4504. struct mm_struct *mm = current->active_mm;
  4505. BUG_ON(cpu_online(smp_processor_id()));
  4506. if (mm != &init_mm)
  4507. switch_mm(mm, &init_mm, current);
  4508. mmdrop(mm);
  4509. }
  4510. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4511. {
  4512. struct rq *rq = cpu_rq(dead_cpu);
  4513. /* Must be exiting, otherwise would be on tasklist. */
  4514. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4515. /* Cannot have done final schedule yet: would have vanished. */
  4516. BUG_ON(p->state == TASK_DEAD);
  4517. get_task_struct(p);
  4518. /*
  4519. * Drop lock around migration; if someone else moves it,
  4520. * that's OK. No task can be added to this CPU, so iteration is
  4521. * fine.
  4522. */
  4523. spin_unlock_irq(&rq->lock);
  4524. move_task_off_dead_cpu(dead_cpu, p);
  4525. spin_lock_irq(&rq->lock);
  4526. put_task_struct(p);
  4527. }
  4528. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4529. static void migrate_dead_tasks(unsigned int dead_cpu)
  4530. {
  4531. struct rq *rq = cpu_rq(dead_cpu);
  4532. unsigned int arr, i;
  4533. for (arr = 0; arr < 2; arr++) {
  4534. for (i = 0; i < MAX_PRIO; i++) {
  4535. struct list_head *list = &rq->arrays[arr].queue[i];
  4536. while (!list_empty(list))
  4537. migrate_dead(dead_cpu, list_entry(list->next,
  4538. struct task_struct, run_list));
  4539. }
  4540. }
  4541. }
  4542. #endif /* CONFIG_HOTPLUG_CPU */
  4543. /*
  4544. * migration_call - callback that gets triggered when a CPU is added.
  4545. * Here we can start up the necessary migration thread for the new CPU.
  4546. */
  4547. static int __cpuinit
  4548. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4549. {
  4550. struct task_struct *p;
  4551. int cpu = (long)hcpu;
  4552. unsigned long flags;
  4553. struct rq *rq;
  4554. switch (action) {
  4555. case CPU_UP_PREPARE:
  4556. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4557. if (IS_ERR(p))
  4558. return NOTIFY_BAD;
  4559. p->flags |= PF_NOFREEZE;
  4560. kthread_bind(p, cpu);
  4561. /* Must be high prio: stop_machine expects to yield to it. */
  4562. rq = task_rq_lock(p, &flags);
  4563. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4564. task_rq_unlock(rq, &flags);
  4565. cpu_rq(cpu)->migration_thread = p;
  4566. break;
  4567. case CPU_ONLINE:
  4568. /* Strictly unneccessary, as first user will wake it. */
  4569. wake_up_process(cpu_rq(cpu)->migration_thread);
  4570. break;
  4571. #ifdef CONFIG_HOTPLUG_CPU
  4572. case CPU_UP_CANCELED:
  4573. if (!cpu_rq(cpu)->migration_thread)
  4574. break;
  4575. /* Unbind it from offline cpu so it can run. Fall thru. */
  4576. kthread_bind(cpu_rq(cpu)->migration_thread,
  4577. any_online_cpu(cpu_online_map));
  4578. kthread_stop(cpu_rq(cpu)->migration_thread);
  4579. cpu_rq(cpu)->migration_thread = NULL;
  4580. break;
  4581. case CPU_DEAD:
  4582. migrate_live_tasks(cpu);
  4583. rq = cpu_rq(cpu);
  4584. kthread_stop(rq->migration_thread);
  4585. rq->migration_thread = NULL;
  4586. /* Idle task back to normal (off runqueue, low prio) */
  4587. rq = task_rq_lock(rq->idle, &flags);
  4588. deactivate_task(rq->idle, rq);
  4589. rq->idle->static_prio = MAX_PRIO;
  4590. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4591. migrate_dead_tasks(cpu);
  4592. task_rq_unlock(rq, &flags);
  4593. migrate_nr_uninterruptible(rq);
  4594. BUG_ON(rq->nr_running != 0);
  4595. /* No need to migrate the tasks: it was best-effort if
  4596. * they didn't do lock_cpu_hotplug(). Just wake up
  4597. * the requestors. */
  4598. spin_lock_irq(&rq->lock);
  4599. while (!list_empty(&rq->migration_queue)) {
  4600. struct migration_req *req;
  4601. req = list_entry(rq->migration_queue.next,
  4602. struct migration_req, list);
  4603. list_del_init(&req->list);
  4604. complete(&req->done);
  4605. }
  4606. spin_unlock_irq(&rq->lock);
  4607. break;
  4608. #endif
  4609. }
  4610. return NOTIFY_OK;
  4611. }
  4612. /* Register at highest priority so that task migration (migrate_all_tasks)
  4613. * happens before everything else.
  4614. */
  4615. static struct notifier_block __cpuinitdata migration_notifier = {
  4616. .notifier_call = migration_call,
  4617. .priority = 10
  4618. };
  4619. int __init migration_init(void)
  4620. {
  4621. void *cpu = (void *)(long)smp_processor_id();
  4622. int err;
  4623. /* Start one for the boot CPU: */
  4624. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4625. BUG_ON(err == NOTIFY_BAD);
  4626. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4627. register_cpu_notifier(&migration_notifier);
  4628. return 0;
  4629. }
  4630. #endif
  4631. #ifdef CONFIG_SMP
  4632. #undef SCHED_DOMAIN_DEBUG
  4633. #ifdef SCHED_DOMAIN_DEBUG
  4634. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4635. {
  4636. int level = 0;
  4637. if (!sd) {
  4638. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4639. return;
  4640. }
  4641. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4642. do {
  4643. int i;
  4644. char str[NR_CPUS];
  4645. struct sched_group *group = sd->groups;
  4646. cpumask_t groupmask;
  4647. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4648. cpus_clear(groupmask);
  4649. printk(KERN_DEBUG);
  4650. for (i = 0; i < level + 1; i++)
  4651. printk(" ");
  4652. printk("domain %d: ", level);
  4653. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4654. printk("does not load-balance\n");
  4655. if (sd->parent)
  4656. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  4657. break;
  4658. }
  4659. printk("span %s\n", str);
  4660. if (!cpu_isset(cpu, sd->span))
  4661. printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  4662. if (!cpu_isset(cpu, group->cpumask))
  4663. printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  4664. printk(KERN_DEBUG);
  4665. for (i = 0; i < level + 2; i++)
  4666. printk(" ");
  4667. printk("groups:");
  4668. do {
  4669. if (!group) {
  4670. printk("\n");
  4671. printk(KERN_ERR "ERROR: group is NULL\n");
  4672. break;
  4673. }
  4674. if (!group->cpu_power) {
  4675. printk("\n");
  4676. printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
  4677. }
  4678. if (!cpus_weight(group->cpumask)) {
  4679. printk("\n");
  4680. printk(KERN_ERR "ERROR: empty group\n");
  4681. }
  4682. if (cpus_intersects(groupmask, group->cpumask)) {
  4683. printk("\n");
  4684. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4685. }
  4686. cpus_or(groupmask, groupmask, group->cpumask);
  4687. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4688. printk(" %s", str);
