xfs_inode.c 137 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_mac.h"
  51. #include "xfs_acl.h"
  52. kmem_zone_t *xfs_ifork_zone;
  53. kmem_zone_t *xfs_inode_zone;
  54. kmem_zone_t *xfs_chashlist_zone;
  55. /*
  56. * Used in xfs_itruncate(). This is the maximum number of extents
  57. * freed from a file in a single transaction.
  58. */
  59. #define XFS_ITRUNC_MAX_EXTENTS 2
  60. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  61. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  62. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  63. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  64. #ifdef DEBUG
  65. /*
  66. * Make sure that the extents in the given memory buffer
  67. * are valid.
  68. */
  69. STATIC void
  70. xfs_validate_extents(
  71. xfs_ifork_t *ifp,
  72. int nrecs,
  73. int disk,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_rec_t *ep;
  77. xfs_bmbt_irec_t irec;
  78. xfs_bmbt_rec_t rec;
  79. int i;
  80. for (i = 0; i < nrecs; i++) {
  81. ep = xfs_iext_get_ext(ifp, i);
  82. rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
  83. rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
  84. if (disk)
  85. xfs_bmbt_disk_get_all(&rec, &irec);
  86. else
  87. xfs_bmbt_get_all(&rec, &irec);
  88. if (fmt == XFS_EXTFMT_NOSTATE)
  89. ASSERT(irec.br_state == XFS_EXT_NORM);
  90. }
  91. }
  92. #else /* DEBUG */
  93. #define xfs_validate_extents(ifp, nrecs, disk, fmt)
  94. #endif /* DEBUG */
  95. /*
  96. * Check that none of the inode's in the buffer have a next
  97. * unlinked field of 0.
  98. */
  99. #if defined(DEBUG)
  100. void
  101. xfs_inobp_check(
  102. xfs_mount_t *mp,
  103. xfs_buf_t *bp)
  104. {
  105. int i;
  106. int j;
  107. xfs_dinode_t *dip;
  108. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  109. for (i = 0; i < j; i++) {
  110. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  111. i * mp->m_sb.sb_inodesize);
  112. if (!dip->di_next_unlinked) {
  113. xfs_fs_cmn_err(CE_ALERT, mp,
  114. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  115. bp);
  116. ASSERT(dip->di_next_unlinked);
  117. }
  118. }
  119. }
  120. #endif
  121. /*
  122. * This routine is called to map an inode number within a file
  123. * system to the buffer containing the on-disk version of the
  124. * inode. It returns a pointer to the buffer containing the
  125. * on-disk inode in the bpp parameter, and in the dip parameter
  126. * it returns a pointer to the on-disk inode within that buffer.
  127. *
  128. * If a non-zero error is returned, then the contents of bpp and
  129. * dipp are undefined.
  130. *
  131. * Use xfs_imap() to determine the size and location of the
  132. * buffer to read from disk.
  133. */
  134. STATIC int
  135. xfs_inotobp(
  136. xfs_mount_t *mp,
  137. xfs_trans_t *tp,
  138. xfs_ino_t ino,
  139. xfs_dinode_t **dipp,
  140. xfs_buf_t **bpp,
  141. int *offset)
  142. {
  143. int di_ok;
  144. xfs_imap_t imap;
  145. xfs_buf_t *bp;
  146. int error;
  147. xfs_dinode_t *dip;
  148. /*
  149. * Call the space management code to find the location of the
  150. * inode on disk.
  151. */
  152. imap.im_blkno = 0;
  153. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  154. if (error != 0) {
  155. cmn_err(CE_WARN,
  156. "xfs_inotobp: xfs_imap() returned an "
  157. "error %d on %s. Returning error.", error, mp->m_fsname);
  158. return error;
  159. }
  160. /*
  161. * If the inode number maps to a block outside the bounds of the
  162. * file system then return NULL rather than calling read_buf
  163. * and panicing when we get an error from the driver.
  164. */
  165. if ((imap.im_blkno + imap.im_len) >
  166. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  167. cmn_err(CE_WARN,
  168. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  169. "of the file system %s. Returning EINVAL.",
  170. (unsigned long long)imap.im_blkno,
  171. imap.im_len, mp->m_fsname);
  172. return XFS_ERROR(EINVAL);
  173. }
  174. /*
  175. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  176. * default to just a read_buf() call.
  177. */
  178. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  179. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  180. if (error) {
  181. cmn_err(CE_WARN,
  182. "xfs_inotobp: xfs_trans_read_buf() returned an "
  183. "error %d on %s. Returning error.", error, mp->m_fsname);
  184. return error;
  185. }
  186. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  187. di_ok =
  188. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  189. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  190. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  191. XFS_RANDOM_ITOBP_INOTOBP))) {
  192. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  193. xfs_trans_brelse(tp, bp);
  194. cmn_err(CE_WARN,
  195. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  196. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  197. return XFS_ERROR(EFSCORRUPTED);
  198. }
  199. xfs_inobp_check(mp, bp);
  200. /*
  201. * Set *dipp to point to the on-disk inode in the buffer.
  202. */
  203. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  204. *bpp = bp;
  205. *offset = imap.im_boffset;
  206. return 0;
  207. }
  208. /*
  209. * This routine is called to map an inode to the buffer containing
  210. * the on-disk version of the inode. It returns a pointer to the
  211. * buffer containing the on-disk inode in the bpp parameter, and in
  212. * the dip parameter it returns a pointer to the on-disk inode within
  213. * that buffer.
  214. *
  215. * If a non-zero error is returned, then the contents of bpp and
  216. * dipp are undefined.
  217. *
  218. * If the inode is new and has not yet been initialized, use xfs_imap()
  219. * to determine the size and location of the buffer to read from disk.
  220. * If the inode has already been mapped to its buffer and read in once,
  221. * then use the mapping information stored in the inode rather than
  222. * calling xfs_imap(). This allows us to avoid the overhead of looking
  223. * at the inode btree for small block file systems (see xfs_dilocate()).
  224. * We can tell whether the inode has been mapped in before by comparing
  225. * its disk block address to 0. Only uninitialized inodes will have
  226. * 0 for the disk block address.
  227. */
  228. int
  229. xfs_itobp(
  230. xfs_mount_t *mp,
  231. xfs_trans_t *tp,
  232. xfs_inode_t *ip,
  233. xfs_dinode_t **dipp,
  234. xfs_buf_t **bpp,
  235. xfs_daddr_t bno,
  236. uint imap_flags)
  237. {
  238. xfs_imap_t imap;
  239. xfs_buf_t *bp;
  240. int error;
  241. int i;
  242. int ni;
  243. if (ip->i_blkno == (xfs_daddr_t)0) {
  244. /*
  245. * Call the space management code to find the location of the
  246. * inode on disk.
  247. */
  248. imap.im_blkno = bno;
  249. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  250. XFS_IMAP_LOOKUP | imap_flags)))
  251. return error;
  252. /*
  253. * If the inode number maps to a block outside the bounds
  254. * of the file system then return NULL rather than calling
  255. * read_buf and panicing when we get an error from the
  256. * driver.
  257. */
  258. if ((imap.im_blkno + imap.im_len) >
  259. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  260. #ifdef DEBUG
  261. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  262. "(imap.im_blkno (0x%llx) "
  263. "+ imap.im_len (0x%llx)) > "
  264. " XFS_FSB_TO_BB(mp, "
  265. "mp->m_sb.sb_dblocks) (0x%llx)",
  266. (unsigned long long) imap.im_blkno,
  267. (unsigned long long) imap.im_len,
  268. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  269. #endif /* DEBUG */
  270. return XFS_ERROR(EINVAL);
  271. }
  272. /*
  273. * Fill in the fields in the inode that will be used to
  274. * map the inode to its buffer from now on.
  275. */
  276. ip->i_blkno = imap.im_blkno;
  277. ip->i_len = imap.im_len;
  278. ip->i_boffset = imap.im_boffset;
  279. } else {
  280. /*
  281. * We've already mapped the inode once, so just use the
  282. * mapping that we saved the first time.
  283. */
  284. imap.im_blkno = ip->i_blkno;
  285. imap.im_len = ip->i_len;
  286. imap.im_boffset = ip->i_boffset;
  287. }
  288. ASSERT(bno == 0 || bno == imap.im_blkno);
  289. /*
  290. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  291. * default to just a read_buf() call.
  292. */
  293. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  294. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  295. if (error) {
  296. #ifdef DEBUG
  297. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  298. "xfs_trans_read_buf() returned error %d, "
  299. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  300. error, (unsigned long long) imap.im_blkno,
  301. (unsigned long long) imap.im_len);
  302. #endif /* DEBUG */
  303. return error;
  304. }
  305. /*
  306. * Validate the magic number and version of every inode in the buffer
  307. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  308. * No validation is done here in userspace (xfs_repair).
  309. */
  310. #if !defined(__KERNEL__)
  311. ni = 0;
  312. #elif defined(DEBUG)
  313. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  314. #else /* usual case */
  315. ni = 1;
  316. #endif
  317. for (i = 0; i < ni; i++) {
  318. int di_ok;
  319. xfs_dinode_t *dip;
  320. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  321. (i << mp->m_sb.sb_inodelog));
  322. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  323. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  324. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  325. XFS_ERRTAG_ITOBP_INOTOBP,
  326. XFS_RANDOM_ITOBP_INOTOBP))) {
  327. if (imap_flags & XFS_IMAP_BULKSTAT) {
  328. xfs_trans_brelse(tp, bp);
  329. return XFS_ERROR(EINVAL);
  330. }
  331. #ifdef DEBUG
  332. cmn_err(CE_ALERT,
  333. "Device %s - bad inode magic/vsn "
  334. "daddr %lld #%d (magic=%x)",
  335. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  336. (unsigned long long)imap.im_blkno, i,
  337. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  338. #endif
  339. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  340. mp, dip);
  341. xfs_trans_brelse(tp, bp);
  342. return XFS_ERROR(EFSCORRUPTED);
  343. }
  344. }
  345. xfs_inobp_check(mp, bp);
  346. /*
  347. * Mark the buffer as an inode buffer now that it looks good
  348. */
  349. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  350. /*
  351. * Set *dipp to point to the on-disk inode in the buffer.
  352. */
  353. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  354. *bpp = bp;
  355. return 0;
  356. }
  357. /*
  358. * Move inode type and inode format specific information from the
  359. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  360. * this means set if_rdev to the proper value. For files, directories,
  361. * and symlinks this means to bring in the in-line data or extent
  362. * pointers. For a file in B-tree format, only the root is immediately
  363. * brought in-core. The rest will be in-lined in if_extents when it
  364. * is first referenced (see xfs_iread_extents()).
  365. */
  366. STATIC int
  367. xfs_iformat(
  368. xfs_inode_t *ip,
  369. xfs_dinode_t *dip)
  370. {
  371. xfs_attr_shortform_t *atp;
  372. int size;
  373. int error;
  374. xfs_fsize_t di_size;
  375. ip->i_df.if_ext_max =
  376. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  377. error = 0;
  378. if (unlikely(
  379. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  380. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  381. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  382. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  383. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  384. (unsigned long long)ip->i_ino,
  385. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  386. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  387. (unsigned long long)
  388. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  389. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  390. ip->i_mount, dip);
  391. return XFS_ERROR(EFSCORRUPTED);
  392. }
  393. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  394. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  395. "corrupt dinode %Lu, forkoff = 0x%x.",
  396. (unsigned long long)ip->i_ino,
  397. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  398. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  399. ip->i_mount, dip);
  400. return XFS_ERROR(EFSCORRUPTED);
  401. }
  402. switch (ip->i_d.di_mode & S_IFMT) {
  403. case S_IFIFO:
  404. case S_IFCHR:
  405. case S_IFBLK:
  406. case S_IFSOCK:
  407. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  408. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  409. ip->i_mount, dip);
  410. return XFS_ERROR(EFSCORRUPTED);
  411. }
  412. ip->i_d.di_size = 0;
  413. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  414. break;
  415. case S_IFREG:
  416. case S_IFLNK:
  417. case S_IFDIR:
  418. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  419. case XFS_DINODE_FMT_LOCAL:
  420. /*
  421. * no local regular files yet
  422. */
  423. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  424. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  425. "corrupt inode %Lu "
  426. "(local format for regular file).",
  427. (unsigned long long) ip->i_ino);
  428. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  429. XFS_ERRLEVEL_LOW,
  430. ip->i_mount, dip);
  431. return XFS_ERROR(EFSCORRUPTED);
  432. }
  433. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  434. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  435. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  436. "corrupt inode %Lu "
  437. "(bad size %Ld for local inode).",
  438. (unsigned long long) ip->i_ino,
  439. (long long) di_size);
  440. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  441. XFS_ERRLEVEL_LOW,
  442. ip->i_mount, dip);
  443. return XFS_ERROR(EFSCORRUPTED);
  444. }
  445. size = (int)di_size;
  446. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  447. break;
  448. case XFS_DINODE_FMT_EXTENTS:
  449. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  450. break;
  451. case XFS_DINODE_FMT_BTREE:
  452. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  453. break;
  454. default:
  455. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  456. ip->i_mount);
  457. return XFS_ERROR(EFSCORRUPTED);
  458. }
  459. break;
  460. default:
  461. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  462. return XFS_ERROR(EFSCORRUPTED);
  463. }
  464. if (error) {
  465. return error;
  466. }
  467. if (!XFS_DFORK_Q(dip))
  468. return 0;
  469. ASSERT(ip->i_afp == NULL);
  470. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  471. ip->i_afp->if_ext_max =
  472. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  473. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  474. case XFS_DINODE_FMT_LOCAL:
  475. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  476. size = be16_to_cpu(atp->hdr.totsize);
  477. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  478. break;
  479. case XFS_DINODE_FMT_EXTENTS:
  480. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. case XFS_DINODE_FMT_BTREE:
  483. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  484. break;
  485. default:
  486. error = XFS_ERROR(EFSCORRUPTED);
  487. break;
  488. }
  489. if (error) {
  490. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  491. ip->i_afp = NULL;
  492. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  493. }
  494. return error;
  495. }
  496. /*
  497. * The file is in-lined in the on-disk inode.
  498. * If it fits into if_inline_data, then copy
  499. * it there, otherwise allocate a buffer for it
  500. * and copy the data there. Either way, set
  501. * if_data to point at the data.
  502. * If we allocate a buffer for the data, make
  503. * sure that its size is a multiple of 4 and
  504. * record the real size in i_real_bytes.
  505. */
  506. STATIC int
  507. xfs_iformat_local(
  508. xfs_inode_t *ip,
  509. xfs_dinode_t *dip,
  510. int whichfork,
  511. int size)
  512. {
  513. xfs_ifork_t *ifp;
  514. int real_size;
  515. /*
  516. * If the size is unreasonable, then something
  517. * is wrong and we just bail out rather than crash in
  518. * kmem_alloc() or memcpy() below.
  519. */
  520. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  521. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  522. "corrupt inode %Lu "
  523. "(bad size %d for local fork, size = %d).",
  524. (unsigned long long) ip->i_ino, size,
  525. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  526. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  527. ip->i_mount, dip);
  528. return XFS_ERROR(EFSCORRUPTED);
  529. }
  530. ifp = XFS_IFORK_PTR(ip, whichfork);
  531. real_size = 0;
  532. if (size == 0)
  533. ifp->if_u1.if_data = NULL;
  534. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  535. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  536. else {
  537. real_size = roundup(size, 4);
  538. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  539. }
  540. ifp->if_bytes = size;
  541. ifp->if_real_bytes = real_size;
  542. if (size)
  543. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  544. ifp->if_flags &= ~XFS_IFEXTENTS;
  545. ifp->if_flags |= XFS_IFINLINE;
  546. return 0;
  547. }
  548. /*
  549. * The file consists of a set of extents all
  550. * of which fit into the on-disk inode.
  551. * If there are few enough extents to fit into
  552. * the if_inline_ext, then copy them there.
  553. * Otherwise allocate a buffer for them and copy
  554. * them into it. Either way, set if_extents
  555. * to point at the extents.
  556. */
  557. STATIC int
  558. xfs_iformat_extents(
  559. xfs_inode_t *ip,
  560. xfs_dinode_t *dip,
  561. int whichfork)
  562. {
  563. xfs_bmbt_rec_t *ep, *dp;
  564. xfs_ifork_t *ifp;
  565. int nex;
  566. int size;
  567. int i;
  568. ifp = XFS_IFORK_PTR(ip, whichfork);
  569. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  570. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  571. /*
  572. * If the number of extents is unreasonable, then something
  573. * is wrong and we just bail out rather than crash in
  574. * kmem_alloc() or memcpy() below.
  575. */
  576. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  577. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  578. "corrupt inode %Lu ((a)extents = %d).",
  579. (unsigned long long) ip->i_ino, nex);
  580. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  581. ip->i_mount, dip);
  582. return XFS_ERROR(EFSCORRUPTED);
  583. }
  584. ifp->if_real_bytes = 0;
  585. if (nex == 0)
  586. ifp->if_u1.if_extents = NULL;
  587. else if (nex <= XFS_INLINE_EXTS)
  588. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  589. else
  590. xfs_iext_add(ifp, 0, nex);
  591. ifp->if_bytes = size;
  592. if (size) {
  593. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  594. xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
  595. for (i = 0; i < nex; i++, dp++) {
  596. ep = xfs_iext_get_ext(ifp, i);
  597. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  598. ARCH_CONVERT);
  599. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  600. ARCH_CONVERT);
  601. }
  602. xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
  603. whichfork);
  604. if (whichfork != XFS_DATA_FORK ||
  605. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  606. if (unlikely(xfs_check_nostate_extents(
  607. ifp, 0, nex))) {
  608. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  609. XFS_ERRLEVEL_LOW,
  610. ip->i_mount);
  611. return XFS_ERROR(EFSCORRUPTED);
  612. }
  613. }
  614. ifp->if_flags |= XFS_IFEXTENTS;
  615. return 0;
  616. }
  617. /*
  618. * The file has too many extents to fit into
  619. * the inode, so they are in B-tree format.
  620. * Allocate a buffer for the root of the B-tree
  621. * and copy the root into it. The i_extents
  622. * field will remain NULL until all of the
  623. * extents are read in (when they are needed).
  624. */
  625. STATIC int
  626. xfs_iformat_btree(
  627. xfs_inode_t *ip,
  628. xfs_dinode_t *dip,
  629. int whichfork)
  630. {
  631. xfs_bmdr_block_t *dfp;
  632. xfs_ifork_t *ifp;
  633. /* REFERENCED */
  634. int nrecs;
  635. int size;
  636. ifp = XFS_IFORK_PTR(ip, whichfork);
  637. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  638. size = XFS_BMAP_BROOT_SPACE(dfp);
  639. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  640. /*
  641. * blow out if -- fork has less extents than can fit in
  642. * fork (fork shouldn't be a btree format), root btree
  643. * block has more records than can fit into the fork,
  644. * or the number of extents is greater than the number of
  645. * blocks.