  4689. group = group->next;
  4690. } while (group != sd->groups);
  4691. printk("\n");
  4692. if (!cpus_equal(sd->span, groupmask))
  4693. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4694. level++;
  4695. sd = sd->parent;
  4696. if (sd) {
  4697. if (!cpus_subset(groupmask, sd->span))
  4698. printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
  4699. }
  4700. } while (sd);
  4701. }
  4702. #else
  4703. # define sched_domain_debug(sd, cpu) do { } while (0)
  4704. #endif
  4705. static int sd_degenerate(struct sched_domain *sd)
  4706. {
  4707. if (cpus_weight(sd->span) == 1)
  4708. return 1;
  4709. /* Following flags need at least 2 groups */
  4710. if (sd->flags & (SD_LOAD_BALANCE |
  4711. SD_BALANCE_NEWIDLE |
  4712. SD_BALANCE_FORK |
  4713. SD_BALANCE_EXEC |
  4714. SD_SHARE_CPUPOWER |
  4715. SD_SHARE_PKG_RESOURCES)) {
  4716. if (sd->groups != sd->groups->next)
  4717. return 0;
  4718. }
  4719. /* Following flags don't use groups */
  4720. if (sd->flags & (SD_WAKE_IDLE |
  4721. SD_WAKE_AFFINE |
  4722. SD_WAKE_BALANCE))
  4723. return 0;
  4724. return 1;
  4725. }
  4726. static int
  4727. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4728. {
  4729. unsigned long cflags = sd->flags, pflags = parent->flags;
  4730. if (sd_degenerate(parent))
  4731. return 1;
  4732. if (!cpus_equal(sd->span, parent->span))
  4733. return 0;
  4734. /* Does parent contain flags not in child? */
  4735. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4736. if (cflags & SD_WAKE_AFFINE)
  4737. pflags &= ~SD_WAKE_BALANCE;
  4738. /* Flags needing groups don't count if only 1 group in parent */
  4739. if (parent->groups == parent->groups->next) {
  4740. pflags &= ~(SD_LOAD_BALANCE |
  4741. SD_BALANCE_NEWIDLE |
  4742. SD_BALANCE_FORK |
  4743. SD_BALANCE_EXEC |
  4744. SD_SHARE_CPUPOWER |
  4745. SD_SHARE_PKG_RESOURCES);
  4746. }
  4747. if (~cflags & pflags)
  4748. return 0;
  4749. return 1;
  4750. }
  4751. /*
  4752. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4753. * hold the hotplug lock.
  4754. */
  4755. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4756. {
  4757. struct rq *rq = cpu_rq(cpu);
  4758. struct sched_domain *tmp;
  4759. /* Remove the sched domains which do not contribute to scheduling. */
  4760. for (tmp = sd; tmp; tmp = tmp->parent) {
  4761. struct sched_domain *parent = tmp->parent;
  4762. if (!parent)
  4763. break;
  4764. if (sd_parent_degenerate(tmp, parent)) {
  4765. tmp->parent = parent->parent;
  4766. if (parent->parent)
  4767. parent->parent->child = tmp;
  4768. }
  4769. }
  4770. if (sd && sd_degenerate(sd)) {
  4771. sd = sd->parent;
  4772. if (sd)
  4773. sd->child = NULL;
  4774. }
  4775. sched_domain_debug(sd, cpu);
  4776. rcu_assign_pointer(rq->sd, sd);
  4777. }
  4778. /* cpus with isolated domains */
  4779. static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
  4780. /* Setup the mask of cpus configured for isolated domains */
  4781. static int __init isolated_cpu_setup(char *str)
  4782. {
  4783. int ints[NR_CPUS], i;
  4784. str = get_options(str, ARRAY_SIZE(ints), ints);
  4785. cpus_clear(cpu_isolated_map);
  4786. for (i = 1; i <= ints[0]; i++)
  4787. if (ints[i] < NR_CPUS)
  4788. cpu_set(ints[i], cpu_isolated_map);
  4789. return 1;
  4790. }
  4791. __setup ("isolcpus=", isolated_cpu_setup);
  4792. /*
  4793. * init_sched_build_groups takes an array of groups, the cpumask we wish
  4794. * to span, and a pointer to a function which identifies what group a CPU
  4795. * belongs to. The return value of group_fn must be a valid index into the
  4796. * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  4797. * keep track of groups covered with a cpumask_t).
  4798. *
  4799. * init_sched_build_groups will build a circular linked list of the groups
  4800. * covered by the given span, and will set each group's ->cpumask correctly,
  4801. * and ->cpu_power to 0.
  4802. */
  4803. static void
  4804. init_sched_build_groups(struct sched_group groups[], cpumask_t span,
  4805. const cpumask_t *cpu_map,
  4806. int (*group_fn)(int cpu, const cpumask_t *cpu_map))
  4807. {
  4808. struct sched_group *first = NULL, *last = NULL;
  4809. cpumask_t covered = CPU_MASK_NONE;
  4810. int i;
  4811. for_each_cpu_mask(i, span) {
  4812. int group = group_fn(i, cpu_map);
  4813. struct sched_group *sg = &groups[group];
  4814. int j;
  4815. if (cpu_isset(i, covered))
  4816. continue;
  4817. sg->cpumask = CPU_MASK_NONE;
  4818. sg->cpu_power = 0;
  4819. for_each_cpu_mask(j, span) {
  4820. if (group_fn(j, cpu_map) != group)
  4821. continue;
  4822. cpu_set(j, covered);
  4823. cpu_set(j, sg->cpumask);
  4824. }
  4825. if (!first)
  4826. first = sg;
  4827. if (last)
  4828. last->next = sg;
  4829. last = sg;
  4830. }
  4831. last->next = first;
  4832. }
  4833. #define SD_NODES_PER_DOMAIN 16
  4834. /*
  4835. * Self-tuning task migration cost measurement between source and target CPUs.
  4836. *
  4837. * This is done by measuring the cost of manipulating buffers of varying
  4838. * sizes. For a given buffer-size here are the steps that are taken:
  4839. *
  4840. * 1) the source CPU reads+dirties a shared buffer
  4841. * 2) the target CPU reads+dirties the same shared buffer
  4842. *
  4843. * We measure how long they take, in the following 4 scenarios:
  4844. *
  4845. * - source: CPU1, target: CPU2 | cost1
  4846. * - source: CPU2, target: CPU1 | cost2
  4847. * - source: CPU1, target: CPU1 | cost3
  4848. * - source: CPU2, target: CPU2 | cost4
  4849. *
  4850. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  4851. * the cost of migration.
  4852. *
  4853. * We then start off from a small buffer-size and iterate up to larger
  4854. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  4855. * doing a maximum search for the cost. (The maximum cost for a migration
  4856. * normally occurs when the working set size is around the effective cache
  4857. * size.)
  4858. */
  4859. #define SEARCH_SCOPE 2
  4860. #define MIN_CACHE_SIZE (64*1024U)
  4861. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  4862. #define ITERATIONS 1
  4863. #define SIZE_THRESH 130
  4864. #define COST_THRESH 130
  4865. /*
  4866. * The migration cost is a function of 'domain distance'. Domain
  4867. * distance is the number of steps a CPU has to iterate down its
  4868. * domain tree to share a domain with the other CPU. The farther
  4869. * two CPUs are from each other, the larger the distance gets.
  4870. *
  4871. * Note that we use the distance only to cache measurement results,
  4872. * the distance value is not used numerically otherwise. When two
  4873. * CPUs have the same distance it is assumed that the migration
  4874. * cost is the same. (this is a simplification but quite practical)
  4875. */
  4876. #define MAX_DOMAIN_DISTANCE 32
  4877. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  4878. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  4879. /*
  4880. * Architectures may override the migration cost and thus avoid
  4881. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  4882. * virtualized hardware:
  4883. */
  4884. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  4885. CONFIG_DEFAULT_MIGRATION_COST
  4886. #else
  4887. -1LL
  4888. #endif
  4889. };
  4890. /*
  4891. * Allow override of migration cost - in units of microseconds.
  4892. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  4893. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  4894. */
  4895. static int __init migration_cost_setup(char *str)
  4896. {
  4897. int ints[MAX_DOMAIN_DISTANCE+1], i;
  4898. str = get_options(str, ARRAY_SIZE(ints), ints);
  4899. printk("#ints: %d\n", ints[0]);
  4900. for (i = 1; i <= ints[0]; i++) {
  4901. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  4902. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  4903. }
  4904. return 1;
  4905. }
  4906. __setup ("migration_cost=", migration_cost_setup);
  4907. /*
  4908. * Global multiplier (divisor) for migration-cutoff values,
  4909. * in percentiles. E.g. use a value of 150 to get 1.5 times
  4910. * longer cache-hot cutoff times.
  4911. *
  4912. * (We scale it from 100 to 128 to long long handling easier.)
  4913. */
  4914. #define MIGRATION_FACTOR_SCALE 128
  4915. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  4916. static int __init setup_migration_factor(char *str)
  4917. {
  4918. get_option(&str, &migration_factor);
  4919. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  4920. return 1;
  4921. }
  4922. __setup("migration_factor=", setup_migration_factor);
  4923. /*
  4924. * Estimated distance of two CPUs, measured via the number of domains
  4925. * we have to pass for the two CPUs to be in the same span:
  4926. */
  4927. static unsigned long domain_distance(int cpu1, int cpu2)
  4928. {
  4929. unsigned long distance = 0;
  4930. struct sched_domain *sd;
  4931. for_each_domain(cpu1, sd) {
  4932. WARN_ON(!cpu_isset(cpu1, sd->span));
  4933. if (cpu_isset(cpu2, sd->span))
  4934. return distance;
  4935. distance++;
  4936. }
  4937. if (distance >= MAX_DOMAIN_DISTANCE) {
  4938. WARN_ON(1);
  4939. distance = MAX_DOMAIN_DISTANCE-1;
  4940. }
  4941. return distance;
  4942. }
  4943. static unsigned int migration_debug;
  4944. static int __init setup_migration_debug(char *str)
  4945. {
  4946. get_option(&str, &migration_debug);
  4947. return 1;
  4948. }
  4949. __setup("migration_debug=", setup_migration_debug);
  4950. /*
  4951. * Maximum cache-size that the scheduler should try to measure.
  4952. * Architectures with larger caches should tune this up during
  4953. * bootup. Gets used in the domain-setup code (i.e. during SMP
  4954. * bootup).
  4955. */
  4956. unsigned int max_cache_size;
  4957. static int __init setup_max_cache_size(char *str)
  4958. {
  4959. get_option(&str, &max_cache_size);
  4960. return 1;
  4961. }
  4962. __setup("max_cache_size=", setup_max_cache_size);
  4963. /*
  4964. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  4965. * is the operation that is timed, so we try to generate unpredictable
  4966. * cachemisses that still end up filling the L2 cache:
  4967. */
  4968. static void touch_cache(void *__cache, unsigned long __size)
  4969. {
  4970. unsigned long size = __size/sizeof(long), chunk1 = size/3,
  4971. chunk2 = 2*size/3;
  4972. unsigned long *cache = __cache;
  4973. int i;
  4974. for (i = 0; i < size/6; i += 8) {
  4975. switch (i % 6) {
  4976. case 0: cache[i]++;
  4977. case 1: cache[size-1-i]++;
  4978. case 2: cache[chunk1-i]++;
  4979. case 3: cache[chunk1+i]++;
  4980. case 4: cache[chunk2-i]++;
  4981. case 5: cache[chunk2+i]++;
  4982. }
  4983. }
  4984. }
  4985. /*
  4986. * Measure the cache-cost of one task migration. Returns in units of nsec.
  4987. */
  4988. static unsigned long long
  4989. measure_one(void *cache, unsigned long size, int source, int target)
  4990. {
  4991. cpumask_t mask, saved_mask;
  4992. unsigned long long t0, t1, t2, t3, cost;
  4993. saved_mask = current->cpus_allowed;
  4994. /*
  4995. * Flush source caches to RAM and invalidate them:
  4996. */
  4997. sched_cacheflush();
  4998. /*
  4999. * Migrate to the source CPU:
  5000. */
  5001. mask = cpumask_of_cpu(source);
  5002. set_cpus_allowed(current, mask);
  5003. WARN_ON(smp_processor_id() != source);
  5004. /*
  5005. * Dirty the working set:
  5006. */
  5007. t0 = sched_clock();
  5008. touch_cache(cache, size);
  5009. t1 = sched_clock();
  5010. /*
  5011. * Migrate to the target CPU, dirty the L2 cache and access
  5012. * the shared buffer. (which represents the working set
  5013. * of a migrated task.)
  5014. */
  5015. mask = cpumask_of_cpu(target);
  5016. set_cpus_allowed(current, mask);
  5017. WARN_ON(smp_processor_id() != target);
  5018. t2 = sched_clock();
  5019. touch_cache(cache, size);
  5020. t3 = sched_clock();
  5021. cost = t1-t0 + t3-t2;
  5022. if (migration_debug >= 2)
  5023. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  5024. source, target, t1-t0, t1-t0, t3-t2, cost);
  5025. /*
  5026. * Flush target caches to RAM and invalidate them:
  5027. */
  5028. sched_cacheflush();
  5029. set_cpus_allowed(current, saved_mask);
  5030. return cost;
  5031. }
  5032. /*
  5033. * Measure a series of task migrations and return the average
  5034. * result. Since this code runs early during bootup the system
  5035. * is 'undisturbed' and the average latency makes sense.
  5036. *
  5037. * The algorithm in essence auto-detects the relevant cache-size,
  5038. * so it will properly detect different cachesizes for different
  5039. * cache-hierarchies, depending on how the CPUs are connected.
  5040. *
  5041. * Architectures can prime the upper limit of the search range via
  5042. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  5043. */
  5044. static unsigned long long
  5045. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  5046. {
  5047. unsigned long long cost1, cost2;
  5048. int i;
  5049. /*
  5050. * Measure the migration cost of 'size' bytes, over an
  5051. * average of 10 runs:
  5052. *
  5053. * (We perturb the cache size by a small (0..4k)
  5054. * value to compensate size/alignment related artifacts.
  5055. * We also subtract the cost of the operation done on
  5056. * the same CPU.)