  646. */
  647. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  648. || XFS_BMDR_SPACE_CALC(nrecs) >
  649. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  650. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  651. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  652. "corrupt inode %Lu (btree).",
  653. (unsigned long long) ip->i_ino);
  654. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  655. ip->i_mount);
  656. return XFS_ERROR(EFSCORRUPTED);
  657. }
  658. ifp->if_broot_bytes = size;
  659. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  660. ASSERT(ifp->if_broot != NULL);
  661. /*
  662. * Copy and convert from the on-disk structure
  663. * to the in-memory structure.
  664. */
  665. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  666. ifp->if_broot, size);
  667. ifp->if_flags &= ~XFS_IFEXTENTS;
  668. ifp->if_flags |= XFS_IFBROOT;
  669. return 0;
  670. }
  671. /*
  672. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  673. * and native format
  674. *
  675. * buf = on-disk representation
  676. * dip = native representation
  677. * dir = direction - +ve -> disk to native
  678. * -ve -> native to disk
  679. */
  680. void
  681. xfs_xlate_dinode_core(
  682. xfs_caddr_t buf,
  683. xfs_dinode_core_t *dip,
  684. int dir)
  685. {
  686. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  687. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  688. xfs_arch_t arch = ARCH_CONVERT;
  689. ASSERT(dir);
  690. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  691. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  692. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  693. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  694. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  695. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  696. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  697. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  698. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  699. if (dir > 0) {
  700. memcpy(mem_core->di_pad, buf_core->di_pad,
  701. sizeof(buf_core->di_pad));
  702. } else {
  703. memcpy(buf_core->di_pad, mem_core->di_pad,
  704. sizeof(buf_core->di_pad));
  705. }
  706. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  707. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  708. dir, arch);
  709. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  710. dir, arch);
  711. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  712. dir, arch);
  713. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  714. dir, arch);
  715. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  716. dir, arch);
  717. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  718. dir, arch);
  719. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  720. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  721. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  722. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  723. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  724. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  725. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  726. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  727. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  728. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  729. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  730. }
  731. STATIC uint
  732. _xfs_dic2xflags(
  733. __uint16_t di_flags)
  734. {
  735. uint flags = 0;
  736. if (di_flags & XFS_DIFLAG_ANY) {
  737. if (di_flags & XFS_DIFLAG_REALTIME)
  738. flags |= XFS_XFLAG_REALTIME;
  739. if (di_flags & XFS_DIFLAG_PREALLOC)
  740. flags |= XFS_XFLAG_PREALLOC;
  741. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  742. flags |= XFS_XFLAG_IMMUTABLE;
  743. if (di_flags & XFS_DIFLAG_APPEND)
  744. flags |= XFS_XFLAG_APPEND;
  745. if (di_flags & XFS_DIFLAG_SYNC)
  746. flags |= XFS_XFLAG_SYNC;
  747. if (di_flags & XFS_DIFLAG_NOATIME)
  748. flags |= XFS_XFLAG_NOATIME;
  749. if (di_flags & XFS_DIFLAG_NODUMP)
  750. flags |= XFS_XFLAG_NODUMP;
  751. if (di_flags & XFS_DIFLAG_RTINHERIT)
  752. flags |= XFS_XFLAG_RTINHERIT;
  753. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  754. flags |= XFS_XFLAG_PROJINHERIT;
  755. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  756. flags |= XFS_XFLAG_NOSYMLINKS;
  757. if (di_flags & XFS_DIFLAG_EXTSIZE)
  758. flags |= XFS_XFLAG_EXTSIZE;
  759. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  760. flags |= XFS_XFLAG_EXTSZINHERIT;
  761. if (di_flags & XFS_DIFLAG_NODEFRAG)
  762. flags |= XFS_XFLAG_NODEFRAG;
  763. }
  764. return flags;
  765. }
  766. uint
  767. xfs_ip2xflags(
  768. xfs_inode_t *ip)
  769. {
  770. xfs_dinode_core_t *dic = &ip->i_d;
  771. return _xfs_dic2xflags(dic->di_flags) |
  772. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  773. }
  774. uint
  775. xfs_dic2xflags(
  776. xfs_dinode_core_t *dic)
  777. {
  778. return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
  779. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  780. }
  781. /*
  782. * Given a mount structure and an inode number, return a pointer
  783. * to a newly allocated in-core inode corresponding to the given
  784. * inode number.
  785. *
  786. * Initialize the inode's attributes and extent pointers if it
  787. * already has them (it will not if the inode has no links).
  788. */
  789. int
  790. xfs_iread(
  791. xfs_mount_t *mp,
  792. xfs_trans_t *tp,
  793. xfs_ino_t ino,
  794. xfs_inode_t **ipp,
  795. xfs_daddr_t bno,
  796. uint imap_flags)
  797. {
  798. xfs_buf_t *bp;
  799. xfs_dinode_t *dip;
  800. xfs_inode_t *ip;
  801. int error;
  802. ASSERT(xfs_inode_zone != NULL);
  803. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  804. ip->i_ino = ino;
  805. ip->i_mount = mp;
  806. spin_lock_init(&ip->i_flags_lock);
  807. /*
  808. * Get pointer's to the on-disk inode and the buffer containing it.
  809. * If the inode number refers to a block outside the file system
  810. * then xfs_itobp() will return NULL. In this case we should
  811. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  812. * know that this is a new incore inode.
  813. */
  814. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  815. if (error) {
  816. kmem_zone_free(xfs_inode_zone, ip);
  817. return error;
  818. }
  819. /*
  820. * Initialize inode's trace buffers.
  821. * Do this before xfs_iformat in case it adds entries.
  822. */
  823. #ifdef XFS_BMAP_TRACE
  824. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  825. #endif
  826. #ifdef XFS_BMBT_TRACE
  827. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  828. #endif
  829. #ifdef XFS_RW_TRACE
  830. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  831. #endif
  832. #ifdef XFS_ILOCK_TRACE
  833. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  834. #endif
  835. #ifdef XFS_DIR2_TRACE
  836. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  837. #endif
  838. /*
  839. * If we got something that isn't an inode it means someone
  840. * (nfs or dmi) has a stale handle.
  841. */
  842. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  843. kmem_zone_free(xfs_inode_zone, ip);
  844. xfs_trans_brelse(tp, bp);
  845. #ifdef DEBUG
  846. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  847. "dip->di_core.di_magic (0x%x) != "
  848. "XFS_DINODE_MAGIC (0x%x)",
  849. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  850. XFS_DINODE_MAGIC);
  851. #endif /* DEBUG */
  852. return XFS_ERROR(EINVAL);
  853. }
  854. /*
  855. * If the on-disk inode is already linked to a directory
  856. * entry, copy all of the inode into the in-core inode.
  857. * xfs_iformat() handles copying in the inode format
  858. * specific information.
  859. * Otherwise, just get the truly permanent information.
  860. */
  861. if (dip->di_core.di_mode) {
  862. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  863. &(ip->i_d), 1);
  864. error = xfs_iformat(ip, dip);
  865. if (error) {
  866. kmem_zone_free(xfs_inode_zone, ip);
  867. xfs_trans_brelse(tp, bp);
  868. #ifdef DEBUG
  869. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  870. "xfs_iformat() returned error %d",
  871. error);
  872. #endif /* DEBUG */
  873. return error;
  874. }
  875. } else {
  876. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  877. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  878. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  879. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  880. /*
  881. * Make sure to pull in the mode here as well in
  882. * case the inode is released without being used.
  883. * This ensures that xfs_inactive() will see that
  884. * the inode is already free and not try to mess
  885. * with the uninitialized part of it.
  886. */
  887. ip->i_d.di_mode = 0;
  888. /*
  889. * Initialize the per-fork minima and maxima for a new
  890. * inode here. xfs_iformat will do it for old inodes.
  891. */
  892. ip->i_df.if_ext_max =
  893. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  894. }
  895. INIT_LIST_HEAD(&ip->i_reclaim);
  896. /*
  897. * The inode format changed when we moved the link count and
  898. * made it 32 bits long. If this is an old format inode,
  899. * convert it in memory to look like a new one. If it gets
  900. * flushed to disk we will convert back before flushing or
  901. * logging it. We zero out the new projid field and the old link
  902. * count field. We'll handle clearing the pad field (the remains
  903. * of the old uuid field) when we actually convert the inode to
  904. * the new format. We don't change the version number so that we
  905. * can distinguish this from a real new format inode.
  906. */
  907. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  908. ip->i_d.di_nlink = ip->i_d.di_onlink;
  909. ip->i_d.di_onlink = 0;
  910. ip->i_d.di_projid = 0;
  911. }
  912. ip->i_delayed_blks = 0;
  913. /*
  914. * Mark the buffer containing the inode as something to keep
  915. * around for a while. This helps to keep recently accessed
  916. * meta-data in-core longer.
  917. */
  918. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  919. /*
  920. * Use xfs_trans_brelse() to release the buffer containing the
  921. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  922. * in xfs_itobp() above. If tp is NULL, this is just a normal
  923. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  924. * will only release the buffer if it is not dirty within the
  925. * transaction. It will be OK to release the buffer in this case,
  926. * because inodes on disk are never destroyed and we will be
  927. * locking the new in-core inode before putting it in the hash
  928. * table where other processes can find it. Thus we don't have
  929. * to worry about the inode being changed just because we released
  930. * the buffer.
  931. */
  932. xfs_trans_brelse(tp, bp);
  933. *ipp = ip;
  934. return 0;
  935. }
  936. /*
  937. * Read in extents from a btree-format inode.
  938. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  939. */
  940. int
  941. xfs_iread_extents(
  942. xfs_trans_t *tp,
  943. xfs_inode_t *ip,
  944. int whichfork)
  945. {
  946. int error;
  947. xfs_ifork_t *ifp;
  948. xfs_extnum_t nextents;
  949. size_t size;
  950. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  951. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  952. ip->i_mount);
  953. return XFS_ERROR(EFSCORRUPTED);
  954. }
  955. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  956. size = nextents * sizeof(xfs_bmbt_rec_t);
  957. ifp = XFS_IFORK_PTR(ip, whichfork);
  958. /*
  959. * We know that the size is valid (it's checked in iformat_btree)
  960. */
  961. ifp->if_lastex = NULLEXTNUM;
  962. ifp->if_bytes = ifp->if_real_bytes = 0;
  963. ifp->if_flags |= XFS_IFEXTENTS;
  964. xfs_iext_add(ifp, 0, nextents);
  965. error = xfs_bmap_read_extents(tp, ip, whichfork);
  966. if (error) {
  967. xfs_iext_destroy(ifp);
  968. ifp->if_flags &= ~XFS_IFEXTENTS;
  969. return error;
  970. }
  971. xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
  972. return 0;
  973. }
  974. /*
  975. * Allocate an inode on disk and return a copy of its in-core version.
  976. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  977. * appropriately within the inode. The uid and gid for the inode are
  978. * set according to the contents of the given cred structure.
  979. *
  980. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  981. * has a free inode available, call xfs_iget()
  982. * to obtain the in-core version of the allocated inode. Finally,
  983. * fill in the inode and log its initial contents. In this case,
  984. * ialloc_context would be set to NULL and call_again set to false.
  985. *
  986. * If xfs_dialloc() does not have an available inode,
  987. * it will replenish its supply by doing an allocation. Since we can
  988. * only do one allocation within a transaction without deadlocks, we
  989. * must commit the current transaction before returning the inode itself.
  990. * In this case, therefore, we will set call_again to true and return.
  991. * The caller should then commit the current transaction, start a new
  992. * transaction, and call xfs_ialloc() again to actually get the inode.
  993. *
  994. * To ensure that some other process does not grab the inode that
  995. * was allocated during the first call to xfs_ialloc(), this routine
  996. * also returns the [locked] bp pointing to the head of the freelist
  997. * as ialloc_context. The caller should hold this buffer across
  998. * the commit and pass it back into this routine on the second call.
  999. */
  1000. int
  1001. xfs_ialloc(
  1002. xfs_trans_t *tp,
  1003. xfs_inode_t *pip,
  1004. mode_t mode,
  1005. xfs_nlink_t nlink,
  1006. xfs_dev_t rdev,
  1007. cred_t *cr,
  1008. xfs_prid_t prid,
  1009. int okalloc,
  1010. xfs_buf_t **ialloc_context,
  1011. boolean_t *call_again,
  1012. xfs_inode_t **ipp)
  1013. {
  1014. xfs_ino_t ino;
  1015. xfs_inode_t *ip;
  1016. bhv_vnode_t *vp;
  1017. uint flags;
  1018. int error;
  1019. /*
  1020. * Call the space management code to pick
  1021. * the on-disk inode to be allocated.
  1022. */
  1023. error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
  1024. ialloc_context, call_again, &ino);
  1025. if (error != 0) {
  1026. return error;
  1027. }
  1028. if (*call_again || ino == NULLFSINO) {
  1029. *ipp = NULL;
  1030. return 0;
  1031. }
  1032. ASSERT(*ialloc_context == NULL);
  1033. /*
  1034. * Get the in-core inode with the lock held exclusively.
  1035. * This is because we're setting fields here we need
  1036. * to prevent others from looking at until we're done.
  1037. */
  1038. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1039. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1040. if (error != 0) {
  1041. return error;
  1042. }
  1043. ASSERT(ip != NULL);
  1044. vp = XFS_ITOV(ip);
  1045. ip->i_d.di_mode = (__uint16_t)mode;
  1046. ip->i_d.di_onlink = 0;
  1047. ip->i_d.di_nlink = nlink;
  1048. ASSERT(ip->i_d.di_nlink == nlink);
  1049. ip->i_d.di_uid = current_fsuid(cr);
  1050. ip->i_d.di_gid = current_fsgid(cr);
  1051. ip->i_d.di_projid = prid;
  1052. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1053. /*
  1054. * If the superblock version is up to where we support new format
  1055. * inodes and this is currently an old format inode, then change
  1056. * the inode version number now. This way we only do the conversion
  1057. * here rather than here and in the flush/logging code.
  1058. */
  1059. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1060. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1061. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1062. /*
  1063. * We've already zeroed the old link count, the projid field,
  1064. * and the pad field.
  1065. */
  1066. }
  1067. /*
  1068. * Project ids won't be stored on disk if we are using a version 1 inode.
  1069. */
  1070. if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1071. xfs_bump_ino_vers2(tp, ip);
  1072. if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1073. ip->i_d.di_gid = pip->i_d.di_gid;
  1074. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1075. ip->i_d.di_mode |= S_ISGID;
  1076. }
  1077. }
  1078. /*
  1079. * If the group ID of the new file does not match the effective group
  1080. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1081. * (and only if the irix_sgid_inherit compatibility variable is set).
  1082. */
  1083. if ((irix_sgid_inherit) &&
  1084. (ip->i_d.di_mode & S_ISGID) &&
  1085. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1086. ip->i_d.di_mode &= ~S_ISGID;
  1087. }
  1088. ip->i_d.di_size = 0;
  1089. ip->i_d.di_nextents = 0;
  1090. ASSERT(ip->i_d.di_nblocks == 0);
  1091. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1092. /*
  1093. * di_gen will have been taken care of in xfs_iread.
  1094. */
  1095. ip->i_d.di_extsize = 0;
  1096. ip->i_d.di_dmevmask = 0;
  1097. ip->i_d.di_dmstate = 0;
  1098. ip->i_d.di_flags = 0;
  1099. flags = XFS_ILOG_CORE;
  1100. switch (mode & S_IFMT) {
  1101. case S_IFIFO:
  1102. case S_IFCHR:
  1103. case S_IFBLK:
  1104. case S_IFSOCK:
  1105. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1106. ip->i_df.if_u2.if_rdev = rdev;
  1107. ip->i_df.if_flags = 0;
  1108. flags |= XFS_ILOG_DEV;
  1109. break;
  1110. case S_IFREG:
  1111. case S_IFDIR:
  1112. if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1113. uint di_flags = 0;
  1114. if ((mode & S_IFMT) == S_IFDIR) {
  1115. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1116. di_flags |= XFS_DIFLAG_RTINHERIT;
  1117. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1118. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1119. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1120. }
  1121. } else if ((mode & S_IFMT) == S_IFREG) {
  1122. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1123. di_flags |= XFS_DIFLAG_REALTIME;
  1124. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1125. }
  1126. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1127. di_flags |= XFS_DIFLAG_EXTSIZE;
  1128. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1129. }
  1130. }
  1131. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1132. xfs_inherit_noatime)
  1133. di_flags |= XFS_DIFLAG_NOATIME;
  1134. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1135. xfs_inherit_nodump)
  1136. di_flags |= XFS_DIFLAG_NODUMP;
  1137. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1138. xfs_inherit_sync)
  1139. di_flags |= XFS_DIFLAG_SYNC;
  1140. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1141. xfs_inherit_nosymlinks)
  1142. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1143. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1144. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1145. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1146. xfs_inherit_nodefrag)
  1147. di_flags |= XFS_DIFLAG_NODEFRAG;
  1148. ip->i_d.di_flags |= di_flags;
  1149. }
  1150. /* FALLTHROUGH */
  1151. case S_IFLNK:
  1152. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1153. ip->i_df.if_flags = XFS_IFEXTENTS;
  1154. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1155. ip->i_df.if_u1.if_extents = NULL;
  1156. break;
  1157. default:
  1158. ASSERT(0);
  1159. }
  1160. /*
  1161. * Attribute fork settings for new inode.
  1162. */
  1163. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1164. ip->i_d.di_anextents = 0;
  1165. /*
  1166. * Log the new values stuffed into the inode.
  1167. */
  1168. xfs_trans_log_inode(tp, ip, flags);
  1169. /* now that we have an i_mode we can setup inode ops and unlock */
  1170. bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1171. *ipp = ip;
  1172. return 0;
  1173. }
  1174. /*
  1175. * Check to make sure that there are no blocks allocated to the
  1176. * file beyond the size of the file. We don't check this for
  1177. * files with fixed size extents or real time extents, but we
  1178. * at least do it for regular files.
  1179. */
  1180. #ifdef DEBUG
  1181. void
  1182. xfs_isize_check(
  1183. xfs_mount_t *mp,
  1184. xfs_inode_t *ip,
  1185. xfs_fsize_t isize)
  1186. {
  1187. xfs_fileoff_t map_first;
  1188. int nimaps;
  1189. xfs_bmbt_irec_t imaps[2];
  1190. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1191. return;
  1192. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1193. return;
  1194. nimaps = 2;
  1195. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1196. /*
  1197. * The filesystem could be shutting down, so bmapi may return
  1198. * an error.
  1199. */
  1200. if (xfs_bmapi(NULL, ip, map_first,
  1201. (XFS_B_TO_FSB(mp,
  1202. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1203. map_first),
  1204. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1205. NULL, NULL))
  1206. return;
  1207. ASSERT(nimaps == 1);
  1208. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1209. }
  1210. #endif /* DEBUG */
  1211. /*
  1212. * Calculate the last possible buffered byte in a file. This must
  1213. * include data that was buffered beyond the EOF by the write code.
  1214. * This also needs to deal with overflowing the xfs_fsize_t type
  1215. * which can happen for sizes near the limit.
  1216. *
  1217. * We also need to take into account any blocks beyond the EOF. It
  1218. * may be the case that they were buffered by a write which failed.
  1219. * In that case the pages will still be in memory, but the inode size
  1220. * will never have been updated.
  1221. */
  1222. xfs_fsize_t
  1223. xfs_file_last_byte(
  1224. xfs_inode_t *ip)
  1225. {
  1226. xfs_mount_t *mp;
  1227. xfs_fsize_t last_byte;
  1228. xfs_fileoff_t last_block;
  1229. xfs_fileoff_t size_last_block;
  1230. int error;
  1231. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1232. mp = ip->i_mount;
  1233. /*
  1234. * Only check for blocks beyond the EOF if the extents have
  1235. * been read in. This eliminates the need for the inode lock,
  1236. * and it also saves us from looking when it really isn't
  1237. * necessary.
  1238. */
  1239. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1240. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1241. XFS_DATA_FORK);
  1242. if (error) {
  1243. last_block = 0;
  1244. }
  1245. } else {
  1246. last_block = 0;
  1247. }
  1248. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
  1249. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1250. last_byte = XFS_FSB_TO_B(mp, last_block);
  1251. if (last_byte < 0) {
  1252. return XFS_MAXIOFFSET(mp);
  1253. }
  1254. last_byte += (1 << mp->m_writeio_log);
  1255. if (last_byte < 0) {
  1256. return XFS_MAXIOFFSET(mp);
  1257. }
  1258. return last_byte;
  1259. }
  1260. #if defined(XFS_RW_TRACE)
  1261. STATIC void
  1262. xfs_itrunc_trace(
  1263. int tag,
  1264. xfs_inode_t *ip,
  1265. int flag,
  1266. xfs_fsize_t new_size,
  1267. xfs_off_t toss_start,
  1268. xfs_off_t toss_finish)
  1269. {
  1270. if (ip->i_rwtrace == NULL) {
  1271. return;
  1272. }
  1273. ktrace_enter(ip->i_rwtrace,
  1274. (void*)((long)tag),
  1275. (void*)ip,
  1276. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1277. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1278. (void*)((long)flag),
  1279. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1280. (void*)(unsigned long)(new_size & 0xffffffff),
  1281. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1282. (void*)(unsigned long)(toss_start & 0xffffffff),
  1283. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1284. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1285. (void*)(unsigned long)current_cpu(),
  1286. (void*)(unsigned long)current_pid(),
  1287. (void*)NULL,
  1288. (void*)NULL,
  1289. (void*)NULL);
  1290. }
  1291. #else
  1292. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1293. #endif
  1294. /*
  1295. * Start the truncation of the file to new_size. The new size
  1296. * must be smaller than the current size. This routine will
  1297. * clear the buffer and page caches of file data in the removed
  1298. * range, and xfs_itruncate_finish() will remove the underlying
  1299. * disk blocks.
  1300. *
  1301. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1302. * must NOT have the inode lock held at all. This is because we're
  1303. * calling into the buffer/page cache code and we can't hold the
  1304. * inode lock when we do so.
  1305. *
  1306. * We need to wait for any direct I/Os in flight to complete before we
  1307. * proceed with the truncate. This is needed to prevent the extents
  1308. * being read or written by the direct I/Os from being removed while the
  1309. * I/O is in flight as there is no other method of synchronising
  1310. * direct I/O with the truncate operation. Also, because we hold
  1311. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1312. * started until the truncate completes and drops the lock. Essentially,
  1313. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1314. * between direct I/Os and the truncate operation.
  1315. *
  1316. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1317. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1318. * in the case that the caller is locking things out of order and
  1319. * may not be able to call xfs_itruncate_finish() with the inode lock
  1320. * held without dropping the I/O lock. If the caller must drop the
  1321. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1322. * must be called again with all the same restrictions as the initial
  1323. * call.
  1324. */
  1325. void
  1326. xfs_itruncate_start(
  1327. xfs_inode_t *ip,
  1328. uint flags,
  1329. xfs_fsize_t new_size)
  1330. {
  1331. xfs_fsize_t last_byte;
  1332. xfs_off_t toss_start;
  1333. xfs_mount_t *mp;
  1334. bhv_vnode_t *vp;
  1335. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1336. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1337. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1338. (flags == XFS_ITRUNC_MAYBE));
  1339. mp = ip->i_mount;
  1340. vp = XFS_ITOV(ip);
  1341. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1342. /*
  1343. * Call toss_pages or flushinval_pages to get rid of pages
  1344. * overlapping the region being removed. We have to use
  1345. * the less efficient flushinval_pages in the case that the
  1346. * caller may not be able to finish the truncate without
  1347. * dropping the inode's I/O lock. Make sure
  1348. * to catch any pages brought in by buffers overlapping
  1349. * the EOF by searching out beyond the isize by our
  1350. * block size. We round new_size up to a block boundary
  1351. * so that we don't toss things on the same block as
  1352. * new_size but before it.
  1353. *
  1354. * Before calling toss_page or flushinval_pages, make sure to
  1355. * call remapf() over the same region if the file is mapped.
  1356. * This frees up mapped file references to the pages in the
  1357. * given range and for the flushinval_pages case it ensures
  1358. * that we get the latest mapped changes flushed out.
  1359. */
  1360. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1361. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1362. if (toss_start < 0) {
  1363. /*
  1364. * The place to start tossing is beyond our maximum
  1365. * file size, so there is no way that the data extended
  1366. * out there.
  1367. */
  1368. return;
  1369. }
  1370. last_byte = xfs_file_last_byte(ip);
  1371. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1372. last_byte);
  1373. if (last_byte > toss_start) {
  1374. if (flags & XFS_ITRUNC_DEFINITE) {
  1375. bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1376. } else {
  1377. bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1378. }
  1379. }
  1380. #ifdef DEBUG
  1381. if (new_size == 0) {
  1382. ASSERT(VN_CACHED(vp) == 0);
  1383. }
  1384. #endif
  1385. }
  1386. /*
  1387. * Shrink the file to the given new_size. The new
  1388. * size must be smaller than the current size.
  1389. * This will free up the underlying blocks
  1390. * in the removed range after a call to xfs_itruncate_start()
  1391. * or xfs_atruncate_start().
  1392. *
  1393. * The transaction passed to this routine must have made
  1394. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1395. * This routine may commit the given transaction and
  1396. * start new ones, so make sure everything involved in
  1397. * the transaction is tidy before calling here.
  1398. * Some transaction will be returned to the caller to be
  1399. * committed. The incoming transaction must already include
  1400. * the inode, and both inode locks must be held exclusively.
  1401. * The inode must also be "held" within the transaction. On
  1402. * return the inode will be "held" within the returned transaction.
  1403. * This routine does NOT require any disk space to be reserved
  1404. * for it within the transaction.
  1405. *
  1406. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1407. * and it indicates the fork which is to be truncated. For the
  1408. * attribute fork we only support truncation to size 0.
  1409. *
  1410. * We use the sync parameter to indicate whether or not the first
  1411. * transaction we perform might have to be synchronous. For the attr fork,
  1412. * it needs to be so if the unlink of the inode is not yet known to be
  1413. * permanent in the log. This keeps us from freeing and reusing the
  1414. * blocks of the attribute fork before the unlink of the inode becomes
  1415. * permanent.
  1416. *
  1417. * For the data fork, we normally have to run synchronously if we're
  1418. * being called out of the inactive path or we're being called
  1419. * out of the create path where we're truncating an existing file.
  1420. * Either way, the truncate needs to be sync so blocks don't reappear
  1421. * in the file with altered data in case of a crash. wsync filesystems
  1422. * can run the first case async because anything that shrinks the inode
  1423. * has to run sync so by the time we're called here from inactive, the
  1424. * inode size is permanently set to 0.
  1425. *
  1426. * Calls from the truncate path always need to be sync unless we're
  1427. * in a wsync filesystem and the file has already been unlinked.
  1428. *
  1429. * The caller is responsible for correctly setting the sync parameter.
  1430. * It gets too hard for us to guess here which path we're being called
  1431. * out of just based on inode state.
  1432. */
  1433. int
  1434. xfs_itruncate_finish(
  1435. xfs_trans_t **tp,
  1436. xfs_inode_t *ip,
  1437. xfs_fsize_t new_size,
  1438. int fork,
  1439. int sync)
  1440. {
  1441. xfs_fsblock_t first_block;
  1442. xfs_fileoff_t first_unmap_block;
  1443. xfs_fileoff_t last_block;
  1444. xfs_filblks_t unmap_len=0;
  1445. xfs_mount_t *mp;
  1446. xfs_trans_t *ntp;
  1447. int done;
  1448. int committed;
  1449. xfs_bmap_free_t free_list;
  1450. int error;
  1451. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1452. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1453. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1454. ASSERT(*tp != NULL);
  1455. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1456. ASSERT(ip->i_transp == *tp);
  1457. ASSERT(ip->i_itemp != NULL);
  1458. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1459. ntp = *tp;
  1460. mp = (ntp)->t_mountp;
  1461. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1462. /*
  1463. * We only support truncating the entire attribute fork.
  1464. */
  1465. if (fork == XFS_ATTR_FORK) {
  1466. new_size = 0LL;
  1467. }
  1468. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1469. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1470. /*
  1471. * The first thing we do is set the size to new_size permanently
  1472. * on disk. This way we don't have to worry about anyone ever
  1473. * being able to look at the data being freed even in the face
  1474. * of a crash. What we're getting around here is the case where
  1475. * we free a block, it is allocated to another file, it is written
  1476. * to, and then we crash. If the new data gets written to the
  1477. * file but the log buffers containing the free and reallocation
  1478. * don't, then we'd end up with garbage in the blocks being freed.
  1479. * As long as we make the new_size permanent before actually
  1480. * freeing any blocks it doesn't matter if they get writtten to.
  1481. *
  1482. * The callers must signal into us whether or not the size
  1483. * setting here must be synchronous. There are a few cases
  1484. * where it doesn't have to be synchronous. Those cases
  1485. * occur if the file is unlinked and we know the unlink is
  1486. * permanent or if the blocks being truncated are guaranteed
  1487. * to be beyond the inode eof (regardless of the link count)
  1488. * and the eof value is permanent. Both of these cases occur
  1489. * only on wsync-mounted filesystems. In those cases, we're
  1490. * guaranteed that no user will ever see the data in the blocks
  1491. * that are being truncated so the truncate can run async.
  1492. * In the free beyond eof case, the file may wind up with
  1493. * more blocks allocated to it than it needs if we crash
  1494. * and that won't get fixed until the next time the file
  1495. * is re-opened and closed but that's ok as that shouldn't
  1496. * be too many blocks.
  1497. *
  1498. * However, we can't just make all wsync xactions run async
  1499. * because there's one call out of the create path that needs
  1500. * to run sync where it's truncating an existing file to size
  1501. * 0 whose size is > 0.
  1502. *
  1503. * It's probably possible to come up with a test in this
  1504. * routine that would correctly distinguish all the above
  1505. * cases from the values of the function parameters and the
  1506. * inode state but for sanity's sake, I've decided to let the
  1507. * layers above just tell us. It's simpler to correctly figure
  1508. * out in the layer above exactly under what conditions we
  1509. * can run async and I think it's easier for others read and
  1510. * follow the logic in case something has to be changed.
  1511. * cscope is your friend -- rcc.
  1512. *
  1513. * The attribute fork is much simpler.
  1514. *
  1515. * For the attribute fork we allow the caller to tell us whether
  1516. * the unlink of the inode that led to this call is yet permanent
  1517. * in the on disk log. If it is not and we will be freeing extents
  1518. * in this inode then we make the first transaction synchronous
  1519. * to make sure that the unlink is permanent by the time we free
  1520. * the blocks.
  1521. */
  1522. if (fork == XFS_DATA_FORK) {
  1523. if (ip->i_d.di_nextents > 0) {
  1524. ip->i_d.di_size = new_size;
  1525. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1526. }
  1527. } else if (sync) {
  1528. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1529. if (ip->i_d.di_anextents > 0)
  1530. xfs_trans_set_sync(ntp);
  1531. }
  1532. ASSERT(fork == XFS_DATA_FORK ||
  1533. (fork == XFS_ATTR_FORK &&
  1534. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1535. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1536. /*
  1537. * Since it is possible for space to become allocated beyond
  1538. * the end of the file (in a crash where the space is allocated
  1539. * but the inode size is not yet updated), simply remove any
  1540. * blocks which show up between the new EOF and the maximum
  1541. * possible file size. If the first block to be removed is
  1542. * beyond the maximum file size (ie it is the same as last_block),
  1543. * then there is nothing to do.
  1544. */
  1545. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1546. ASSERT(first_unmap_block <= last_block);
  1547. done = 0;
  1548. if (last_block == first_unmap_block) {
  1549. done = 1;
  1550. } else {
  1551. unmap_len = last_block - first_unmap_block + 1;
  1552. }
  1553. while (!done) {
  1554. /*
  1555. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1556. * will tell us whether it freed the entire range or
  1557. * not. If this is a synchronous mount (wsync),
  1558. * then we can tell bunmapi to keep all the
  1559. * transactions asynchronous since the unlink
  1560. * transaction that made this inode inactive has
  1561. * already hit the disk. There's no danger of
  1562. * the freed blocks being reused, there being a
  1563. * crash, and the reused blocks suddenly reappearing
  1564. * in this file with garbage in them once recovery
  1565. * runs.
  1566. */
  1567. XFS_BMAP_INIT(&free_list, &first_block);
  1568. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1569. first_unmap_block, unmap_len,
  1570. XFS_BMAPI_AFLAG(fork) |
  1571. (sync ? 0 : XFS_BMAPI_ASYNC),
  1572. XFS_ITRUNC_MAX_EXTENTS,
  1573. &first_block, &free_list,
  1574. NULL, &done);
  1575. if (error) {
  1576. /*
  1577. * If the bunmapi call encounters an error,
  1578. * return to the caller where the transaction
  1579. * can be properly aborted. We just need to
  1580. * make sure we're not holding any resources
  1581. * that we were not when we came in.
  1582. */
  1583. xfs_bmap_cancel(&free_list);
  1584. return error;
  1585. }
  1586. /*
  1587. * Duplicate the transaction that has the permanent
  1588. * reservation and commit the old transaction.
  1589. */
  1590. error = xfs_bmap_finish(tp, &free_list, first_block,
  1591. &committed);
  1592. ntp = *tp;
  1593. if (error) {
  1594. /*
  1595. * If the bmap finish call encounters an error,
  1596. * return to the caller where the transaction
  1597. * can be properly aborted. We just need to
  1598. * make sure we're not holding any resources
  1599. * that we were not when we came in.
  1600. *
  1601. * Aborting from this point might lose some
  1602. * blocks in the file system, but oh well.
  1603. */
  1604. xfs_bmap_cancel(&free_list);
  1605. if (committed) {
  1606. /*
  1607. * If the passed in transaction committed
  1608. * in xfs_bmap_finish(), then we want to
  1609. * add the inode to this one before returning.
  1610. * This keeps things simple for the higher
  1611. * level code, because it always knows that
  1612. * the inode is locked and held in the
  1613. * transaction that returns to it whether
  1614. * errors occur or not. We don't mark the
  1615. * inode dirty so that this transaction can
  1616. * be easily aborted if possible.
  1617. */
  1618. xfs_trans_ijoin(ntp, ip,
  1619. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1620. xfs_trans_ihold(ntp, ip);
  1621. }
  1622. return error;
  1623. }
  1624. if (committed) {
  1625. /*
  1626. * The first xact was committed,
  1627. * so add the inode to the new one.
  1628. * Mark it dirty so it will be logged
  1629. * and moved forward in the log as
  1630. * part of every commit.
  1631. */
  1632. xfs_trans_ijoin(ntp, ip,
  1633. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1634. xfs_trans_ihold(ntp, ip);
  1635. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1636. }
  1637. ntp = xfs_trans_dup(ntp);
  1638. (void) xfs_trans_commit(*tp, 0, NULL);
  1639. *tp = ntp;
  1640. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1641. XFS_TRANS_PERM_LOG_RES,
  1642. XFS_ITRUNCATE_LOG_COUNT);
  1643. /*
  1644. * Add the inode being truncated to the next chained
  1645. * transaction.
  1646. */
  1647. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1648. xfs_trans_ihold(ntp, ip);
  1649. if (error)
  1650. return (error);
  1651. }
  1652. /*
  1653. * Only update the size in the case of the data fork, but
  1654. * always re-log the inode so that our permanent transaction
  1655. * can keep on rolling it forward in the log.
  1656. */
  1657. if (fork == XFS_DATA_FORK) {
  1658. xfs_isize_check(mp, ip, new_size);
  1659. ip->i_d.di_size = new_size;
  1660. }
  1661. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1662. ASSERT((new_size != 0) ||
  1663. (fork == XFS_ATTR_FORK) ||
  1664. (ip->i_delayed_blks == 0));
  1665. ASSERT((new_size != 0) ||
  1666. (fork == XFS_ATTR_FORK) ||
  1667. (ip->i_d.di_nextents == 0));
  1668. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1669. return 0;
  1670. }
  1671. /*
  1672. * xfs_igrow_start
  1673. *
  1674. * Do the first part of growing a file: zero any data in the last
  1675. * block that is beyond the old EOF. We need to do this before
  1676. * the inode is joined to the transaction to modify the i_size.
  1677. * That way we can drop the inode lock and call into the buffer
  1678. * cache to get the buffer mapping the EOF.
  1679. */
  1680. int
  1681. xfs_igrow_start(
  1682. xfs_inode_t *ip,
  1683. xfs_fsize_t new_size,
  1684. cred_t *credp)
  1685. {
  1686. int error;
  1687. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1688. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1689. ASSERT(new_size > ip->i_d.di_size);
  1690. /*
  1691. * Zero any pages that may have been created by
  1692. * xfs_write_file() beyond the end of the file
  1693. * and any blocks between the old and new file sizes.