  5057. */
  5058. cost1 = 0;
  5059. /*
  5060. * dry run, to make sure we start off cache-cold on cpu1,
  5061. * and to get any vmalloc pagefaults in advance:
  5062. */
  5063. measure_one(cache, size, cpu1, cpu2);
  5064. for (i = 0; i < ITERATIONS; i++)
  5065. cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
  5066. measure_one(cache, size, cpu2, cpu1);
  5067. for (i = 0; i < ITERATIONS; i++)
  5068. cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
  5069. /*
  5070. * (We measure the non-migrating [cached] cost on both
  5071. * cpu1 and cpu2, to handle CPUs with different speeds)
  5072. */
  5073. cost2 = 0;
  5074. measure_one(cache, size, cpu1, cpu1);
  5075. for (i = 0; i < ITERATIONS; i++)
  5076. cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
  5077. measure_one(cache, size, cpu2, cpu2);
  5078. for (i = 0; i < ITERATIONS; i++)
  5079. cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
  5080. /*
  5081. * Get the per-iteration migration cost:
  5082. */
  5083. do_div(cost1, 2*ITERATIONS);
  5084. do_div(cost2, 2*ITERATIONS);
  5085. return cost1 - cost2;
  5086. }
  5087. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  5088. {
  5089. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  5090. unsigned int max_size, size, size_found = 0;
  5091. long long cost = 0, prev_cost;
  5092. void *cache;
  5093. /*
  5094. * Search from max_cache_size*5 down to 64K - the real relevant
  5095. * cachesize has to lie somewhere inbetween.
  5096. */
  5097. if (max_cache_size) {
  5098. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  5099. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  5100. } else {
  5101. /*
  5102. * Since we have no estimation about the relevant
  5103. * search range
  5104. */
  5105. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  5106. size = MIN_CACHE_SIZE;
  5107. }
  5108. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  5109. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  5110. return 0;
  5111. }
  5112. /*
  5113. * Allocate the working set:
  5114. */
  5115. cache = vmalloc(max_size);
  5116. if (!cache) {
  5117. printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
  5118. return 1000000; /* return 1 msec on very small boxen */
  5119. }
  5120. while (size <= max_size) {
  5121. prev_cost = cost;
  5122. cost = measure_cost(cpu1, cpu2, cache, size);
  5123. /*
  5124. * Update the max:
  5125. */
  5126. if (cost > 0) {
  5127. if (max_cost < cost) {
  5128. max_cost = cost;
  5129. size_found = size;
  5130. }
  5131. }
  5132. /*
  5133. * Calculate average fluctuation, we use this to prevent
  5134. * noise from triggering an early break out of the loop:
  5135. */
  5136. fluct = abs(cost - prev_cost);
  5137. avg_fluct = (avg_fluct + fluct)/2;
  5138. if (migration_debug)
  5139. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
  5140. cpu1, cpu2, size,
  5141. (long)cost / 1000000,
  5142. ((long)cost / 100000) % 10,
  5143. (long)max_cost / 1000000,
  5144. ((long)max_cost / 100000) % 10,
  5145. domain_distance(cpu1, cpu2),
  5146. cost, avg_fluct);
  5147. /*
  5148. * If we iterated at least 20% past the previous maximum,
  5149. * and the cost has dropped by more than 20% already,
  5150. * (taking fluctuations into account) then we assume to
  5151. * have found the maximum and break out of the loop early:
  5152. */
  5153. if (size_found && (size*100 > size_found*SIZE_THRESH))
  5154. if (cost+avg_fluct <= 0 ||
  5155. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  5156. if (migration_debug)
  5157. printk("-> found max.\n");
  5158. break;
  5159. }
  5160. /*
  5161. * Increase the cachesize in 10% steps:
  5162. */
  5163. size = size * 10 / 9;
  5164. }
  5165. if (migration_debug)
  5166. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  5167. cpu1, cpu2, size_found, max_cost);
  5168. vfree(cache);
  5169. /*
  5170. * A task is considered 'cache cold' if at least 2 times
  5171. * the worst-case cost of migration has passed.
  5172. *
  5173. * (this limit is only listened to if the load-balancing
  5174. * situation is 'nice' - if there is a large imbalance we
  5175. * ignore it for the sake of CPU utilization and
  5176. * processing fairness.)
  5177. */
  5178. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  5179. }
  5180. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  5181. {
  5182. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  5183. unsigned long j0, j1, distance, max_distance = 0;
  5184. struct sched_domain *sd;
  5185. j0 = jiffies;
  5186. /*
  5187. * First pass - calculate the cacheflush times:
  5188. */
  5189. for_each_cpu_mask(cpu1, *cpu_map) {
  5190. for_each_cpu_mask(cpu2, *cpu_map) {
  5191. if (cpu1 == cpu2)
  5192. continue;
  5193. distance = domain_distance(cpu1, cpu2);
  5194. max_distance = max(max_distance, distance);
  5195. /*
  5196. * No result cached yet?
  5197. */
  5198. if (migration_cost[distance] == -1LL)
  5199. migration_cost[distance] =
  5200. measure_migration_cost(cpu1, cpu2);
  5201. }
  5202. }
  5203. /*
  5204. * Second pass - update the sched domain hierarchy with
  5205. * the new cache-hot-time estimations:
  5206. */
  5207. for_each_cpu_mask(cpu, *cpu_map) {
  5208. distance = 0;
  5209. for_each_domain(cpu, sd) {
  5210. sd->cache_hot_time = migration_cost[distance];
  5211. distance++;
  5212. }
  5213. }
  5214. /*
  5215. * Print the matrix:
  5216. */
  5217. if (migration_debug)
  5218. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  5219. max_cache_size,
  5220. #ifdef CONFIG_X86
  5221. cpu_khz/1000
  5222. #else
  5223. -1
  5224. #endif
  5225. );
  5226. if (system_state == SYSTEM_BOOTING) {
  5227. if (num_online_cpus() > 1) {
  5228. printk("migration_cost=");
  5229. for (distance = 0; distance <= max_distance; distance++) {
  5230. if (distance)
  5231. printk(",");
  5232. printk("%ld", (long)migration_cost[distance] / 1000);
  5233. }
  5234. printk("\n");
  5235. }
  5236. }
  5237. j1 = jiffies;
  5238. if (migration_debug)
  5239. printk("migration: %ld seconds\n", (j1-j0)/HZ);
  5240. /*
  5241. * Move back to the original CPU. NUMA-Q gets confused
  5242. * if we migrate to another quad during bootup.
  5243. */
  5244. if (raw_smp_processor_id() != orig_cpu) {
  5245. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  5246. saved_mask = current->cpus_allowed;
  5247. set_cpus_allowed(current, mask);
  5248. set_cpus_allowed(current, saved_mask);
  5249. }
  5250. }
  5251. #ifdef CONFIG_NUMA
  5252. /**
  5253. * find_next_best_node - find the next node to include in a sched_domain
  5254. * @node: node whose sched_domain we're building
  5255. * @used_nodes: nodes already in the sched_domain
  5256. *
  5257. * Find the next node to include in a given scheduling domain. Simply
  5258. * finds the closest node not already in the @used_nodes map.
  5259. *
  5260. * Should use nodemask_t.
  5261. */
  5262. static int find_next_best_node(int node, unsigned long *used_nodes)
  5263. {
  5264. int i, n, val, min_val, best_node = 0;
  5265. min_val = INT_MAX;
  5266. for (i = 0; i < MAX_NUMNODES; i++) {
  5267. /* Start at @node */
  5268. n = (node + i) % MAX_NUMNODES;
  5269. if (!nr_cpus_node(n))
  5270. continue;
  5271. /* Skip already used nodes */
  5272. if (test_bit(n, used_nodes))
  5273. continue;
  5274. /* Simple min distance search */
  5275. val = node_distance(node, n);
  5276. if (val < min_val) {
  5277. min_val = val;
  5278. best_node = n;
  5279. }
  5280. }
  5281. set_bit(best_node, used_nodes);
  5282. return best_node;
  5283. }
  5284. /**
  5285. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5286. * @node: node whose cpumask we're constructing
  5287. * @size: number of nodes to include in this span
  5288. *
  5289. * Given a node, construct a good cpumask for its sched_domain to span. It
  5290. * should be one that prevents unnecessary balancing, but also spreads tasks
  5291. * out optimally.
  5292. */
  5293. static cpumask_t sched_domain_node_span(int node)
  5294. {
  5295. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  5296. cpumask_t span, nodemask;
  5297. int i;
  5298. cpus_clear(span);
  5299. bitmap_zero(used_nodes, MAX_NUMNODES);
  5300. nodemask = node_to_cpumask(node);
  5301. cpus_or(span, span, nodemask);
  5302. set_bit(node, used_nodes);
  5303. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5304. int next_node = find_next_best_node(node, used_nodes);
  5305. nodemask = node_to_cpumask(next_node);
  5306. cpus_or(span, span, nodemask);
  5307. }
  5308. return span;
  5309. }
  5310. #endif
  5311. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5312. /*
  5313. * SMT sched-domains:
  5314. */
  5315. #ifdef CONFIG_SCHED_SMT
  5316. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  5317. static struct sched_group sched_group_cpus[NR_CPUS];
  5318. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map)
  5319. {
  5320. return cpu;
  5321. }
  5322. #endif
  5323. /*
  5324. * multi-core sched-domains:
  5325. */
  5326. #ifdef CONFIG_SCHED_MC
  5327. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  5328. static struct sched_group sched_group_core[NR_CPUS];
  5329. #endif
  5330. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5331. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
  5332. {
  5333. cpumask_t mask = cpu_sibling_map[cpu];
  5334. cpus_and(mask, mask, *cpu_map);
  5335. return first_cpu(mask);
  5336. }
  5337. #elif defined(CONFIG_SCHED_MC)
  5338. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
  5339. {
  5340. return cpu;
  5341. }
  5342. #endif
  5343. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5344. static struct sched_group sched_group_phys[NR_CPUS];
  5345. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map)
  5346. {
  5347. #ifdef CONFIG_SCHED_MC
  5348. cpumask_t mask = cpu_coregroup_map(cpu);
  5349. cpus_and(mask, mask, *cpu_map);
  5350. return first_cpu(mask);
  5351. #elif defined(CONFIG_SCHED_SMT)
  5352. cpumask_t mask = cpu_sibling_map[cpu];
  5353. cpus_and(mask, mask, *cpu_map);
  5354. return first_cpu(mask);
  5355. #else
  5356. return cpu;
  5357. #endif
  5358. }
  5359. #ifdef CONFIG_NUMA
  5360. /*
  5361. * The init_sched_build_groups can't handle what we want to do with node
  5362. * groups, so roll our own. Now each node has its own list of groups which
  5363. * gets dynamically allocated.
  5364. */
  5365. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5366. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5367. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5368. static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
  5369. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map)
  5370. {
  5371. return cpu_to_node(cpu);
  5372. }
  5373. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5374. {
  5375. struct sched_group *sg = group_head;
  5376. int j;
  5377. if (!sg)
  5378. return;
  5379. next_sg:
  5380. for_each_cpu_mask(j, sg->cpumask) {
  5381. struct sched_domain *sd;
  5382. sd = &per_cpu(phys_domains, j);
  5383. if (j != first_cpu(sd->groups->cpumask)) {
  5384. /*
  5385. * Only add "power" once for each
  5386. * physical package.
  5387. */
  5388. continue;
  5389. }
  5390. sg->cpu_power += sd->groups->cpu_power;
  5391. }
  5392. sg = sg->next;
  5393. if (sg != group_head)
  5394. goto next_sg;
  5395. }
  5396. #endif
  5397. #ifdef CONFIG_NUMA
  5398. /* Free memory allocated for various sched_group structures */
  5399. static void free_sched_groups(const cpumask_t *cpu_map)
  5400. {
  5401. int cpu, i;
  5402. for_each_cpu_mask(cpu, *cpu_map) {
  5403. struct sched_group *sched_group_allnodes
  5404. = sched_group_allnodes_bycpu[cpu];
  5405. struct sched_group **sched_group_nodes
  5406. = sched_group_nodes_bycpu[cpu];
  5407. if (sched_group_allnodes) {
  5408. kfree(sched_group_allnodes);
  5409. sched_group_allnodes_bycpu[cpu] = NULL;
  5410. }
  5411. if (!sched_group_nodes)
  5412. continue;
  5413. for (i = 0; i < MAX_NUMNODES; i++) {
  5414. cpumask_t nodemask = node_to_cpumask(i);
  5415. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5416. cpus_and(nodemask, nodemask, *cpu_map);
  5417. if (cpus_empty(nodemask))
  5418. continue;
  5419. if (sg == NULL)
  5420. continue;
  5421. sg = sg->next;
  5422. next_sg:
  5423. oldsg = sg;
  5424. sg = sg->next;
  5425. kfree(oldsg);
  5426. if (oldsg != sched_group_nodes[i])
  5427. goto next_sg;
  5428. }
  5429. kfree(sched_group_nodes);
  5430. sched_group_nodes_bycpu[cpu] = NULL;
  5431. }
  5432. }
  5433. #else
  5434. static void free_sched_groups(const cpumask_t *cpu_map)
  5435. {
  5436. }
  5437. #endif
  5438. /*
  5439. * Initialize sched groups cpu_power.
  5440. *
  5441. * cpu_power indicates the capacity of sched group, which is used while
  5442. * distributing the load between different sched groups in a sched domain.
  5443. * Typically cpu_power for all the groups in a sched domain will be same unless
  5444. * there are asymmetries in the topology. If there are asymmetries, group
  5445. * having more cpu_power will pickup more load compared to the group having
  5446. * less cpu_power.
  5447. *
  5448. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5449. * the maximum number of tasks a group can handle in the presence of other idle
  5450. * or lightly loaded groups in the same sched domain.
  5451. */
  5452. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5453. {
  5454. struct sched_domain *child;
  5455. struct sched_group *group;
  5456. WARN_ON(!sd || !sd->groups);
  5457. if (cpu != first_cpu(sd->groups->cpumask))
  5458. return;
  5459. child = sd->child;
  5460. /*
  5461. * For perf policy, if the groups in child domain share resources
  5462. * (for example cores sharing some portions of the cache hierarchy
  5463. * or SMT), then set this domain groups cpu_power such that each group
  5464. * can handle only one task, when there are other idle groups in the
  5465. * same sched domain.