  1694. */
  1695. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1696. ip->i_d.di_size, new_size);
  1697. return error;
  1698. }
  1699. /*
  1700. * xfs_igrow_finish
  1701. *
  1702. * This routine is called to extend the size of a file.
  1703. * The inode must have both the iolock and the ilock locked
  1704. * for update and it must be a part of the current transaction.
  1705. * The xfs_igrow_start() function must have been called previously.
  1706. * If the change_flag is not zero, the inode change timestamp will
  1707. * be updated.
  1708. */
  1709. void
  1710. xfs_igrow_finish(
  1711. xfs_trans_t *tp,
  1712. xfs_inode_t *ip,
  1713. xfs_fsize_t new_size,
  1714. int change_flag)
  1715. {
  1716. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1717. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1718. ASSERT(ip->i_transp == tp);
  1719. ASSERT(new_size > ip->i_d.di_size);
  1720. /*
  1721. * Update the file size. Update the inode change timestamp
  1722. * if change_flag set.
  1723. */
  1724. ip->i_d.di_size = new_size;
  1725. if (change_flag)
  1726. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1727. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1728. }
  1729. /*
  1730. * This is called when the inode's link count goes to 0.
  1731. * We place the on-disk inode on a list in the AGI. It
  1732. * will be pulled from this list when the inode is freed.
  1733. */
  1734. int
  1735. xfs_iunlink(
  1736. xfs_trans_t *tp,
  1737. xfs_inode_t *ip)
  1738. {
  1739. xfs_mount_t *mp;
  1740. xfs_agi_t *agi;
  1741. xfs_dinode_t *dip;
  1742. xfs_buf_t *agibp;
  1743. xfs_buf_t *ibp;
  1744. xfs_agnumber_t agno;
  1745. xfs_daddr_t agdaddr;
  1746. xfs_agino_t agino;
  1747. short bucket_index;
  1748. int offset;
  1749. int error;
  1750. int agi_ok;
  1751. ASSERT(ip->i_d.di_nlink == 0);
  1752. ASSERT(ip->i_d.di_mode != 0);
  1753. ASSERT(ip->i_transp == tp);
  1754. mp = tp->t_mountp;
  1755. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1756. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1757. /*
  1758. * Get the agi buffer first. It ensures lock ordering
  1759. * on the list.
  1760. */
  1761. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1762. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1763. if (error) {
  1764. return error;
  1765. }
  1766. /*
  1767. * Validate the magic number of the agi block.
  1768. */
  1769. agi = XFS_BUF_TO_AGI(agibp);
  1770. agi_ok =
  1771. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1772. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1773. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1774. XFS_RANDOM_IUNLINK))) {
  1775. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1776. xfs_trans_brelse(tp, agibp);
  1777. return XFS_ERROR(EFSCORRUPTED);
  1778. }
  1779. /*
  1780. * Get the index into the agi hash table for the
  1781. * list this inode will go on.
  1782. */
  1783. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1784. ASSERT(agino != 0);
  1785. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1786. ASSERT(agi->agi_unlinked[bucket_index]);
  1787. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1788. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1789. /*
  1790. * There is already another inode in the bucket we need
  1791. * to add ourselves to. Add us at the front of the list.
  1792. * Here we put the head pointer into our next pointer,
  1793. * and then we fall through to point the head at us.
  1794. */
  1795. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1796. if (error) {
  1797. return error;
  1798. }
  1799. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1800. ASSERT(dip->di_next_unlinked);
  1801. /* both on-disk, don't endian flip twice */
  1802. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1803. offset = ip->i_boffset +
  1804. offsetof(xfs_dinode_t, di_next_unlinked);
  1805. xfs_trans_inode_buf(tp, ibp);
  1806. xfs_trans_log_buf(tp, ibp, offset,
  1807. (offset + sizeof(xfs_agino_t) - 1));
  1808. xfs_inobp_check(mp, ibp);
  1809. }
  1810. /*
  1811. * Point the bucket head pointer at the inode being inserted.
  1812. */
  1813. ASSERT(agino != 0);
  1814. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1815. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1816. (sizeof(xfs_agino_t) * bucket_index);
  1817. xfs_trans_log_buf(tp, agibp, offset,
  1818. (offset + sizeof(xfs_agino_t) - 1));
  1819. return 0;
  1820. }
  1821. /*
  1822. * Pull the on-disk inode from the AGI unlinked list.
  1823. */
  1824. STATIC int
  1825. xfs_iunlink_remove(
  1826. xfs_trans_t *tp,
  1827. xfs_inode_t *ip)
  1828. {
  1829. xfs_ino_t next_ino;
  1830. xfs_mount_t *mp;
  1831. xfs_agi_t *agi;
  1832. xfs_dinode_t *dip;
  1833. xfs_buf_t *agibp;
  1834. xfs_buf_t *ibp;
  1835. xfs_agnumber_t agno;
  1836. xfs_daddr_t agdaddr;
  1837. xfs_agino_t agino;
  1838. xfs_agino_t next_agino;
  1839. xfs_buf_t *last_ibp;
  1840. xfs_dinode_t *last_dip = NULL;
  1841. short bucket_index;
  1842. int offset, last_offset = 0;
  1843. int error;
  1844. int agi_ok;
  1845. /*
  1846. * First pull the on-disk inode from the AGI unlinked list.
  1847. */
  1848. mp = tp->t_mountp;
  1849. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1850. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1851. /*
  1852. * Get the agi buffer first. It ensures lock ordering
  1853. * on the list.
  1854. */
  1855. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1856. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1857. if (error) {
  1858. cmn_err(CE_WARN,
  1859. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1860. error, mp->m_fsname);
  1861. return error;
  1862. }
  1863. /*
  1864. * Validate the magic number of the agi block.
  1865. */
  1866. agi = XFS_BUF_TO_AGI(agibp);
  1867. agi_ok =
  1868. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1869. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1870. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1871. XFS_RANDOM_IUNLINK_REMOVE))) {
  1872. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1873. mp, agi);
  1874. xfs_trans_brelse(tp, agibp);
  1875. cmn_err(CE_WARN,
  1876. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1877. mp->m_fsname);
  1878. return XFS_ERROR(EFSCORRUPTED);
  1879. }
  1880. /*
  1881. * Get the index into the agi hash table for the
  1882. * list this inode will go on.
  1883. */
  1884. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1885. ASSERT(agino != 0);
  1886. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1887. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1888. ASSERT(agi->agi_unlinked[bucket_index]);
  1889. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1890. /*
  1891. * We're at the head of the list. Get the inode's
  1892. * on-disk buffer to see if there is anyone after us
  1893. * on the list. Only modify our next pointer if it
  1894. * is not already NULLAGINO. This saves us the overhead
  1895. * of dealing with the buffer when there is no need to
  1896. * change it.
  1897. */
  1898. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1899. if (error) {
  1900. cmn_err(CE_WARN,
  1901. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1902. error, mp->m_fsname);
  1903. return error;
  1904. }
  1905. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1906. ASSERT(next_agino != 0);
  1907. if (next_agino != NULLAGINO) {
  1908. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1909. offset = ip->i_boffset +
  1910. offsetof(xfs_dinode_t, di_next_unlinked);
  1911. xfs_trans_inode_buf(tp, ibp);
  1912. xfs_trans_log_buf(tp, ibp, offset,
  1913. (offset + sizeof(xfs_agino_t) - 1));
  1914. xfs_inobp_check(mp, ibp);
  1915. } else {
  1916. xfs_trans_brelse(tp, ibp);
  1917. }
  1918. /*
  1919. * Point the bucket head pointer at the next inode.
  1920. */
  1921. ASSERT(next_agino != 0);
  1922. ASSERT(next_agino != agino);
  1923. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1924. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1925. (sizeof(xfs_agino_t) * bucket_index);
  1926. xfs_trans_log_buf(tp, agibp, offset,
  1927. (offset + sizeof(xfs_agino_t) - 1));
  1928. } else {
  1929. /*
  1930. * We need to search the list for the inode being freed.
  1931. */
  1932. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1933. last_ibp = NULL;
  1934. while (next_agino != agino) {
  1935. /*
  1936. * If the last inode wasn't the one pointing to
  1937. * us, then release its buffer since we're not
  1938. * going to do anything with it.
  1939. */
  1940. if (last_ibp != NULL) {
  1941. xfs_trans_brelse(tp, last_ibp);
  1942. }
  1943. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1944. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1945. &last_ibp, &last_offset);
  1946. if (error) {
  1947. cmn_err(CE_WARN,
  1948. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1949. error, mp->m_fsname);
  1950. return error;
  1951. }
  1952. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1953. ASSERT(next_agino != NULLAGINO);
  1954. ASSERT(next_agino != 0);
  1955. }
  1956. /*
  1957. * Now last_ibp points to the buffer previous to us on
  1958. * the unlinked list. Pull us from the list.
  1959. */
  1960. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1961. if (error) {
  1962. cmn_err(CE_WARN,
  1963. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1964. error, mp->m_fsname);
  1965. return error;
  1966. }
  1967. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1968. ASSERT(next_agino != 0);
  1969. ASSERT(next_agino != agino);
  1970. if (next_agino != NULLAGINO) {
  1971. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1972. offset = ip->i_boffset +
  1973. offsetof(xfs_dinode_t, di_next_unlinked);
  1974. xfs_trans_inode_buf(tp, ibp);
  1975. xfs_trans_log_buf(tp, ibp, offset,
  1976. (offset + sizeof(xfs_agino_t) - 1));
  1977. xfs_inobp_check(mp, ibp);
  1978. } else {
  1979. xfs_trans_brelse(tp, ibp);
  1980. }
  1981. /*
  1982. * Point the previous inode on the list to the next inode.
  1983. */
  1984. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  1985. ASSERT(next_agino != 0);
  1986. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1987. xfs_trans_inode_buf(tp, last_ibp);
  1988. xfs_trans_log_buf(tp, last_ibp, offset,
  1989. (offset + sizeof(xfs_agino_t) - 1));
  1990. xfs_inobp_check(mp, last_ibp);
  1991. }
  1992. return 0;
  1993. }
  1994. static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
  1995. {
  1996. return (((ip->i_itemp == NULL) ||
  1997. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  1998. (ip->i_update_core == 0));
  1999. }
  2000. STATIC void
  2001. xfs_ifree_cluster(
  2002. xfs_inode_t *free_ip,
  2003. xfs_trans_t *tp,
  2004. xfs_ino_t inum)
  2005. {
  2006. xfs_mount_t *mp = free_ip->i_mount;
  2007. int blks_per_cluster;
  2008. int nbufs;
  2009. int ninodes;
  2010. int i, j, found, pre_flushed;
  2011. xfs_daddr_t blkno;
  2012. xfs_buf_t *bp;
  2013. xfs_ihash_t *ih;
  2014. xfs_inode_t *ip, **ip_found;
  2015. xfs_inode_log_item_t *iip;
  2016. xfs_log_item_t *lip;
  2017. SPLDECL(s);
  2018. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2019. blks_per_cluster = 1;
  2020. ninodes = mp->m_sb.sb_inopblock;
  2021. nbufs = XFS_IALLOC_BLOCKS(mp);
  2022. } else {
  2023. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2024. mp->m_sb.sb_blocksize;
  2025. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2026. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2027. }
  2028. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2029. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2030. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2031. XFS_INO_TO_AGBNO(mp, inum));
  2032. /*
  2033. * Look for each inode in memory and attempt to lock it,
  2034. * we can be racing with flush and tail pushing here.
  2035. * any inode we get the locks on, add to an array of
  2036. * inode items to process later.
  2037. *
  2038. * The get the buffer lock, we could beat a flush
  2039. * or tail pushing thread to the lock here, in which
  2040. * case they will go looking for the inode buffer
  2041. * and fail, we need some other form of interlock
  2042. * here.
  2043. */
  2044. found = 0;
  2045. for (i = 0; i < ninodes; i++) {
  2046. ih = XFS_IHASH(mp, inum + i);
  2047. read_lock(&ih->ih_lock);
  2048. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2049. if (ip->i_ino == inum + i)
  2050. break;
  2051. }
  2052. /* Inode not in memory or we found it already,
  2053. * nothing to do
  2054. */
  2055. if (!ip || (ip->i_flags & XFS_ISTALE)) {
  2056. read_unlock(&ih->ih_lock);
  2057. continue;
  2058. }
  2059. if (xfs_inode_clean(ip)) {
  2060. read_unlock(&ih->ih_lock);
  2061. continue;
  2062. }
  2063. /* If we can get the locks then add it to the
  2064. * list, otherwise by the time we get the bp lock
  2065. * below it will already be attached to the
  2066. * inode buffer.
  2067. */
  2068. /* This inode will already be locked - by us, lets
  2069. * keep it that way.
  2070. */
  2071. if (ip == free_ip) {
  2072. if (xfs_iflock_nowait(ip)) {
  2073. spin_lock(&ip->i_flags_lock);
  2074. ip->i_flags |= XFS_ISTALE;
  2075. spin_unlock(&ip->i_flags_lock);
  2076. if (xfs_inode_clean(ip)) {
  2077. xfs_ifunlock(ip);
  2078. } else {
  2079. ip_found[found++] = ip;
  2080. }
  2081. }
  2082. read_unlock(&ih->ih_lock);
  2083. continue;
  2084. }
  2085. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2086. if (xfs_iflock_nowait(ip)) {
  2087. spin_lock(&ip->i_flags_lock);
  2088. ip->i_flags |= XFS_ISTALE;
  2089. spin_unlock(&ip->i_flags_lock);
  2090. if (xfs_inode_clean(ip)) {
  2091. xfs_ifunlock(ip);
  2092. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2093. } else {
  2094. ip_found[found++] = ip;
  2095. }
  2096. } else {
  2097. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2098. }
  2099. }
  2100. read_unlock(&ih->ih_lock);
  2101. }
  2102. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2103. mp->m_bsize * blks_per_cluster,
  2104. XFS_BUF_LOCK);
  2105. pre_flushed = 0;
  2106. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2107. while (lip) {
  2108. if (lip->li_type == XFS_LI_INODE) {
  2109. iip = (xfs_inode_log_item_t *)lip;
  2110. ASSERT(iip->ili_logged == 1);
  2111. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2112. AIL_LOCK(mp,s);
  2113. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2114. AIL_UNLOCK(mp, s);
  2115. spin_lock(&iip->ili_inode->i_flags_lock);
  2116. iip->ili_inode->i_flags |= XFS_ISTALE;
  2117. spin_unlock(&iip->ili_inode->i_flags_lock);
  2118. pre_flushed++;
  2119. }
  2120. lip = lip->li_bio_list;
  2121. }
  2122. for (i = 0; i < found; i++) {
  2123. ip = ip_found[i];
  2124. iip = ip->i_itemp;
  2125. if (!iip) {
  2126. ip->i_update_core = 0;
  2127. xfs_ifunlock(ip);
  2128. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2129. continue;
  2130. }
  2131. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2132. iip->ili_format.ilf_fields = 0;
  2133. iip->ili_logged = 1;
  2134. AIL_LOCK(mp,s);
  2135. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2136. AIL_UNLOCK(mp, s);
  2137. xfs_buf_attach_iodone(bp,
  2138. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2139. xfs_istale_done, (xfs_log_item_t *)iip);
  2140. if (ip != free_ip) {
  2141. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2142. }
  2143. }
  2144. if (found || pre_flushed)
  2145. xfs_trans_stale_inode_buf(tp, bp);
  2146. xfs_trans_binval(tp, bp);
  2147. }
  2148. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2149. }
  2150. /*
  2151. * This is called to return an inode to the inode free list.
  2152. * The inode should already be truncated to 0 length and have
  2153. * no pages associated with it. This routine also assumes that
  2154. * the inode is already a part of the transaction.
  2155. *
  2156. * The on-disk copy of the inode will have been added to the list
  2157. * of unlinked inodes in the AGI. We need to remove the inode from
  2158. * that list atomically with respect to freeing it here.
  2159. */
  2160. int
  2161. xfs_ifree(
  2162. xfs_trans_t *tp,
  2163. xfs_inode_t *ip,
  2164. xfs_bmap_free_t *flist)
  2165. {
  2166. int error;
  2167. int delete;
  2168. xfs_ino_t first_ino;
  2169. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2170. ASSERT(ip->i_transp == tp);
  2171. ASSERT(ip->i_d.di_nlink == 0);
  2172. ASSERT(ip->i_d.di_nextents == 0);
  2173. ASSERT(ip->i_d.di_anextents == 0);
  2174. ASSERT((ip->i_d.di_size == 0) ||
  2175. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2176. ASSERT(ip->i_d.di_nblocks == 0);
  2177. /*
  2178. * Pull the on-disk inode from the AGI unlinked list.
  2179. */
  2180. error = xfs_iunlink_remove(tp, ip);
  2181. if (error != 0) {
  2182. return error;
  2183. }
  2184. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2185. if (error != 0) {
  2186. return error;
  2187. }
  2188. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2189. ip->i_d.di_flags = 0;
  2190. ip->i_d.di_dmevmask = 0;
  2191. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2192. ip->i_df.if_ext_max =
  2193. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2194. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2195. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2196. /*
  2197. * Bump the generation count so no one will be confused
  2198. * by reincarnations of this inode.
  2199. */
  2200. ip->i_d.di_gen++;
  2201. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2202. if (delete) {
  2203. xfs_ifree_cluster(ip, tp, first_ino);
  2204. }
  2205. return 0;
  2206. }
  2207. /*
  2208. * Reallocate the space for if_broot based on the number of records
  2209. * being added or deleted as indicated in rec_diff. Move the records
  2210. * and pointers in if_broot to fit the new size. When shrinking this
  2211. * will eliminate holes between the records and pointers created by
  2212. * the caller. When growing this will create holes to be filled in
  2213. * by the caller.
  2214. *
  2215. * The caller must not request to add more records than would fit in
  2216. * the on-disk inode root. If the if_broot is currently NULL, then
  2217. * if we adding records one will be allocated. The caller must also
  2218. * not request that the number of records go below zero, although
  2219. * it can go to zero.
  2220. *
  2221. * ip -- the inode whose if_broot area is changing
  2222. * ext_diff -- the change in the number of records, positive or negative,
  2223. * requested for the if_broot array.
  2224. */
  2225. void
  2226. xfs_iroot_realloc(
  2227. xfs_inode_t *ip,
  2228. int rec_diff,
  2229. int whichfork)
  2230. {
  2231. int cur_max;
  2232. xfs_ifork_t *ifp;
  2233. xfs_bmbt_block_t *new_broot;
  2234. int new_max;
  2235. size_t new_size;
  2236. char *np;
  2237. char *op;
  2238. /*
  2239. * Handle the degenerate case quietly.