  5466. */
  5467. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5468. (child->flags &
  5469. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5470. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5471. return;
  5472. }
  5473. sd->groups->cpu_power = 0;
  5474. /*
  5475. * add cpu_power of each child group to this groups cpu_power
  5476. */
  5477. group = child->groups;
  5478. do {
  5479. sd->groups->cpu_power += group->cpu_power;
  5480. group = group->next;
  5481. } while (group != child->groups);
  5482. }
  5483. /*
  5484. * Build sched domains for a given set of cpus and attach the sched domains
  5485. * to the individual cpus
  5486. */
  5487. static int build_sched_domains(const cpumask_t *cpu_map)
  5488. {
  5489. int i;
  5490. struct sched_domain *sd;
  5491. #ifdef CONFIG_NUMA
  5492. struct sched_group **sched_group_nodes = NULL;
  5493. struct sched_group *sched_group_allnodes = NULL;
  5494. /*
  5495. * Allocate the per-node list of sched groups
  5496. */
  5497. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5498. GFP_KERNEL);
  5499. if (!sched_group_nodes) {
  5500. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5501. return -ENOMEM;
  5502. }
  5503. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5504. #endif
  5505. /*
  5506. * Set up domains for cpus specified by the cpu_map.
  5507. */
  5508. for_each_cpu_mask(i, *cpu_map) {
  5509. int group;
  5510. struct sched_domain *sd = NULL, *p;
  5511. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5512. cpus_and(nodemask, nodemask, *cpu_map);
  5513. #ifdef CONFIG_NUMA
  5514. if (cpus_weight(*cpu_map)
  5515. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5516. if (!sched_group_allnodes) {
  5517. sched_group_allnodes
  5518. = kmalloc_node(sizeof(struct sched_group)
  5519. * MAX_NUMNODES,
  5520. GFP_KERNEL,
  5521. cpu_to_node(i));
  5522. if (!sched_group_allnodes) {
  5523. printk(KERN_WARNING
  5524. "Can not alloc allnodes sched group\n");
  5525. goto error;
  5526. }
  5527. sched_group_allnodes_bycpu[i]
  5528. = sched_group_allnodes;
  5529. }
  5530. sd = &per_cpu(allnodes_domains, i);
  5531. *sd = SD_ALLNODES_INIT;
  5532. sd->span = *cpu_map;
  5533. group = cpu_to_allnodes_group(i, cpu_map);
  5534. sd->groups = &sched_group_allnodes[group];
  5535. p = sd;
  5536. } else
  5537. p = NULL;
  5538. sd = &per_cpu(node_domains, i);
  5539. *sd = SD_NODE_INIT;
  5540. sd->span = sched_domain_node_span(cpu_to_node(i));
  5541. sd->parent = p;
  5542. if (p)
  5543. p->child = sd;
  5544. cpus_and(sd->span, sd->span, *cpu_map);
  5545. #endif
  5546. p = sd;
  5547. sd = &per_cpu(phys_domains, i);
  5548. group = cpu_to_phys_group(i, cpu_map);
  5549. *sd = SD_CPU_INIT;
  5550. sd->span = nodemask;
  5551. sd->parent = p;
  5552. if (p)
  5553. p->child = sd;
  5554. sd->groups = &sched_group_phys[group];
  5555. #ifdef CONFIG_SCHED_MC
  5556. p = sd;
  5557. sd = &per_cpu(core_domains, i);
  5558. group = cpu_to_core_group(i, cpu_map);
  5559. *sd = SD_MC_INIT;
  5560. sd->span = cpu_coregroup_map(i);
  5561. cpus_and(sd->span, sd->span, *cpu_map);
  5562. sd->parent = p;
  5563. p->child = sd;
  5564. sd->groups = &sched_group_core[group];
  5565. #endif
  5566. #ifdef CONFIG_SCHED_SMT
  5567. p = sd;
  5568. sd = &per_cpu(cpu_domains, i);
  5569. group = cpu_to_cpu_group(i, cpu_map);
  5570. *sd = SD_SIBLING_INIT;
  5571. sd->span = cpu_sibling_map[i];
  5572. cpus_and(sd->span, sd->span, *cpu_map);
  5573. sd->parent = p;
  5574. p->child = sd;
  5575. sd->groups = &sched_group_cpus[group];
  5576. #endif
  5577. }
  5578. #ifdef CONFIG_SCHED_SMT
  5579. /* Set up CPU (sibling) groups */
  5580. for_each_cpu_mask(i, *cpu_map) {
  5581. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5582. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5583. if (i != first_cpu(this_sibling_map))
  5584. continue;
  5585. init_sched_build_groups(sched_group_cpus, this_sibling_map,
  5586. cpu_map, &cpu_to_cpu_group);
  5587. }
  5588. #endif
  5589. #ifdef CONFIG_SCHED_MC
  5590. /* Set up multi-core groups */
  5591. for_each_cpu_mask(i, *cpu_map) {
  5592. cpumask_t this_core_map = cpu_coregroup_map(i);
  5593. cpus_and(this_core_map, this_core_map, *cpu_map);
  5594. if (i != first_cpu(this_core_map))
  5595. continue;
  5596. init_sched_build_groups(sched_group_core, this_core_map,
  5597. cpu_map, &cpu_to_core_group);
  5598. }
  5599. #endif
  5600. /* Set up physical groups */
  5601. for (i = 0; i < MAX_NUMNODES; i++) {
  5602. cpumask_t nodemask = node_to_cpumask(i);
  5603. cpus_and(nodemask, nodemask, *cpu_map);
  5604. if (cpus_empty(nodemask))
  5605. continue;
  5606. init_sched_build_groups(sched_group_phys, nodemask,
  5607. cpu_map, &cpu_to_phys_group);
  5608. }
  5609. #ifdef CONFIG_NUMA
  5610. /* Set up node groups */
  5611. if (sched_group_allnodes)
  5612. init_sched_build_groups(sched_group_allnodes, *cpu_map,
  5613. cpu_map, &cpu_to_allnodes_group);
  5614. for (i = 0; i < MAX_NUMNODES; i++) {
  5615. /* Set up node groups */
  5616. struct sched_group *sg, *prev;
  5617. cpumask_t nodemask = node_to_cpumask(i);
  5618. cpumask_t domainspan;
  5619. cpumask_t covered = CPU_MASK_NONE;
  5620. int j;
  5621. cpus_and(nodemask, nodemask, *cpu_map);
  5622. if (cpus_empty(nodemask)) {
  5623. sched_group_nodes[i] = NULL;
  5624. continue;
  5625. }
  5626. domainspan = sched_domain_node_span(i);
  5627. cpus_and(domainspan, domainspan, *cpu_map);
  5628. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5629. if (!sg) {
  5630. printk(KERN_WARNING "Can not alloc domain group for "
  5631. "node %d\n", i);
  5632. goto error;
  5633. }
  5634. sched_group_nodes[i] = sg;
  5635. for_each_cpu_mask(j, nodemask) {
  5636. struct sched_domain *sd;
  5637. sd = &per_cpu(node_domains, j);
  5638. sd->groups = sg;
  5639. }
  5640. sg->cpu_power = 0;
  5641. sg->cpumask = nodemask;
  5642. sg->next = sg;
  5643. cpus_or(covered, covered, nodemask);
  5644. prev = sg;
  5645. for (j = 0; j < MAX_NUMNODES; j++) {
  5646. cpumask_t tmp, notcovered;
  5647. int n = (i + j) % MAX_NUMNODES;
  5648. cpus_complement(notcovered, covered);
  5649. cpus_and(tmp, notcovered, *cpu_map);
  5650. cpus_and(tmp, tmp, domainspan);
  5651. if (cpus_empty(tmp))
  5652. break;
  5653. nodemask = node_to_cpumask(n);
  5654. cpus_and(tmp, tmp, nodemask);
  5655. if (cpus_empty(tmp))
  5656. continue;
  5657. sg = kmalloc_node(sizeof(struct sched_group),
  5658. GFP_KERNEL, i);
  5659. if (!sg) {
  5660. printk(KERN_WARNING
  5661. "Can not alloc domain group for node %d\n", j);
  5662. goto error;
  5663. }
  5664. sg->cpu_power = 0;
  5665. sg->cpumask = tmp;
  5666. sg->next = prev->next;
  5667. cpus_or(covered, covered, tmp);
  5668. prev->next = sg;
  5669. prev = sg;
  5670. }
  5671. }
  5672. #endif
  5673. /* Calculate CPU power for physical packages and nodes */
  5674. #ifdef CONFIG_SCHED_SMT
  5675. for_each_cpu_mask(i, *cpu_map) {
  5676. sd = &per_cpu(cpu_domains, i);
  5677. init_sched_groups_power(i, sd);
  5678. }
  5679. #endif
  5680. #ifdef CONFIG_SCHED_MC
  5681. for_each_cpu_mask(i, *cpu_map) {
  5682. sd = &per_cpu(core_domains, i);
  5683. init_sched_groups_power(i, sd);
  5684. }
  5685. #endif
  5686. for_each_cpu_mask(i, *cpu_map) {
  5687. sd = &per_cpu(phys_domains, i);
  5688. init_sched_groups_power(i, sd);
  5689. }
  5690. #ifdef CONFIG_NUMA
  5691. for (i = 0; i < MAX_NUMNODES; i++)
  5692. init_numa_sched_groups_power(sched_group_nodes[i]);
  5693. if (sched_group_allnodes) {
  5694. int group = cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map);
  5695. struct sched_group *sg = &sched_group_allnodes[group];
  5696. init_numa_sched_groups_power(sg);
  5697. }
  5698. #endif
  5699. /* Attach the domains */
  5700. for_each_cpu_mask(i, *cpu_map) {
  5701. struct sched_domain *sd;
  5702. #ifdef CONFIG_SCHED_SMT
  5703. sd = &per_cpu(cpu_domains, i);
  5704. #elif defined(CONFIG_SCHED_MC)
  5705. sd = &per_cpu(core_domains, i);
  5706. #else
  5707. sd = &per_cpu(phys_domains, i);
  5708. #endif
  5709. cpu_attach_domain(sd, i);
  5710. }
  5711. /*
  5712. * Tune cache-hot values:
  5713. */
  5714. calibrate_migration_costs(cpu_map);
  5715. return 0;
  5716. #ifdef CONFIG_NUMA
  5717. error:
  5718. free_sched_groups(cpu_map);
  5719. return -ENOMEM;
  5720. #endif
  5721. }
  5722. /*
  5723. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5724. */
  5725. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5726. {
  5727. cpumask_t cpu_default_map;
  5728. int err;
  5729. /*
  5730. * Setup mask for cpus without special case scheduling requirements.
  5731. * For now this just excludes isolated cpus, but could be used to
  5732. * exclude other special cases in the future.
  5733. */
  5734. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5735. err = build_sched_domains(&cpu_default_map);
  5736. return err;
  5737. }
  5738. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5739. {
  5740. free_sched_groups(cpu_map);
  5741. }
  5742. /*
  5743. * Detach sched domains from a group of cpus specified in cpu_map
  5744. * These cpus will now be attached to the NULL domain
  5745. */
  5746. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5747. {
  5748. int i;
  5749. for_each_cpu_mask(i, *cpu_map)
  5750. cpu_attach_domain(NULL, i);
  5751. synchronize_sched();
  5752. arch_destroy_sched_domains(cpu_map);
  5753. }
  5754. /*
  5755. * Partition sched domains as specified by the cpumasks below.
  5756. * This attaches all cpus from the cpumasks to the NULL domain,
  5757. * waits for a RCU quiescent period, recalculates sched
  5758. * domain information and then attaches them back to the
  5759. * correct sched domains
  5760. * Call with hotplug lock held
  5761. */
  5762. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5763. {
  5764. cpumask_t change_map;
  5765. int err = 0;
  5766. cpus_and(*partition1, *partition1, cpu_online_map);
  5767. cpus_and(*partition2, *partition2, cpu_online_map);
  5768. cpus_or(change_map, *partition1, *partition2);
  5769. /* Detach sched domains from all of the affected cpus */
  5770. detach_destroy_domains(&change_map);
  5771. if (!cpus_empty(*partition1))
  5772. err = build_sched_domains(partition1);
  5773. if (!err && !cpus_empty(*partition2))
  5774. err = build_sched_domains(partition2);
  5775. return err;
  5776. }
  5777. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5778. int arch_reinit_sched_domains(void)
  5779. {
  5780. int err;
  5781. lock_cpu_hotplug();
  5782. detach_destroy_domains(&cpu_online_map);
  5783. err = arch_init_sched_domains(&cpu_online_map);
  5784. unlock_cpu_hotplug();
  5785. return err;
  5786. }
  5787. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5788. {
  5789. int ret;
  5790. if (buf[0] != '0' && buf[0] != '1')
  5791. return -EINVAL;
  5792. if (smt)
  5793. sched_smt_power_savings = (buf[0] == '1');
  5794. else
  5795. sched_mc_power_savings = (buf[0] == '1');
  5796. ret = arch_reinit_sched_domains();
  5797. return ret ? ret : count;
  5798. }
  5799. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5800. {
  5801. int err = 0;
  5802. #ifdef CONFIG_SCHED_SMT
  5803. if (smt_capable())
  5804. err = sysfs_create_file(&cls->kset.kobj,
  5805. &attr_sched_smt_power_savings.attr);
  5806. #endif
  5807. #ifdef CONFIG_SCHED_MC
  5808. if (!err && mc_capable())
  5809. err = sysfs_create_file(&cls->kset.kobj,
  5810. &attr_sched_mc_power_savings.attr);
  5811. #endif
  5812. return err;
  5813. }
  5814. #endif
  5815. #ifdef CONFIG_SCHED_MC
  5816. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5817. {
  5818. return sprintf(page, "%u\n", sched_mc_power_savings);
  5819. }
  5820. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5821. const char *buf, size_t count)
  5822. {
  5823. return sched_power_savings_store(buf, count, 0);
  5824. }
  5825. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5826. sched_mc_power_savings_store);
  5827. #endif
  5828. #ifdef CONFIG_SCHED_SMT
  5829. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5830. {
  5831. return sprintf(page, "%u\n", sched_smt_power_savings);
  5832. }
  5833. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5834. const char *buf, size_t count)
  5835. {
  5836. return sched_power_savings_store(buf, count, 1);
  5837. }
  5838. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5839. sched_smt_power_savings_store);
  5840. #endif
  5841. #ifdef CONFIG_HOTPLUG_CPU
  5842. /*
  5843. * Force a reinitialization of the sched domains hierarchy. The domains
  5844. * and groups cannot be updated in place without racing with the balancing
  5845. * code, so we temporarily attach all running cpus to the NULL domain
  5846. * which will prevent rebalancing while the sched domains are recalculated.