  2240. */
  2241. if (rec_diff == 0) {
  2242. return;
  2243. }
  2244. ifp = XFS_IFORK_PTR(ip, whichfork);
  2245. if (rec_diff > 0) {
  2246. /*
  2247. * If there wasn't any memory allocated before, just
  2248. * allocate it now and get out.
  2249. */
  2250. if (ifp->if_broot_bytes == 0) {
  2251. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2252. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2253. KM_SLEEP);
  2254. ifp->if_broot_bytes = (int)new_size;
  2255. return;
  2256. }
  2257. /*
  2258. * If there is already an existing if_broot, then we need
  2259. * to realloc() it and shift the pointers to their new
  2260. * location. The records don't change location because
  2261. * they are kept butted up against the btree block header.
  2262. */
  2263. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2264. new_max = cur_max + rec_diff;
  2265. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2266. ifp->if_broot = (xfs_bmbt_block_t *)
  2267. kmem_realloc(ifp->if_broot,
  2268. new_size,
  2269. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2270. KM_SLEEP);
  2271. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2272. ifp->if_broot_bytes);
  2273. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2274. (int)new_size);
  2275. ifp->if_broot_bytes = (int)new_size;
  2276. ASSERT(ifp->if_broot_bytes <=
  2277. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2278. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2279. return;
  2280. }
  2281. /*
  2282. * rec_diff is less than 0. In this case, we are shrinking the
  2283. * if_broot buffer. It must already exist. If we go to zero
  2284. * records, just get rid of the root and clear the status bit.
  2285. */
  2286. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2287. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2288. new_max = cur_max + rec_diff;
  2289. ASSERT(new_max >= 0);
  2290. if (new_max > 0)
  2291. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2292. else
  2293. new_size = 0;
  2294. if (new_size > 0) {
  2295. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2296. /*
  2297. * First copy over the btree block header.
  2298. */
  2299. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2300. } else {
  2301. new_broot = NULL;
  2302. ifp->if_flags &= ~XFS_IFBROOT;
  2303. }
  2304. /*
  2305. * Only copy the records and pointers if there are any.
  2306. */
  2307. if (new_max > 0) {
  2308. /*
  2309. * First copy the records.
  2310. */
  2311. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2312. ifp->if_broot_bytes);
  2313. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2314. (int)new_size);
  2315. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2316. /*
  2317. * Then copy the pointers.
  2318. */
  2319. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2320. ifp->if_broot_bytes);
  2321. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2322. (int)new_size);
  2323. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2324. }
  2325. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2326. ifp->if_broot = new_broot;
  2327. ifp->if_broot_bytes = (int)new_size;
  2328. ASSERT(ifp->if_broot_bytes <=
  2329. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2330. return;
  2331. }
  2332. /*
  2333. * This is called when the amount of space needed for if_data
  2334. * is increased or decreased. The change in size is indicated by
  2335. * the number of bytes that need to be added or deleted in the
  2336. * byte_diff parameter.
  2337. *
  2338. * If the amount of space needed has decreased below the size of the
  2339. * inline buffer, then switch to using the inline buffer. Otherwise,
  2340. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2341. * to what is needed.
  2342. *
  2343. * ip -- the inode whose if_data area is changing
  2344. * byte_diff -- the change in the number of bytes, positive or negative,
  2345. * requested for the if_data array.
  2346. */
  2347. void
  2348. xfs_idata_realloc(
  2349. xfs_inode_t *ip,
  2350. int byte_diff,
  2351. int whichfork)
  2352. {
  2353. xfs_ifork_t *ifp;
  2354. int new_size;
  2355. int real_size;
  2356. if (byte_diff == 0) {
  2357. return;
  2358. }
  2359. ifp = XFS_IFORK_PTR(ip, whichfork);
  2360. new_size = (int)ifp->if_bytes + byte_diff;
  2361. ASSERT(new_size >= 0);
  2362. if (new_size == 0) {
  2363. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2364. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2365. }
  2366. ifp->if_u1.if_data = NULL;
  2367. real_size = 0;
  2368. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2369. /*
  2370. * If the valid extents/data can fit in if_inline_ext/data,
  2371. * copy them from the malloc'd vector and free it.
  2372. */
  2373. if (ifp->if_u1.if_data == NULL) {
  2374. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2375. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2376. ASSERT(ifp->if_real_bytes != 0);
  2377. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2378. new_size);
  2379. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2380. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2381. }
  2382. real_size = 0;
  2383. } else {
  2384. /*
  2385. * Stuck with malloc/realloc.
  2386. * For inline data, the underlying buffer must be
  2387. * a multiple of 4 bytes in size so that it can be
  2388. * logged and stay on word boundaries. We enforce
  2389. * that here.
  2390. */
  2391. real_size = roundup(new_size, 4);
  2392. if (ifp->if_u1.if_data == NULL) {
  2393. ASSERT(ifp->if_real_bytes == 0);
  2394. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2395. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2396. /*
  2397. * Only do the realloc if the underlying size
  2398. * is really changing.
  2399. */
  2400. if (ifp->if_real_bytes != real_size) {
  2401. ifp->if_u1.if_data =
  2402. kmem_realloc(ifp->if_u1.if_data,
  2403. real_size,
  2404. ifp->if_real_bytes,
  2405. KM_SLEEP);
  2406. }
  2407. } else {
  2408. ASSERT(ifp->if_real_bytes == 0);
  2409. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2410. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2411. ifp->if_bytes);
  2412. }
  2413. }
  2414. ifp->if_real_bytes = real_size;
  2415. ifp->if_bytes = new_size;
  2416. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2417. }
  2418. /*
  2419. * Map inode to disk block and offset.
  2420. *
  2421. * mp -- the mount point structure for the current file system
  2422. * tp -- the current transaction
  2423. * ino -- the inode number of the inode to be located
  2424. * imap -- this structure is filled in with the information necessary
  2425. * to retrieve the given inode from disk
  2426. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2427. * lookups in the inode btree were OK or not
  2428. */
  2429. int
  2430. xfs_imap(
  2431. xfs_mount_t *mp,
  2432. xfs_trans_t *tp,
  2433. xfs_ino_t ino,
  2434. xfs_imap_t *imap,
  2435. uint flags)
  2436. {
  2437. xfs_fsblock_t fsbno;
  2438. int len;
  2439. int off;
  2440. int error;
  2441. fsbno = imap->im_blkno ?
  2442. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2443. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2444. if (error != 0) {
  2445. return error;
  2446. }
  2447. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2448. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2449. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2450. imap->im_ioffset = (ushort)off;
  2451. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2452. return 0;
  2453. }
  2454. void
  2455. xfs_idestroy_fork(
  2456. xfs_inode_t *ip,
  2457. int whichfork)
  2458. {
  2459. xfs_ifork_t *ifp;
  2460. ifp = XFS_IFORK_PTR(ip, whichfork);
  2461. if (ifp->if_broot != NULL) {
  2462. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2463. ifp->if_broot = NULL;
  2464. }
  2465. /*
  2466. * If the format is local, then we can't have an extents
  2467. * array so just look for an inline data array. If we're
  2468. * not local then we may or may not have an extents list,
  2469. * so check and free it up if we do.
  2470. */
  2471. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2472. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2473. (ifp->if_u1.if_data != NULL)) {
  2474. ASSERT(ifp->if_real_bytes != 0);
  2475. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2476. ifp->if_u1.if_data = NULL;
  2477. ifp->if_real_bytes = 0;
  2478. }
  2479. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2480. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2481. ((ifp->if_u1.if_extents != NULL) &&
  2482. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2483. ASSERT(ifp->if_real_bytes != 0);
  2484. xfs_iext_destroy(ifp);
  2485. }
  2486. ASSERT(ifp->if_u1.if_extents == NULL ||
  2487. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2488. ASSERT(ifp->if_real_bytes == 0);
  2489. if (whichfork == XFS_ATTR_FORK) {
  2490. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2491. ip->i_afp = NULL;
  2492. }
  2493. }
  2494. /*
  2495. * This is called free all the memory associated with an inode.
  2496. * It must free the inode itself and any buffers allocated for
  2497. * if_extents/if_data and if_broot. It must also free the lock
  2498. * associated with the inode.
  2499. */
  2500. void
  2501. xfs_idestroy(
  2502. xfs_inode_t *ip)
  2503. {
  2504. switch (ip->i_d.di_mode & S_IFMT) {
  2505. case S_IFREG:
  2506. case S_IFDIR:
  2507. case S_IFLNK:
  2508. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2509. break;
  2510. }
  2511. if (ip->i_afp)
  2512. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2513. mrfree(&ip->i_lock);
  2514. mrfree(&ip->i_iolock);
  2515. freesema(&ip->i_flock);
  2516. #ifdef XFS_BMAP_TRACE
  2517. ktrace_free(ip->i_xtrace);
  2518. #endif
  2519. #ifdef XFS_BMBT_TRACE
  2520. ktrace_free(ip->i_btrace);
  2521. #endif
  2522. #ifdef XFS_RW_TRACE
  2523. ktrace_free(ip->i_rwtrace);
  2524. #endif
  2525. #ifdef XFS_ILOCK_TRACE
  2526. ktrace_free(ip->i_lock_trace);
  2527. #endif
  2528. #ifdef XFS_DIR2_TRACE
  2529. ktrace_free(ip->i_dir_trace);
  2530. #endif
  2531. if (ip->i_itemp) {
  2532. /* XXXdpd should be able to assert this but shutdown
  2533. * is leaving the AIL behind. */
  2534. ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
  2535. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2536. xfs_inode_item_destroy(ip);
  2537. }
  2538. kmem_zone_free(xfs_inode_zone, ip);
  2539. }
  2540. /*
  2541. * Increment the pin count of the given buffer.
  2542. * This value is protected by ipinlock spinlock in the mount structure.
  2543. */
  2544. void
  2545. xfs_ipin(
  2546. xfs_inode_t *ip)
  2547. {
  2548. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2549. atomic_inc(&ip->i_pincount);
  2550. }
  2551. /*
  2552. * Decrement the pin count of the given inode, and wake up
  2553. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2554. * inode must have been previously pinned with a call to xfs_ipin().
  2555. */
  2556. void
  2557. xfs_iunpin(
  2558. xfs_inode_t *ip)
  2559. {
  2560. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2561. if (atomic_dec_and_test(&ip->i_pincount)) {
  2562. /*
  2563. * If the inode is currently being reclaimed, the
  2564. * linux inode _and_ the xfs vnode may have been
  2565. * freed so we cannot reference either of them safely.
  2566. * Hence we should not try to do anything to them
  2567. * if the xfs inode is currently in the reclaim
  2568. * path.
  2569. *
  2570. * However, we still need to issue the unpin wakeup
  2571. * call as the inode reclaim may be blocked waiting for
  2572. * the inode to become unpinned.
  2573. */
  2574. struct inode *inode = NULL;
  2575. spin_lock(&ip->i_flags_lock);
  2576. if (!(ip->i_flags & (XFS_IRECLAIM|XFS_IRECLAIMABLE))) {
  2577. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2578. /* make sync come back and flush this inode */
  2579. if (vp) {
  2580. inode = vn_to_inode(vp);
  2581. if (!(inode->i_state &
  2582. (I_NEW|I_FREEING|I_CLEAR))) {
  2583. inode = igrab(inode);
  2584. if (inode)
  2585. mark_inode_dirty_sync(inode);
  2586. } else
  2587. inode = NULL;
  2588. }
  2589. }
  2590. spin_unlock(&ip->i_flags_lock);
  2591. wake_up(&ip->i_ipin_wait);
  2592. if (inode)
  2593. iput(inode);
  2594. }
  2595. }
  2596. /*
  2597. * This is called to wait for the given inode to be unpinned.
  2598. * It will sleep until this happens. The caller must have the
  2599. * inode locked in at least shared mode so that the buffer cannot
  2600. * be subsequently pinned once someone is waiting for it to be
  2601. * unpinned.
  2602. */
  2603. STATIC void
  2604. xfs_iunpin_wait(
  2605. xfs_inode_t *ip)
  2606. {
  2607. xfs_inode_log_item_t *iip;
  2608. xfs_lsn_t lsn;
  2609. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2610. if (atomic_read(&ip->i_pincount) == 0) {
  2611. return;
  2612. }
  2613. iip = ip->i_itemp;
  2614. if (iip && iip->ili_last_lsn) {
  2615. lsn = iip->ili_last_lsn;
  2616. } else {
  2617. lsn = (xfs_lsn_t)0;
  2618. }
  2619. /*
  2620. * Give the log a push so we don't wait here too long.
  2621. */
  2622. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2623. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2624. }
  2625. /*
  2626. * xfs_iextents_copy()
  2627. *
  2628. * This is called to copy the REAL extents (as opposed to the delayed
  2629. * allocation extents) from the inode into the given buffer. It
  2630. * returns the number of bytes copied into the buffer.
  2631. *
  2632. * If there are no delayed allocation extents, then we can just
  2633. * memcpy() the extents into the buffer. Otherwise, we need to
  2634. * examine each extent in turn and skip those which are delayed.
  2635. */
  2636. int
  2637. xfs_iextents_copy(
  2638. xfs_inode_t *ip,
  2639. xfs_bmbt_rec_t *buffer,
  2640. int whichfork)
  2641. {
  2642. int copied;
  2643. xfs_bmbt_rec_t *dest_ep;
  2644. xfs_bmbt_rec_t *ep;
  2645. #ifdef XFS_BMAP_TRACE
  2646. static char fname[] = "xfs_iextents_copy";
  2647. #endif
  2648. int i;
  2649. xfs_ifork_t *ifp;
  2650. int nrecs;
  2651. xfs_fsblock_t start_block;
  2652. ifp = XFS_IFORK_PTR(ip, whichfork);
  2653. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2654. ASSERT(ifp->if_bytes > 0);
  2655. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2656. xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
  2657. ASSERT(nrecs > 0);
  2658. /*
  2659. * There are some delayed allocation extents in the
  2660. * inode, so copy the extents one at a time and skip
  2661. * the delayed ones. There must be at least one
  2662. * non-delayed extent.
  2663. */
  2664. dest_ep = buffer;
  2665. copied = 0;
  2666. for (i = 0; i < nrecs; i++) {
  2667. ep = xfs_iext_get_ext(ifp, i);
  2668. start_block = xfs_bmbt_get_startblock(ep);
  2669. if (ISNULLSTARTBLOCK(start_block)) {
  2670. /*
  2671. * It's a delayed allocation extent, so skip it.
  2672. */
  2673. continue;
  2674. }
  2675. /* Translate to on disk format */
  2676. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2677. (__uint64_t*)&dest_ep->l0);
  2678. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2679. (__uint64_t*)&dest_ep->l1);
  2680. dest_ep++;
  2681. copied++;
  2682. }
  2683. ASSERT(copied != 0);
  2684. xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
  2685. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2686. }
  2687. /*
  2688. * Each of the following cases stores data into the same region
  2689. * of the on-disk inode, so only one of them can be valid at
  2690. * any given time. While it is possible to have conflicting formats
  2691. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2692. * in EXTENTS format, this can only happen when the fork has
  2693. * changed formats after being modified but before being flushed.
  2694. * In these cases, the format always takes precedence, because the
  2695. * format indicates the current state of the fork.
  2696. */
  2697. /*ARGSUSED*/
  2698. STATIC int
  2699. xfs_iflush_fork(
  2700. xfs_inode_t *ip,
  2701. xfs_dinode_t *dip,
  2702. xfs_inode_log_item_t *iip,
  2703. int whichfork,
  2704. xfs_buf_t *bp)
  2705. {
  2706. char *cp;
  2707. xfs_ifork_t *ifp;
  2708. xfs_mount_t *mp;
  2709. #ifdef XFS_TRANS_DEBUG
  2710. int first;
  2711. #endif
  2712. static const short brootflag[2] =
  2713. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2714. static const short dataflag[2] =
  2715. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2716. static const short extflag[2] =
  2717. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2718. if (iip == NULL)
  2719. return 0;
  2720. ifp = XFS_IFORK_PTR(ip, whichfork);
  2721. /*
  2722. * This can happen if we gave up in iformat in an error path,
  2723. * for the attribute fork.
  2724. */
  2725. if (ifp == NULL) {
  2726. ASSERT(whichfork == XFS_ATTR_FORK);
  2727. return 0;
  2728. }
  2729. cp = XFS_DFORK_PTR(dip, whichfork);
  2730. mp = ip->i_mount;
  2731. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2732. case XFS_DINODE_FMT_LOCAL:
  2733. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2734. (ifp->if_bytes > 0)) {
  2735. ASSERT(ifp->if_u1.if_data != NULL);
  2736. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2737. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2738. }
  2739. break;
  2740. case XFS_DINODE_FMT_EXTENTS:
  2741. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2742. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2743. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2744. (ifp->if_bytes == 0));
  2745. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2746. (ifp->if_bytes > 0));
  2747. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2748. (ifp->if_bytes > 0)) {
  2749. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2750. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2751. whichfork);
  2752. }
  2753. break;
  2754. case XFS_DINODE_FMT_BTREE:
  2755. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2756. (ifp->if_broot_bytes > 0)) {
  2757. ASSERT(ifp->if_broot != NULL);
  2758. ASSERT(ifp->if_broot_bytes <=
  2759. (XFS_IFORK_SIZE(ip, whichfork) +
  2760. XFS_BROOT_SIZE_ADJ));
  2761. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2762. (xfs_bmdr_block_t *)cp,
  2763. XFS_DFORK_SIZE(dip, mp, whichfork));
  2764. }
  2765. break;
  2766. case XFS_DINODE_FMT_DEV:
  2767. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2768. ASSERT(whichfork == XFS_DATA_FORK);
  2769. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2770. }
  2771. break;
  2772. case XFS_DINODE_FMT_UUID:
  2773. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2774. ASSERT(whichfork == XFS_DATA_FORK);
  2775. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2776. sizeof(uuid_t));
  2777. }
  2778. break;
  2779. default:
  2780. ASSERT(0);
  2781. break;
  2782. }
  2783. return 0;
  2784. }
  2785. /*
  2786. * xfs_iflush() will write a modified inode's changes out to the
  2787. * inode's on disk home. The caller must have the inode lock held
  2788. * in at least shared mode and the inode flush semaphore must be
  2789. * held as well. The inode lock will still be held upon return from
  2790. * the call and the caller is free to unlock it.
  2791. * The inode flush lock will be unlocked when the inode reaches the disk.
  2792. * The flags indicate how the inode's buffer should be written out.
  2793. */
  2794. int
  2795. xfs_iflush(
  2796. xfs_inode_t *ip,
  2797. uint flags)
  2798. {
  2799. xfs_inode_log_item_t *iip;
  2800. xfs_buf_t *bp;
  2801. xfs_dinode_t *dip;
  2802. xfs_mount_t *mp;
  2803. int error;
  2804. /* REFERENCED */
  2805. xfs_chash_t *ch;
  2806. xfs_inode_t *iq;
  2807. int clcount; /* count of inodes clustered */
  2808. int bufwasdelwri;
  2809. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2810. SPLDECL(s);
  2811. XFS_STATS_INC(xs_iflush_count);
  2812. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2813. ASSERT(issemalocked(&(ip->i_flock)));
  2814. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2815. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2816. iip = ip->i_itemp;
  2817. mp = ip->i_mount;
  2818. /*
  2819. * If the inode isn't dirty, then just release the inode
  2820. * flush lock and do nothing.
  2821. */
  2822. if ((ip->i_update_core == 0) &&
  2823. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2824. ASSERT((iip != NULL) ?
  2825. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2826. xfs_ifunlock(ip);
  2827. return 0;
  2828. }
  2829. /*
  2830. * We can't flush the inode until it is unpinned, so
  2831. * wait for it. We know noone new can pin it, because
  2832. * we are holding the inode lock shared and you need
  2833. * to hold it exclusively to pin the inode.
  2834. */
  2835. xfs_iunpin_wait(ip);
  2836. /*
  2837. * This may have been unpinned because the filesystem is shutting
  2838. * down forcibly. If that's the case we must not write this inode
  2839. * to disk, because the log record didn't make it to disk!
  2840. */
  2841. if (XFS_FORCED_SHUTDOWN(mp)) {
  2842. ip->i_update_core = 0;
  2843. if (iip)
  2844. iip->ili_format.ilf_fields = 0;
  2845. xfs_ifunlock(ip);
  2846. return XFS_ERROR(EIO);
  2847. }
  2848. /*
  2849. * Get the buffer containing the on-disk inode.
  2850. */
  2851. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2852. if (error) {
  2853. xfs_ifunlock(ip);
  2854. return error;
  2855. }
  2856. /*
  2857. * Decide how buffer will be flushed out. This is done before
  2858. * the call to xfs_iflush_int because this field is zeroed by it.
  2859. */
  2860. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2861. /*
  2862. * Flush out the inode buffer according to the directions
  2863. * of the caller. In the cases where the caller has given
  2864. * us a choice choose the non-delwri case. This is because
  2865. * the inode is in the AIL and we need to get it out soon.
  2866. */
  2867. switch (flags) {
  2868. case XFS_IFLUSH_SYNC:
  2869. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2870. flags = 0;
  2871. break;
  2872. case XFS_IFLUSH_ASYNC:
  2873. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2874. flags = INT_ASYNC;
  2875. break;
  2876. case XFS_IFLUSH_DELWRI:
  2877. flags = INT_DELWRI;
  2878. break;
  2879. default:
  2880. ASSERT(0);
  2881. flags = 0;
  2882. break;
  2883. }
  2884. } else {
  2885. switch (flags) {
  2886. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2887. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2888. case XFS_IFLUSH_DELWRI:
  2889. flags = INT_DELWRI;
  2890. break;
  2891. case XFS_IFLUSH_ASYNC:
  2892. flags = INT_ASYNC;
  2893. break;
  2894. case XFS_IFLUSH_SYNC:
  2895. flags = 0;
  2896. break;
  2897. default:
  2898. ASSERT(0);
  2899. flags = 0;
  2900. break;
  2901. }
  2902. }
  2903. /*
  2904. * First flush out the inode that xfs_iflush was called with.
  2905. */
  2906. error = xfs_iflush_int(ip, bp);
  2907. if (error) {
  2908. goto corrupt_out;
  2909. }
  2910. /*
  2911. * inode clustering:
  2912. * see if other inodes can be gathered into this write
  2913. */
  2914. ip->i_chash->chl_buf = bp;
  2915. ch = XFS_CHASH(mp, ip->i_blkno);
  2916. s = mutex_spinlock(&ch->ch_lock);
  2917. clcount = 0;
  2918. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2919. /*
  2920. * Do an un-protected check to see if the inode is dirty and
  2921. * is a candidate for flushing. These checks will be repeated
  2922. * later after the appropriate locks are acquired.
  2923. */
  2924. iip = iq->i_itemp;
  2925. if ((iq->i_update_core == 0) &&
  2926. ((iip == NULL) ||
  2927. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2928. xfs_ipincount(iq) == 0) {
  2929. continue;
  2930. }
  2931. /*
  2932. * Try to get locks. If any are unavailable,
  2933. * then this inode cannot be flushed and is skipped.
  2934. */
  2935. /* get inode locks (just i_lock) */
  2936. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2937. /* get inode flush lock */
  2938. if (xfs_iflock_nowait(iq)) {
  2939. /* check if pinned */
  2940. if (xfs_ipincount(iq) == 0) {
  2941. /* arriving here means that
  2942. * this inode can be flushed.
  2943. * first re-check that it's
  2944. * dirty
  2945. */
  2946. iip = iq->i_itemp;
  2947. if ((iq->i_update_core != 0)||
  2948. ((iip != NULL) &&
  2949. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2950. clcount++;
  2951. error = xfs_iflush_int(iq, bp);
  2952. if (error) {
  2953. xfs_iunlock(iq,
  2954. XFS_ILOCK_SHARED);
  2955. goto cluster_corrupt_out;
  2956. }
  2957. } else {
  2958. xfs_ifunlock(iq);
  2959. }
  2960. } else {
  2961. xfs_ifunlock(iq);
  2962. }
  2963. }
  2964. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2965. }
  2966. }
  2967. mutex_spinunlock(&ch->ch_lock, s);
  2968. if (clcount) {
  2969. XFS_STATS_INC(xs_icluster_flushcnt);
  2970. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2971. }
  2972. /*
  2973. * If the buffer is pinned then push on the log so we won't
  2974. * get stuck waiting in the write for too long.
  2975. */
  2976. if (XFS_BUF_ISPINNED(bp)){
  2977. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2978. }
  2979. if (flags & INT_DELWRI) {
  2980. xfs_bdwrite(mp, bp);
  2981. } else if (flags & INT_ASYNC) {
  2982. xfs_bawrite(mp, bp);
  2983. } else {
  2984. error = xfs_bwrite(mp, bp);
  2985. }
  2986. return error;
  2987. corrupt_out:
  2988. xfs_buf_relse(bp);
  2989. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2990. xfs_iflush_abort(ip);
  2991. /*
  2992. * Unlocks the flush lock
  2993. */
  2994. return XFS_ERROR(EFSCORRUPTED);
  2995. cluster_corrupt_out:
  2996. /* Corruption detected in the clustering loop. Invalidate the
  2997. * inode buffer and shut down the filesystem.
  2998. */
  2999. mutex_spinunlock(&ch->ch_lock, s);
  3000. /*
  3001. * Clean up the buffer. If it was B_DELWRI, just release it --
  3002. * brelse can handle it with no problems. If not, shut down the
  3003. * filesystem before releasing the buffer.
  3004. */
  3005. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  3006. xfs_buf_relse(bp);
  3007. }
  3008. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  3009. if(!bufwasdelwri) {
  3010. /*
  3011. * Just like incore_relse: if we have b_iodone functions,
  3012. * mark the buffer as an error and call them. Otherwise
  3013. * mark it as stale and brelse.
  3014. */
  3015. if (XFS_BUF_IODONE_FUNC(bp)) {
  3016. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3017. XFS_BUF_UNDONE(bp);
  3018. XFS_BUF_STALE(bp);
  3019. XFS_BUF_SHUT(bp);
  3020. XFS_BUF_ERROR(bp,EIO);
  3021. xfs_biodone(bp);
  3022. } else {
  3023. XFS_BUF_STALE(bp);
  3024. xfs_buf_relse(bp);
  3025. }
  3026. }
  3027. xfs_iflush_abort(iq);
  3028. /*
  3029. * Unlocks the flush lock
  3030. */
  3031. return XFS_ERROR(EFSCORRUPTED);
  3032. }
  3033. STATIC int
  3034. xfs_iflush_int(
  3035. xfs_inode_t *ip,
  3036. xfs_buf_t *bp)
  3037. {
  3038. xfs_inode_log_item_t *iip;
  3039. xfs_dinode_t *dip;
  3040. xfs_mount_t *mp;
  3041. #ifdef XFS_TRANS_DEBUG
  3042. int first;
  3043. #endif
  3044. SPLDECL(s);
  3045. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3046. ASSERT(issemalocked(&(ip->i_flock)));
  3047. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3048. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3049. iip = ip->i_itemp;
  3050. mp = ip->i_mount;
  3051. /*
  3052. * If the inode isn't dirty, then just release the inode
  3053. * flush lock and do nothing.
  3054. */
  3055. if ((ip->i_update_core == 0) &&
  3056. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3057. xfs_ifunlock(ip);
  3058. return 0;
  3059. }
  3060. /* set *dip = inode's place in the buffer */
  3061. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3062. /*
  3063. * Clear i_update_core before copying out the data.
  3064. * This is for coordination with our timestamp updates
  3065. * that don't hold the inode lock. They will always
  3066. * update the timestamps BEFORE setting i_update_core,
  3067. * so if we clear i_update_core after they set it we
  3068. * are guaranteed to see their updates to the timestamps.
  3069. * I believe that this depends on strongly ordered memory
  3070. * semantics, but we have that. We use the SYNCHRONIZE
  3071. * macro to make sure that the compiler does not reorder
  3072. * the i_update_core access below the data copy below.
  3073. */
  3074. ip->i_update_core = 0;
  3075. SYNCHRONIZE();
  3076. /*
  3077. * Make sure to get the latest atime from the Linux inode.
  3078. */
  3079. xfs_synchronize_atime(ip);
  3080. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3081. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3082. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3083. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3084. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3085. goto corrupt_out;
  3086. }
  3087. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3088. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3089. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3090. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3091. ip->i_ino, ip, ip->i_d.di_magic);
  3092. goto corrupt_out;
  3093. }
  3094. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3095. if (XFS_TEST_ERROR(
  3096. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3097. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3098. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3099. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3100. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3101. ip->i_ino, ip);
  3102. goto corrupt_out;
  3103. }
  3104. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3105. if (XFS_TEST_ERROR(
  3106. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3107. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3108. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3109. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3110. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3111. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3112. ip->i_ino, ip);
  3113. goto corrupt_out;
  3114. }
  3115. }
  3116. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3117. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3118. XFS_RANDOM_IFLUSH_5)) {
  3119. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3120. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3121. ip->i_ino,
  3122. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3123. ip->i_d.di_nblocks,
  3124. ip);
  3125. goto corrupt_out;
  3126. }
  3127. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3128. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3129. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3130. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3131. ip->i_ino, ip->i_d.di_forkoff, ip);
  3132. goto corrupt_out;
  3133. }
  3134. /*
  3135. * bump the flush iteration count, used to detect flushes which
  3136. * postdate a log record during recovery.
  3137. */
  3138. ip->i_d.di_flushiter++;
  3139. /*
  3140. * Copy the dirty parts of the inode into the on-disk
  3141. * inode. We always copy out the core of the inode,
  3142. * because if the inode is dirty at all the core must
  3143. * be.
  3144. */
  3145. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3146. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3147. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3148. ip->i_d.di_flushiter = 0;
  3149. /*
  3150. * If this is really an old format inode and the superblock version
  3151. * has not been updated to support only new format inodes, then
  3152. * convert back to the old inode format. If the superblock version
  3153. * has been updated, then make the conversion permanent.
  3154. */
  3155. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3156. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3157. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3158. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3159. /*
  3160. * Convert it back.
  3161. */
  3162. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3163. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3164. } else {
  3165. /*
  3166. * The superblock version has already been bumped,
  3167. * so just make the conversion to the new inode
  3168. * format permanent.
  3169. */
  3170. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3171. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3172. ip->i_d.di_onlink = 0;
  3173. dip->di_core.di_onlink = 0;
  3174. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3175. memset(&(dip->di_core.di_pad[0]), 0,
  3176. sizeof(dip->di_core.di_pad));
  3177. ASSERT(ip->i_d.di_projid == 0);
  3178. }
  3179. }
  3180. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3181. goto corrupt_out;
  3182. }
  3183. if (XFS_IFORK_Q(ip)) {
  3184. /*
  3185. * The only error from xfs_iflush_fork is on the data fork.
  3186. */
  3187. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3188. }
  3189. xfs_inobp_check(mp, bp);
  3190. /*
  3191. * We've recorded everything logged in the inode, so we'd
  3192. * like to clear the ilf_fields bits so we don't log and
  3193. * flush things unnecessarily. However, we can't stop
  3194. * logging all this information until the data we've copied
  3195. * into the disk buffer is written to disk. If we did we might
  3196. * overwrite the copy of the inode in the log with all the
  3197. * data after re-logging only part of it, and in the face of
  3198. * a crash we wouldn't have all the data we need to recover.
  3199. *
  3200. * What we do is move the bits to the ili_last_fields field.
  3201. * When logging the inode, these bits are moved back to the
  3202. * ilf_fields field. In the xfs_iflush_done() routine we
  3203. * clear ili_last_fields, since we know that the information
  3204. * those bits represent is permanently on disk. As long as
  3205. * the flush completes before the inode is logged again, then
  3206. * both ilf_fields and ili_last_fields will be cleared.
  3207. *
  3208. * We can play with the ilf_fields bits here, because the inode
  3209. * lock must be held exclusively in order to set bits there
  3210. * and the flush lock protects the ili_last_fields bits.
  3211. * Set ili_logged so the flush done
  3212. * routine can tell whether or not to look in the AIL.
  3213. * Also, store the current LSN of the inode so that we can tell
  3214. * whether the item has moved in the AIL from xfs_iflush_done().
  3215. * In order to read the lsn we need the AIL lock, because
  3216. * it is a 64 bit value that cannot be read atomically.
  3217. */
  3218. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3219. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3220. iip->ili_format.ilf_fields = 0;
  3221. iip->ili_logged = 1;
  3222. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3223. AIL_LOCK(mp,s);
  3224. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3225. AIL_UNLOCK(mp, s);
  3226. /*
  3227. * Attach the function xfs_iflush_done to the inode's
  3228. * buffer. This will remove the inode from the AIL
  3229. * and unlock the inode's flush lock when the inode is
  3230. * completely written to disk.
  3231. */
  3232. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3233. xfs_iflush_done, (xfs_log_item_t *)iip);
  3234. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3235. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3236. } else {
  3237. /*
  3238. * We're flushing an inode which is not in the AIL and has
  3239. * not been logged but has i_update_core set. For this
  3240. * case we can use a B_DELWRI flush and immediately drop
  3241. * the inode flush lock because we can avoid the whole
  3242. * AIL state thing. It's OK to drop the flush lock now,
  3243. * because we've already locked the buffer and to do anything
  3244. * you really need both.
  3245. */
  3246. if (iip != NULL) {
  3247. ASSERT(iip->ili_logged == 0);
  3248. ASSERT(iip->ili_last_fields == 0);
  3249. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3250. }
  3251. xfs_ifunlock(ip);
  3252. }
  3253. return 0;
  3254. corrupt_out:
  3255. return XFS_ERROR(EFSCORRUPTED);
  3256. }
  3257. /*
  3258. * Flush all inactive inodes in mp.
  3259. */
  3260. void
  3261. xfs_iflush_all(
  3262. xfs_mount_t *mp)
  3263. {
  3264. xfs_inode_t *ip;
  3265. bhv_vnode_t *vp;
  3266. again:
  3267. XFS_MOUNT_ILOCK(mp);
  3268. ip = mp->m_inodes;
  3269. if (ip == NULL)
  3270. goto out;
  3271. do {
  3272. /* Make sure we skip markers inserted by sync */
  3273. if (ip->i_mount == NULL) {
  3274. ip = ip->i_mnext;
  3275. continue;
  3276. }
  3277. vp = XFS_ITOV_NULL(ip);
  3278. if (!vp) {
  3279. XFS_MOUNT_IUNLOCK(mp);
  3280. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3281. goto again;
  3282. }
  3283. ASSERT(vn_count(vp) == 0);
  3284. ip = ip->i_mnext;
  3285. } while (ip != mp->m_inodes);
  3286. out:
  3287. XFS_MOUNT_IUNLOCK(mp);
  3288. }
  3289. /*
  3290. * xfs_iaccess: check accessibility of inode for mode.
  3291. */
  3292. int
  3293. xfs_iaccess(
  3294. xfs_inode_t *ip,
  3295. mode_t mode,
  3296. cred_t *cr)
  3297. {
  3298. int error;
  3299. mode_t orgmode = mode;
  3300. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3301. if (mode & S_IWUSR) {
  3302. umode_t imode = inode->i_mode;
  3303. if (IS_RDONLY(inode) &&
  3304. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3305. return XFS_ERROR(EROFS);
  3306. if (IS_IMMUTABLE(inode))
  3307. return XFS_ERROR(EACCES);
  3308. }
  3309. /*
  3310. * If there's an Access Control List it's used instead of
  3311. * the mode bits.
  3312. */
  3313. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3314. return error ? XFS_ERROR(error) : 0;
  3315. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3316. mode >>= 3;
  3317. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3318. mode >>= 3;
  3319. }
  3320. /*
  3321. * If the DACs are ok we don't need any capability check.
  3322. */
  3323. if ((ip->i_d.di_mode & mode) == mode)
  3324. return 0;
  3325. /*
  3326. * Read/write DACs are always overridable.
  3327. * Executable DACs are overridable if at least one exec bit is set.