  5847. */
  5848. static int update_sched_domains(struct notifier_block *nfb,
  5849. unsigned long action, void *hcpu)
  5850. {
  5851. switch (action) {
  5852. case CPU_UP_PREPARE:
  5853. case CPU_DOWN_PREPARE:
  5854. detach_destroy_domains(&cpu_online_map);
  5855. return NOTIFY_OK;
  5856. case CPU_UP_CANCELED:
  5857. case CPU_DOWN_FAILED:
  5858. case CPU_ONLINE:
  5859. case CPU_DEAD:
  5860. /*
  5861. * Fall through and re-initialise the domains.
  5862. */
  5863. break;
  5864. default:
  5865. return NOTIFY_DONE;
  5866. }
  5867. /* The hotplug lock is already held by cpu_up/cpu_down */
  5868. arch_init_sched_domains(&cpu_online_map);
  5869. return NOTIFY_OK;
  5870. }
  5871. #endif
  5872. void __init sched_init_smp(void)
  5873. {
  5874. cpumask_t non_isolated_cpus;
  5875. lock_cpu_hotplug();
  5876. arch_init_sched_domains(&cpu_online_map);
  5877. cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
  5878. if (cpus_empty(non_isolated_cpus))
  5879. cpu_set(smp_processor_id(), non_isolated_cpus);
  5880. unlock_cpu_hotplug();
  5881. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5882. hotcpu_notifier(update_sched_domains, 0);
  5883. /* Move init over to a non-isolated CPU */
  5884. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5885. BUG();
  5886. }
  5887. #else
  5888. void __init sched_init_smp(void)
  5889. {
  5890. }
  5891. #endif /* CONFIG_SMP */
  5892. int in_sched_functions(unsigned long addr)
  5893. {
  5894. /* Linker adds these: start and end of __sched functions */
  5895. extern char __sched_text_start[], __sched_text_end[];
  5896. return in_lock_functions(addr) ||
  5897. (addr >= (unsigned long)__sched_text_start
  5898. && addr < (unsigned long)__sched_text_end);
  5899. }
  5900. void __init sched_init(void)
  5901. {
  5902. int i, j, k;
  5903. for_each_possible_cpu(i) {
  5904. struct prio_array *array;
  5905. struct rq *rq;
  5906. rq = cpu_rq(i);
  5907. spin_lock_init(&rq->lock);
  5908. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5909. rq->nr_running = 0;
  5910. rq->active = rq->arrays;
  5911. rq->expired = rq->arrays + 1;
  5912. rq->best_expired_prio = MAX_PRIO;
  5913. #ifdef CONFIG_SMP
  5914. rq->sd = NULL;
  5915. for (j = 1; j < 3; j++)
  5916. rq->cpu_load[j] = 0;
  5917. rq->active_balance = 0;
  5918. rq->push_cpu = 0;
  5919. rq->cpu = i;
  5920. rq->migration_thread = NULL;
  5921. INIT_LIST_HEAD(&rq->migration_queue);
  5922. #endif
  5923. atomic_set(&rq->nr_iowait, 0);
  5924. for (j = 0; j < 2; j++) {
  5925. array = rq->arrays + j;
  5926. for (k = 0; k < MAX_PRIO; k++) {
  5927. INIT_LIST_HEAD(array->queue + k);
  5928. __clear_bit(k, array->bitmap);
  5929. }
  5930. // delimiter for bitsearch
  5931. __set_bit(MAX_PRIO, array->bitmap);
  5932. }
  5933. }
  5934. set_load_weight(&init_task);
  5935. #ifdef CONFIG_RT_MUTEXES
  5936. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5937. #endif
  5938. /*
  5939. * The boot idle thread does lazy MMU switching as well:
  5940. */
  5941. atomic_inc(&init_mm.mm_count);
  5942. enter_lazy_tlb(&init_mm, current);
  5943. /*
  5944. * Make us the idle thread. Technically, schedule() should not be
  5945. * called from this thread, however somewhere below it might be,
  5946. * but because we are the idle thread, we just pick up running again
  5947. * when this runqueue becomes "idle".
  5948. */
  5949. init_idle(current, smp_processor_id());
  5950. }
  5951. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5952. void __might_sleep(char *file, int line)
  5953. {
  5954. #ifdef in_atomic
  5955. static unsigned long prev_jiffy; /* ratelimiting */
  5956. if ((in_atomic() || irqs_disabled()) &&
  5957. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5958. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5959. return;
  5960. prev_jiffy = jiffies;
  5961. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5962. " context at %s:%d\n", file, line);
  5963. printk("in_atomic():%d, irqs_disabled():%d\n",
  5964. in_atomic(), irqs_disabled());
  5965. dump_stack();
  5966. }
  5967. #endif
  5968. }
  5969. EXPORT_SYMBOL(__might_sleep);
  5970. #endif
  5971. #ifdef CONFIG_MAGIC_SYSRQ
  5972. void normalize_rt_tasks(void)
  5973. {
  5974. struct prio_array *array;
  5975. struct task_struct *p;
  5976. unsigned long flags;
  5977. struct rq *rq;
  5978. read_lock_irq(&tasklist_lock);
  5979. for_each_process(p) {
  5980. if (!rt_task(p))
  5981. continue;
  5982. spin_lock_irqsave(&p->pi_lock, flags);
  5983. rq = __task_rq_lock(p);
  5984. array = p->array;
  5985. if (array)
  5986. deactivate_task(p, task_rq(p));
  5987. __setscheduler(p, SCHED_NORMAL, 0);
  5988. if (array) {
  5989. __activate_task(p, task_rq(p));
  5990. resched_task(rq->curr);
  5991. }
  5992. __task_rq_unlock(rq);
  5993. spin_unlock_irqrestore(&p->pi_lock, flags);
  5994. }
  5995. read_unlock_irq(&tasklist_lock);
  5996. }
  5997. #endif /* CONFIG_MAGIC_SYSRQ */
  5998. #ifdef CONFIG_IA64
  5999. /*
  6000. * These functions are only useful for the IA64 MCA handling.
  6001. *
  6002. * They can only be called when the whole system has been
  6003. * stopped - every CPU needs to be quiescent, and no scheduling
  6004. * activity can take place. Using them for anything else would
  6005. * be a serious bug, and as a result, they aren't even visible
  6006. * under any other configuration.
  6007. */
  6008. /**
  6009. * curr_task - return the current task for a given cpu.
  6010. * @cpu: the processor in question.
  6011. *
  6012. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6013. */
  6014. struct task_struct *curr_task(int cpu)
  6015. {
  6016. return cpu_curr(cpu);
  6017. }
  6018. /**
  6019. * set_curr_task - set the current task for a given cpu.
  6020. * @cpu: the processor in question.
  6021. * @p: the task pointer to set.
  6022. *
  6023. * Description: This function must only be used when non-maskable interrupts
  6024. * are serviced on a separate stack. It allows the architecture to switch the
  6025. * notion of the current task on a cpu in a non-blocking manner. This function
  6026. * must be called with all CPU's synchronized, and interrupts disabled, the
  6027. * and caller must save the original value of the current task (see
  6028. * curr_task() above) and restore that value before reenabling interrupts and
  6029. * re-starting the system.
  6030. *
  6031. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6032. */
  6033. void set_curr_task(int cpu, struct task_struct *p)
  6034. {
  6035. cpu_curr(cpu) = p;
  6036. }
  6037. #endif