  3328. */
  3329. if (!(orgmode & S_IXUSR) ||
  3330. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3331. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3332. return 0;
  3333. if ((orgmode == S_IRUSR) ||
  3334. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3335. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3336. return 0;
  3337. #ifdef NOISE
  3338. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3339. #endif /* NOISE */
  3340. return XFS_ERROR(EACCES);
  3341. }
  3342. return XFS_ERROR(EACCES);
  3343. }
  3344. /*
  3345. * xfs_iroundup: round up argument to next power of two
  3346. */
  3347. uint
  3348. xfs_iroundup(
  3349. uint v)
  3350. {
  3351. int i;
  3352. uint m;
  3353. if ((v & (v - 1)) == 0)
  3354. return v;
  3355. ASSERT((v & 0x80000000) == 0);
  3356. if ((v & (v + 1)) == 0)
  3357. return v + 1;
  3358. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3359. if (v & m)
  3360. continue;
  3361. v |= m;
  3362. if ((v & (v + 1)) == 0)
  3363. return v + 1;
  3364. }
  3365. ASSERT(0);
  3366. return( 0 );
  3367. }
  3368. #ifdef XFS_ILOCK_TRACE
  3369. ktrace_t *xfs_ilock_trace_buf;
  3370. void
  3371. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3372. {
  3373. ktrace_enter(ip->i_lock_trace,
  3374. (void *)ip,
  3375. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3376. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3377. (void *)ra, /* caller of ilock */
  3378. (void *)(unsigned long)current_cpu(),
  3379. (void *)(unsigned long)current_pid(),
  3380. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3381. }
  3382. #endif
  3383. /*
  3384. * Return a pointer to the extent record at file index idx.
  3385. */
  3386. xfs_bmbt_rec_t *
  3387. xfs_iext_get_ext(
  3388. xfs_ifork_t *ifp, /* inode fork pointer */
  3389. xfs_extnum_t idx) /* index of target extent */
  3390. {
  3391. ASSERT(idx >= 0);
  3392. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3393. return ifp->if_u1.if_ext_irec->er_extbuf;
  3394. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3395. xfs_ext_irec_t *erp; /* irec pointer */
  3396. int erp_idx = 0; /* irec index */
  3397. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3398. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3399. return &erp->er_extbuf[page_idx];
  3400. } else if (ifp->if_bytes) {
  3401. return &ifp->if_u1.if_extents[idx];
  3402. } else {
  3403. return NULL;
  3404. }
  3405. }
  3406. /*
  3407. * Insert new item(s) into the extent records for incore inode
  3408. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3409. */
  3410. void
  3411. xfs_iext_insert(
  3412. xfs_ifork_t *ifp, /* inode fork pointer */
  3413. xfs_extnum_t idx, /* starting index of new items */
  3414. xfs_extnum_t count, /* number of inserted items */
  3415. xfs_bmbt_irec_t *new) /* items to insert */
  3416. {
  3417. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3418. xfs_extnum_t i; /* extent record index */
  3419. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3420. xfs_iext_add(ifp, idx, count);
  3421. for (i = idx; i < idx + count; i++, new++) {
  3422. ep = xfs_iext_get_ext(ifp, i);
  3423. xfs_bmbt_set_all(ep, new);
  3424. }
  3425. }
  3426. /*
  3427. * This is called when the amount of space required for incore file
  3428. * extents needs to be increased. The ext_diff parameter stores the
  3429. * number of new extents being added and the idx parameter contains
  3430. * the extent index where the new extents will be added. If the new
  3431. * extents are being appended, then we just need to (re)allocate and
  3432. * initialize the space. Otherwise, if the new extents are being
  3433. * inserted into the middle of the existing entries, a bit more work
  3434. * is required to make room for the new extents to be inserted. The
  3435. * caller is responsible for filling in the new extent entries upon
  3436. * return.
  3437. */
  3438. void
  3439. xfs_iext_add(
  3440. xfs_ifork_t *ifp, /* inode fork pointer */
  3441. xfs_extnum_t idx, /* index to begin adding exts */
  3442. int ext_diff) /* number of extents to add */
  3443. {
  3444. int byte_diff; /* new bytes being added */
  3445. int new_size; /* size of extents after adding */
  3446. xfs_extnum_t nextents; /* number of extents in file */
  3447. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3448. ASSERT((idx >= 0) && (idx <= nextents));
  3449. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3450. new_size = ifp->if_bytes + byte_diff;
  3451. /*
  3452. * If the new number of extents (nextents + ext_diff)
  3453. * fits inside the inode, then continue to use the inline
  3454. * extent buffer.
  3455. */
  3456. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3457. if (idx < nextents) {
  3458. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3459. &ifp->if_u2.if_inline_ext[idx],
  3460. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3461. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3462. }
  3463. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3464. ifp->if_real_bytes = 0;
  3465. ifp->if_lastex = nextents + ext_diff;
  3466. }
  3467. /*
  3468. * Otherwise use a linear (direct) extent list.
  3469. * If the extents are currently inside the inode,
  3470. * xfs_iext_realloc_direct will switch us from
  3471. * inline to direct extent allocation mode.
  3472. */
  3473. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3474. xfs_iext_realloc_direct(ifp, new_size);
  3475. if (idx < nextents) {
  3476. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3477. &ifp->if_u1.if_extents[idx],
  3478. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3479. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3480. }
  3481. }
  3482. /* Indirection array */
  3483. else {
  3484. xfs_ext_irec_t *erp;
  3485. int erp_idx = 0;
  3486. int page_idx = idx;
  3487. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3488. if (ifp->if_flags & XFS_IFEXTIREC) {
  3489. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3490. } else {
  3491. xfs_iext_irec_init(ifp);
  3492. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3493. erp = ifp->if_u1.if_ext_irec;
  3494. }
  3495. /* Extents fit in target extent page */
  3496. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3497. if (page_idx < erp->er_extcount) {
  3498. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3499. &erp->er_extbuf[page_idx],
  3500. (erp->er_extcount - page_idx) *
  3501. sizeof(xfs_bmbt_rec_t));
  3502. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3503. }
  3504. erp->er_extcount += ext_diff;
  3505. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3506. }
  3507. /* Insert a new extent page */
  3508. else if (erp) {
  3509. xfs_iext_add_indirect_multi(ifp,
  3510. erp_idx, page_idx, ext_diff);
  3511. }
  3512. /*
  3513. * If extent(s) are being appended to the last page in
  3514. * the indirection array and the new extent(s) don't fit
  3515. * in the page, then erp is NULL and erp_idx is set to
  3516. * the next index needed in the indirection array.
  3517. */
  3518. else {
  3519. int count = ext_diff;
  3520. while (count) {
  3521. erp = xfs_iext_irec_new(ifp, erp_idx);
  3522. erp->er_extcount = count;
  3523. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3524. if (count) {
  3525. erp_idx++;
  3526. }
  3527. }
  3528. }
  3529. }
  3530. ifp->if_bytes = new_size;
  3531. }
  3532. /*
  3533. * This is called when incore extents are being added to the indirection
  3534. * array and the new extents do not fit in the target extent list. The
  3535. * erp_idx parameter contains the irec index for the target extent list
  3536. * in the indirection array, and the idx parameter contains the extent
  3537. * index within the list. The number of extents being added is stored
  3538. * in the count parameter.
  3539. *
  3540. * |-------| |-------|
  3541. * | | | | idx - number of extents before idx
  3542. * | idx | | count |
  3543. * | | | | count - number of extents being inserted at idx
  3544. * |-------| |-------|
  3545. * | count | | nex2 | nex2 - number of extents after idx + count
  3546. * |-------| |-------|
  3547. */
  3548. void
  3549. xfs_iext_add_indirect_multi(
  3550. xfs_ifork_t *ifp, /* inode fork pointer */
  3551. int erp_idx, /* target extent irec index */
  3552. xfs_extnum_t idx, /* index within target list */
  3553. int count) /* new extents being added */
  3554. {
  3555. int byte_diff; /* new bytes being added */
  3556. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3557. xfs_extnum_t ext_diff; /* number of extents to add */
  3558. xfs_extnum_t ext_cnt; /* new extents still needed */
  3559. xfs_extnum_t nex2; /* extents after idx + count */
  3560. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3561. int nlists; /* number of irec's (lists) */
  3562. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3563. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3564. nex2 = erp->er_extcount - idx;
  3565. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3566. /*
  3567. * Save second part of target extent list
  3568. * (all extents past */
  3569. if (nex2) {
  3570. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3571. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3572. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3573. erp->er_extcount -= nex2;
  3574. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3575. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3576. }
  3577. /*
  3578. * Add the new extents to the end of the target
  3579. * list, then allocate new irec record(s) and
  3580. * extent buffer(s) as needed to store the rest
  3581. * of the new extents.
  3582. */
  3583. ext_cnt = count;
  3584. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3585. if (ext_diff) {
  3586. erp->er_extcount += ext_diff;
  3587. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3588. ext_cnt -= ext_diff;
  3589. }
  3590. while (ext_cnt) {
  3591. erp_idx++;
  3592. erp = xfs_iext_irec_new(ifp, erp_idx);
  3593. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3594. erp->er_extcount = ext_diff;
  3595. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3596. ext_cnt -= ext_diff;
  3597. }
  3598. /* Add nex2 extents back to indirection array */
  3599. if (nex2) {
  3600. xfs_extnum_t ext_avail;
  3601. int i;
  3602. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3603. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3604. i = 0;
  3605. /*
  3606. * If nex2 extents fit in the current page, append
  3607. * nex2_ep after the new extents.
  3608. */
  3609. if (nex2 <= ext_avail) {
  3610. i = erp->er_extcount;
  3611. }
  3612. /*
  3613. * Otherwise, check if space is available in the
  3614. * next page.
  3615. */
  3616. else if ((erp_idx < nlists - 1) &&
  3617. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3618. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3619. erp_idx++;
  3620. erp++;
  3621. /* Create a hole for nex2 extents */
  3622. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3623. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3624. }
  3625. /*
  3626. * Final choice, create a new extent page for
  3627. * nex2 extents.
  3628. */
  3629. else {
  3630. erp_idx++;
  3631. erp = xfs_iext_irec_new(ifp, erp_idx);
  3632. }
  3633. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3634. kmem_free(nex2_ep, byte_diff);
  3635. erp->er_extcount += nex2;
  3636. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3637. }
  3638. }
  3639. /*
  3640. * This is called when the amount of space required for incore file
  3641. * extents needs to be decreased. The ext_diff parameter stores the
  3642. * number of extents to be removed and the idx parameter contains
  3643. * the extent index where the extents will be removed from.
  3644. *
  3645. * If the amount of space needed has decreased below the linear
  3646. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3647. * extent array. Otherwise, use kmem_realloc() to adjust the
  3648. * size to what is needed.
  3649. */
  3650. void
  3651. xfs_iext_remove(
  3652. xfs_ifork_t *ifp, /* inode fork pointer */
  3653. xfs_extnum_t idx, /* index to begin removing exts */
  3654. int ext_diff) /* number of extents to remove */
  3655. {
  3656. xfs_extnum_t nextents; /* number of extents in file */
  3657. int new_size; /* size of extents after removal */
  3658. ASSERT(ext_diff > 0);
  3659. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3660. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3661. if (new_size == 0) {
  3662. xfs_iext_destroy(ifp);
  3663. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3664. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3665. } else if (ifp->if_real_bytes) {
  3666. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3667. } else {
  3668. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3669. }
  3670. ifp->if_bytes = new_size;
  3671. }
  3672. /*
  3673. * This removes ext_diff extents from the inline buffer, beginning
  3674. * at extent index idx.
  3675. */
  3676. void
  3677. xfs_iext_remove_inline(
  3678. xfs_ifork_t *ifp, /* inode fork pointer */
  3679. xfs_extnum_t idx, /* index to begin removing exts */
  3680. int ext_diff) /* number of extents to remove */
  3681. {
  3682. int nextents; /* number of extents in file */
  3683. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3684. ASSERT(idx < XFS_INLINE_EXTS);
  3685. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3686. ASSERT(((nextents - ext_diff) > 0) &&
  3687. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3688. if (idx + ext_diff < nextents) {
  3689. memmove(&ifp->if_u2.if_inline_ext[idx],
  3690. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3691. (nextents - (idx + ext_diff)) *
  3692. sizeof(xfs_bmbt_rec_t));
  3693. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3694. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3695. } else {
  3696. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3697. ext_diff * sizeof(xfs_bmbt_rec_t));
  3698. }
  3699. }
  3700. /*
  3701. * This removes ext_diff extents from a linear (direct) extent list,
  3702. * beginning at extent index idx. If the extents are being removed
  3703. * from the end of the list (ie. truncate) then we just need to re-
  3704. * allocate the list to remove the extra space. Otherwise, if the
  3705. * extents are being removed from the middle of the existing extent
  3706. * entries, then we first need to move the extent records beginning
  3707. * at idx + ext_diff up in the list to overwrite the records being
  3708. * removed, then remove the extra space via kmem_realloc.
  3709. */
  3710. void
  3711. xfs_iext_remove_direct(
  3712. xfs_ifork_t *ifp, /* inode fork pointer */
  3713. xfs_extnum_t idx, /* index to begin removing exts */
  3714. int ext_diff) /* number of extents to remove */
  3715. {
  3716. xfs_extnum_t nextents; /* number of extents in file */
  3717. int new_size; /* size of extents after removal */
  3718. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3719. new_size = ifp->if_bytes -
  3720. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3721. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3722. if (new_size == 0) {
  3723. xfs_iext_destroy(ifp);
  3724. return;
  3725. }
  3726. /* Move extents up in the list (if needed) */
  3727. if (idx + ext_diff < nextents) {
  3728. memmove(&ifp->if_u1.if_extents[idx],
  3729. &ifp->if_u1.if_extents[idx + ext_diff],
  3730. (nextents - (idx + ext_diff)) *
  3731. sizeof(xfs_bmbt_rec_t));
  3732. }
  3733. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3734. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3735. /*
  3736. * Reallocate the direct extent list. If the extents
  3737. * will fit inside the inode then xfs_iext_realloc_direct
  3738. * will switch from direct to inline extent allocation
  3739. * mode for us.
  3740. */
  3741. xfs_iext_realloc_direct(ifp, new_size);
  3742. ifp->if_bytes = new_size;
  3743. }
  3744. /*
  3745. * This is called when incore extents are being removed from the
  3746. * indirection array and the extents being removed span multiple extent
  3747. * buffers. The idx parameter contains the file extent index where we
  3748. * want to begin removing extents, and the count parameter contains
  3749. * how many extents need to be removed.
  3750. *
  3751. * |-------| |-------|
  3752. * | nex1 | | | nex1 - number of extents before idx
  3753. * |-------| | count |
  3754. * | | | | count - number of extents being removed at idx
  3755. * | count | |-------|
  3756. * | | | nex2 | nex2 - number of extents after idx + count
  3757. * |-------| |-------|
  3758. */
  3759. void
  3760. xfs_iext_remove_indirect(
  3761. xfs_ifork_t *ifp, /* inode fork pointer */
  3762. xfs_extnum_t idx, /* index to begin removing extents */
  3763. int count) /* number of extents to remove */
  3764. {
  3765. xfs_ext_irec_t *erp; /* indirection array pointer */
  3766. int erp_idx = 0; /* indirection array index */
  3767. xfs_extnum_t ext_cnt; /* extents left to remove */
  3768. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3769. xfs_extnum_t nex1; /* number of extents before idx */
  3770. xfs_extnum_t nex2; /* extents after idx + count */
  3771. int nlists; /* entries in indirection array */
  3772. int page_idx = idx; /* index in target extent list */
  3773. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3774. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3775. ASSERT(erp != NULL);
  3776. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3777. nex1 = page_idx;
  3778. ext_cnt = count;
  3779. while (ext_cnt) {
  3780. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3781. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3782. /*
  3783. * Check for deletion of entire list;
  3784. * xfs_iext_irec_remove() updates extent offsets.
  3785. */
  3786. if (ext_diff == erp->er_extcount) {
  3787. xfs_iext_irec_remove(ifp, erp_idx);
  3788. ext_cnt -= ext_diff;
  3789. nex1 = 0;
  3790. if (ext_cnt) {
  3791. ASSERT(erp_idx < ifp->if_real_bytes /
  3792. XFS_IEXT_BUFSZ);
  3793. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3794. nex1 = 0;
  3795. continue;
  3796. } else {
  3797. break;
  3798. }
  3799. }
  3800. /* Move extents up (if needed) */
  3801. if (nex2) {
  3802. memmove(&erp->er_extbuf[nex1],
  3803. &erp->er_extbuf[nex1 + ext_diff],
  3804. nex2 * sizeof(xfs_bmbt_rec_t));
  3805. }
  3806. /* Zero out rest of page */
  3807. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3808. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3809. /* Update remaining counters */
  3810. erp->er_extcount -= ext_diff;
  3811. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3812. ext_cnt -= ext_diff;
  3813. nex1 = 0;
  3814. erp_idx++;
  3815. erp++;
  3816. }
  3817. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3818. xfs_iext_irec_compact(ifp);
  3819. }
  3820. /*
  3821. * Create, destroy, or resize a linear (direct) block of extents.
  3822. */
  3823. void
  3824. xfs_iext_realloc_direct(
  3825. xfs_ifork_t *ifp, /* inode fork pointer */
  3826. int new_size) /* new size of extents */
  3827. {
  3828. int rnew_size; /* real new size of extents */
  3829. rnew_size = new_size;
  3830. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3831. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3832. (new_size != ifp->if_real_bytes)));
  3833. /* Free extent records */
  3834. if (new_size == 0) {
  3835. xfs_iext_destroy(ifp);
  3836. }
  3837. /* Resize direct extent list and zero any new bytes */
  3838. else if (ifp->if_real_bytes) {
  3839. /* Check if extents will fit inside the inode */
  3840. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3841. xfs_iext_direct_to_inline(ifp, new_size /
  3842. (uint)sizeof(xfs_bmbt_rec_t));
  3843. ifp->if_bytes = new_size;
  3844. return;
  3845. }
  3846. if ((new_size & (new_size - 1)) != 0) {
  3847. rnew_size = xfs_iroundup(new_size);
  3848. }
  3849. if (rnew_size != ifp->if_real_bytes) {
  3850. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3851. kmem_realloc(ifp->if_u1.if_extents,
  3852. rnew_size,
  3853. ifp->if_real_bytes,
  3854. KM_SLEEP);
  3855. }
  3856. if (rnew_size > ifp->if_real_bytes) {
  3857. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3858. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3859. rnew_size - ifp->if_real_bytes);
  3860. }
  3861. }
  3862. /*
  3863. * Switch from the inline extent buffer to a direct
  3864. * extent list. Be sure to include the inline extent
  3865. * bytes in new_size.
  3866. */
  3867. else {
  3868. new_size += ifp->if_bytes;
  3869. if ((new_size & (new_size - 1)) != 0) {
  3870. rnew_size = xfs_iroundup(new_size);
  3871. }
  3872. xfs_iext_inline_to_direct(ifp, rnew_size);
  3873. }
  3874. ifp->if_real_bytes = rnew_size;
  3875. ifp->if_bytes = new_size;
  3876. }
  3877. /*
  3878. * Switch from linear (direct) extent records to inline buffer.
  3879. */
  3880. void
  3881. xfs_iext_direct_to_inline(
  3882. xfs_ifork_t *ifp, /* inode fork pointer */
  3883. xfs_extnum_t nextents) /* number of extents in file */
  3884. {
  3885. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3886. ASSERT(nextents <= XFS_INLINE_EXTS);
  3887. /*
  3888. * The inline buffer was zeroed when we switched
  3889. * from inline to direct extent allocation mode,
  3890. * so we don't need to clear it here.
  3891. */
  3892. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3893. nextents * sizeof(xfs_bmbt_rec_t));
  3894. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3895. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3896. ifp->if_real_bytes = 0;
  3897. }
  3898. /*
  3899. * Switch from inline buffer to linear (direct) extent records.
  3900. * new_size should already be rounded up to the next power of 2
  3901. * by the caller (when appropriate), so use new_size as it is.
  3902. * However, since new_size may be rounded up, we can't update
  3903. * if_bytes here. It is the caller's responsibility to update
  3904. * if_bytes upon return.
  3905. */
  3906. void
  3907. xfs_iext_inline_to_direct(
  3908. xfs_ifork_t *ifp, /* inode fork pointer */
  3909. int new_size) /* number of extents in file */
  3910. {
  3911. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3912. kmem_alloc(new_size, KM_SLEEP);
  3913. memset(ifp->if_u1.if_extents, 0, new_size);
  3914. if (ifp->if_bytes) {
  3915. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3916. ifp->if_bytes);
  3917. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3918. sizeof(xfs_bmbt_rec_t));
  3919. }
  3920. ifp->if_real_bytes = new_size;
  3921. }
  3922. /*
  3923. * Resize an extent indirection array to new_size bytes.
  3924. */
  3925. void
  3926. xfs_iext_realloc_indirect(
  3927. xfs_ifork_t *ifp, /* inode fork pointer */
  3928. int new_size) /* new indirection array size */
  3929. {
  3930. int nlists; /* number of irec's (ex lists) */
  3931. int size; /* current indirection array size */
  3932. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3933. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3934. size = nlists * sizeof(xfs_ext_irec_t);
  3935. ASSERT(ifp->if_real_bytes);
  3936. ASSERT((new_size >= 0) && (new_size != size));
  3937. if (new_size == 0) {
  3938. xfs_iext_destroy(ifp);
  3939. } else {
  3940. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3941. kmem_realloc(ifp->if_u1.if_ext_irec,
  3942. new_size, size, KM_SLEEP);
  3943. }
  3944. }
  3945. /*
  3946. * Switch from indirection array to linear (direct) extent allocations.
  3947. */
  3948. void
  3949. xfs_iext_indirect_to_direct(
  3950. xfs_ifork_t *ifp) /* inode fork pointer */
  3951. {
  3952. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3953. xfs_extnum_t nextents; /* number of extents in file */
  3954. int size; /* size of file extents */
  3955. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3956. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3957. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3958. size = nextents * sizeof(xfs_bmbt_rec_t);
  3959. xfs_iext_irec_compact_full(ifp);
  3960. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3961. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3962. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3963. ifp->if_flags &= ~XFS_IFEXTIREC;
  3964. ifp->if_u1.if_extents = ep;
  3965. ifp->if_bytes = size;
  3966. if (nextents < XFS_LINEAR_EXTS) {
  3967. xfs_iext_realloc_direct(ifp, size);
  3968. }
  3969. }
  3970. /*
  3971. * Free incore file extents.
  3972. */
  3973. void
  3974. xfs_iext_destroy(
  3975. xfs_ifork_t *ifp) /* inode fork pointer */
  3976. {
  3977. if (ifp->if_flags & XFS_IFEXTIREC) {
  3978. int erp_idx;
  3979. int nlists;
  3980. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3981. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3982. xfs_iext_irec_remove(ifp, erp_idx);
  3983. }
  3984. ifp->if_flags &= ~XFS_IFEXTIREC;
  3985. } else if (ifp->if_real_bytes) {
  3986. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3987. } else if (ifp->if_bytes) {
  3988. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3989. sizeof(xfs_bmbt_rec_t));
  3990. }
  3991. ifp->if_u1.if_extents = NULL;
  3992. ifp->if_real_bytes = 0;
  3993. ifp->if_bytes = 0;
  3994. }
  3995. /*
  3996. * Return a pointer to the extent record for file system block bno.
  3997. */
  3998. xfs_bmbt_rec_t * /* pointer to found extent record */
  3999. xfs_iext_bno_to_ext(
  4000. xfs_ifork_t *ifp, /* inode fork pointer */
  4001. xfs_fileoff_t bno, /* block number to search for */
  4002. xfs_extnum_t *idxp) /* index of target extent */
  4003. {
  4004. xfs_bmbt_rec_t *base; /* pointer to first extent */
  4005. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  4006. xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
  4007. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4008. int high; /* upper boundary in search */
  4009. xfs_extnum_t idx = 0; /* index of target extent */
  4010. int low; /* lower boundary in search */
  4011. xfs_extnum_t nextents; /* number of file extents */
  4012. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4013. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4014. if (nextents == 0) {
  4015. *idxp = 0;
  4016. return NULL;
  4017. }
  4018. low = 0;
  4019. if (ifp->if_flags & XFS_IFEXTIREC) {
  4020. /* Find target extent list */
  4021. int erp_idx = 0;
  4022. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4023. base = erp->er_extbuf;
  4024. high = erp->er_extcount - 1;
  4025. } else {
  4026. base = ifp->if_u1.if_extents;
  4027. high = nextents - 1;
  4028. }
  4029. /* Binary search extent records */
  4030. while (low <= high) {
  4031. idx = (low + high) >> 1;
  4032. ep = base + idx;
  4033. startoff = xfs_bmbt_get_startoff(ep);
  4034. blockcount = xfs_bmbt_get_blockcount(ep);
  4035. if (bno < startoff) {
  4036. high = idx - 1;
  4037. } else if (bno >= startoff + blockcount) {
  4038. low = idx + 1;
  4039. } else {
  4040. /* Convert back to file-based extent index */
  4041. if (ifp->if_flags & XFS_IFEXTIREC) {
  4042. idx += erp->er_extoff;
  4043. }
  4044. *idxp = idx;
  4045. return ep;
  4046. }
  4047. }
  4048. /* Convert back to file-based extent index */
  4049. if (ifp->if_flags & XFS_IFEXTIREC) {
  4050. idx += erp->er_extoff;
  4051. }
  4052. if (bno >= startoff + blockcount) {
  4053. if (++idx == nextents) {
  4054. ep = NULL;
  4055. } else {
  4056. ep = xfs_iext_get_ext(ifp, idx);
  4057. }
  4058. }
  4059. *idxp = idx;
  4060. return ep;
  4061. }
  4062. /*
  4063. * Return a pointer to the indirection array entry containing the
  4064. * extent record for filesystem block bno. Store the index of the
  4065. * target irec in *erp_idxp.
  4066. */
  4067. xfs_ext_irec_t * /* pointer to found extent record */
  4068. xfs_iext_bno_to_irec(
  4069. xfs_ifork_t *ifp, /* inode fork pointer */
  4070. xfs_fileoff_t bno, /* block number to search for */
  4071. int *erp_idxp) /* irec index of target ext list */
  4072. {
  4073. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4074. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4075. int erp_idx; /* indirection array index */
  4076. int nlists; /* number of extent irec's (lists) */
  4077. int high; /* binary search upper limit */
  4078. int low; /* binary search lower limit */
  4079. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4080. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4081. erp_idx = 0;
  4082. low = 0;
  4083. high = nlists - 1;
  4084. while (low <= high) {
  4085. erp_idx = (low + high) >> 1;
  4086. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4087. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4088. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4089. high = erp_idx - 1;
  4090. } else if (erp_next && bno >=
  4091. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4092. low = erp_idx + 1;
  4093. } else {
  4094. break;
  4095. }
  4096. }
  4097. *erp_idxp = erp_idx;
  4098. return erp;
  4099. }
  4100. /*
  4101. * Return a pointer to the indirection array entry containing the
  4102. * extent record at file extent index *idxp. Store the index of the
  4103. * target irec in *erp_idxp and store the page index of the target
  4104. * extent record in *idxp.
  4105. */
  4106. xfs_ext_irec_t *
  4107. xfs_iext_idx_to_irec(
  4108. xfs_ifork_t *ifp, /* inode fork pointer */
  4109. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4110. int *erp_idxp, /* pointer to target irec */
  4111. int realloc) /* new bytes were just added */
  4112. {
  4113. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4114. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4115. int erp_idx; /* indirection array index */
  4116. int nlists; /* number of irec's (ex lists) */
  4117. int high; /* binary search upper limit */
  4118. int low; /* binary search lower limit */
  4119. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4120. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4121. ASSERT(page_idx >= 0 && page_idx <=
  4122. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4123. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4124. erp_idx = 0;
  4125. low = 0;
  4126. high = nlists - 1;
  4127. /* Binary search extent irec's */
  4128. while (low <= high) {
  4129. erp_idx = (low + high) >> 1;
  4130. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4131. prev = erp_idx > 0 ? erp - 1 : NULL;
  4132. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4133. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4134. high = erp_idx - 1;
  4135. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4136. (page_idx == erp->er_extoff + erp->er_extcount &&
  4137. !realloc)) {
  4138. low = erp_idx + 1;
  4139. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4140. erp->er_extcount == XFS_LINEAR_EXTS) {
  4141. ASSERT(realloc);
  4142. page_idx = 0;
  4143. erp_idx++;
  4144. erp = erp_idx < nlists ? erp + 1 : NULL;
  4145. break;
  4146. } else {
  4147. page_idx -= erp->er_extoff;
  4148. break;
  4149. }
  4150. }
  4151. *idxp = page_idx;
  4152. *erp_idxp = erp_idx;
  4153. return(erp);
  4154. }
  4155. /*
  4156. * Allocate and initialize an indirection array once the space needed
  4157. * for incore extents increases above XFS_IEXT_BUFSZ.
  4158. */
  4159. void
  4160. xfs_iext_irec_init(
  4161. xfs_ifork_t *ifp) /* inode fork pointer */
  4162. {
  4163. xfs_ext_irec_t *erp; /* indirection array pointer */
  4164. xfs_extnum_t nextents; /* number of extents in file */
  4165. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4166. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4167. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4168. erp = (xfs_ext_irec_t *)
  4169. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4170. if (nextents == 0) {
  4171. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  4172. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4173. } else if (!ifp->if_real_bytes) {
  4174. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4175. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4176. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4177. }
  4178. erp->er_extbuf = ifp->if_u1.if_extents;
  4179. erp->er_extcount = nextents;
  4180. erp->er_extoff = 0;
  4181. ifp->if_flags |= XFS_IFEXTIREC;
  4182. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4183. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4184. ifp->if_u1.if_ext_irec = erp;
  4185. return;
  4186. }
  4187. /*
  4188. * Allocate and initialize a new entry in the indirection array.
  4189. */
  4190. xfs_ext_irec_t *
  4191. xfs_iext_irec_new(
  4192. xfs_ifork_t *ifp, /* inode fork pointer */
  4193. int erp_idx) /* index for new irec */
  4194. {
  4195. xfs_ext_irec_t *erp; /* indirection array pointer */
  4196. int i; /* loop counter */
  4197. int nlists; /* number of irec's (ex lists) */
  4198. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4199. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4200. /* Resize indirection array */
  4201. xfs_iext_realloc_indirect(ifp, ++nlists *
  4202. sizeof(xfs_ext_irec_t));
  4203. /*
  4204. * Move records down in the array so the
  4205. * new page can use erp_idx.
  4206. */
  4207. erp = ifp->if_u1.if_ext_irec;
  4208. for (i = nlists - 1; i > erp_idx; i--) {
  4209. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4210. }
  4211. ASSERT(i == erp_idx);
  4212. /* Initialize new extent record */
  4213. erp = ifp->if_u1.if_ext_irec;
  4214. erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
  4215. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4216. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4217. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4218. erp[erp_idx].er_extcount = 0;
  4219. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4220. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4221. return (&erp[erp_idx]);
  4222. }
  4223. /*
  4224. * Remove a record from the indirection array.
  4225. */
  4226. void
  4227. xfs_iext_irec_remove(
  4228. xfs_ifork_t *ifp, /* inode fork pointer */
  4229. int erp_idx) /* irec index to remove */
  4230. {
  4231. xfs_ext_irec_t *erp; /* indirection array pointer */
  4232. int i; /* loop counter */
  4233. int nlists; /* number of irec's (ex lists) */
  4234. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4235. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4236. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4237. if (erp->er_extbuf) {
  4238. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4239. -erp->er_extcount);
  4240. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4241. }
  4242. /* Compact extent records */
  4243. erp = ifp->if_u1.if_ext_irec;
  4244. for (i = erp_idx; i < nlists - 1; i++) {
  4245. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4246. }
  4247. /*
  4248. * Manually free the last extent record from the indirection
  4249. * array. A call to xfs_iext_realloc_indirect() with a size
  4250. * of zero would result in a call to xfs_iext_destroy() which
  4251. * would in turn call this function again, creating a nasty
  4252. * infinite loop.
  4253. */
  4254. if (--nlists) {
  4255. xfs_iext_realloc_indirect(ifp,
  4256. nlists * sizeof(xfs_ext_irec_t));
  4257. } else {
  4258. kmem_free(ifp->if_u1.if_ext_irec,
  4259. sizeof(xfs_ext_irec_t));
  4260. }
  4261. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4262. }
  4263. /*
  4264. * This is called to clean up large amounts of unused memory allocated
  4265. * by the indirection array. Before compacting anything though, verify
  4266. * that the indirection array is still needed and switch back to the
  4267. * linear extent list (or even the inline buffer) if possible. The
  4268. * compaction policy is as follows:
  4269. *
  4270. * Full Compaction: Extents fit into a single page (or inline buffer)
  4271. * Full Compaction: Extents occupy less than 10% of allocated space
  4272. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4273. * No Compaction: Extents occupy at least 50% of allocated space
  4274. */
  4275. void
  4276. xfs_iext_irec_compact(
  4277. xfs_ifork_t *ifp) /* inode fork pointer */
  4278. {
  4279. xfs_extnum_t nextents; /* number of extents in file */
  4280. int nlists; /* number of irec's (ex lists) */
  4281. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4282. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4283. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4284. if (nextents == 0) {
  4285. xfs_iext_destroy(ifp);
  4286. } else if (nextents <= XFS_INLINE_EXTS) {
  4287. xfs_iext_indirect_to_direct(ifp);
  4288. xfs_iext_direct_to_inline(ifp, nextents);
  4289. } else if (nextents <= XFS_LINEAR_EXTS) {
  4290. xfs_iext_indirect_to_direct(ifp);
  4291. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4292. xfs_iext_irec_compact_full(ifp);
  4293. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4294. xfs_iext_irec_compact_pages(ifp);
  4295. }
  4296. }
  4297. /*
  4298. * Combine extents from neighboring extent pages.
  4299. */
  4300. void
  4301. xfs_iext_irec_compact_pages(
  4302. xfs_ifork_t *ifp) /* inode fork pointer */
  4303. {
  4304. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4305. int erp_idx = 0; /* indirection array index */
  4306. int nlists; /* number of irec's (ex lists) */
  4307. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4308. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4309. while (erp_idx < nlists - 1) {
  4310. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4311. erp_next = erp + 1;
  4312. if (erp_next->er_extcount <=
  4313. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4314. memmove(&erp->er_extbuf[erp->er_extcount],
  4315. erp_next->er_extbuf, erp_next->er_extcount *
  4316. sizeof(xfs_bmbt_rec_t));
  4317. erp->er_extcount += erp_next->er_extcount;
  4318. /*
  4319. * Free page before removing extent record
  4320. * so er_extoffs don't get modified in
  4321. * xfs_iext_irec_remove.
  4322. */
  4323. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4324. erp_next->er_extbuf = NULL;
  4325. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4326. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4327. } else {
  4328. erp_idx++;
  4329. }
  4330. }
  4331. }
  4332. /*
  4333. * Fully compact the extent records managed by the indirection array.
  4334. */
  4335. void
  4336. xfs_iext_irec_compact_full(
  4337. xfs_ifork_t *ifp) /* inode fork pointer */
  4338. {
  4339. xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
  4340. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4341. int erp_idx = 0; /* extent irec index */
  4342. int ext_avail; /* empty entries in ex list */
  4343. int ext_diff; /* number of exts to add */
  4344. int nlists; /* number of irec's (ex lists) */
  4345. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4346. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4347. erp = ifp->if_u1.if_ext_irec;
  4348. ep = &erp->er_extbuf[erp->er_extcount];
  4349. erp_next = erp + 1;
  4350. ep_next = erp_next->er_extbuf;
  4351. while (erp_idx < nlists - 1) {
  4352. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4353. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4354. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4355. erp->er_extcount += ext_diff;
  4356. erp_next->er_extcount -= ext_diff;
  4357. /* Remove next page */
  4358. if (erp_next->er_extcount == 0) {
  4359. /*
  4360. * Free page before removing extent record
  4361. * so er_extoffs don't get modified in
  4362. * xfs_iext_irec_remove.
  4363. */
  4364. kmem_free(erp_next->er_extbuf,
  4365. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4366. erp_next->er_extbuf = NULL;
  4367. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4368. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4369. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4370. /* Update next page */
  4371. } else {
  4372. /* Move rest of page up to become next new page */
  4373. memmove(erp_next->er_extbuf, ep_next,
  4374. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4375. ep_next = erp_next->er_extbuf;
  4376. memset(&ep_next[erp_next->er_extcount], 0,
  4377. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4378. sizeof(xfs_bmbt_rec_t));
  4379. }
  4380. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4381. erp_idx++;
  4382. if (erp_idx < nlists)
  4383. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4384. else
  4385. break;
  4386. }
  4387. ep = &erp->er_extbuf[erp->er_extcount];
  4388. erp_next = erp + 1;
  4389. ep_next = erp_next->er_extbuf;
  4390. }
  4391. }
  4392. /*
  4393. * This is called to update the er_extoff field in the indirection
  4394. * array when extents have been added or removed from one of the
  4395. * extent lists. erp_idx contains the irec index to begin updating
  4396. * at and ext_diff contains the number of extents that were added
  4397. * or removed.
  4398. */
  4399. void
  4400. xfs_iext_irec_update_extoffs(
  4401. xfs_ifork_t *ifp, /* inode fork pointer */
  4402. int erp_idx, /* irec index to update */
  4403. int ext_diff) /* number of new extents */
  4404. {
  4405. int i; /* loop counter */
  4406. int nlists; /* number of irec's (ex lists */
  4407. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4408. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4409. for (i = erp_idx; i < nlists; i++) {
  4410. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4411. }
  4412. }