xfs_super.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_bit.h"
  20. #include "xfs_log.h"
  21. #include "xfs_clnt.h"
  22. #include "xfs_inum.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_dir2.h"
  27. #include "xfs_alloc.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_quota.h"
  30. #include "xfs_mount.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_ialloc.h"
  40. #include "xfs_bmap.h"
  41. #include "xfs_rtalloc.h"
  42. #include "xfs_error.h"
  43. #include "xfs_itable.h"
  44. #include "xfs_rw.h"
  45. #include "xfs_acl.h"
  46. #include "xfs_cap.h"
  47. #include "xfs_mac.h"
  48. #include "xfs_attr.h"
  49. #include "xfs_buf_item.h"
  50. #include "xfs_utils.h"
  51. #include "xfs_version.h"
  52. #include <linux/namei.h>
  53. #include <linux/init.h>
  54. #include <linux/mount.h>
  55. #include <linux/mempool.h>
  56. #include <linux/writeback.h>
  57. #include <linux/kthread.h>
  58. STATIC struct quotactl_ops xfs_quotactl_operations;
  59. STATIC struct super_operations xfs_super_operations;
  60. STATIC kmem_zone_t *xfs_vnode_zone;
  61. STATIC kmem_zone_t *xfs_ioend_zone;
  62. mempool_t *xfs_ioend_pool;
  63. STATIC struct xfs_mount_args *
  64. xfs_args_allocate(
  65. struct super_block *sb,
  66. int silent)
  67. {
  68. struct xfs_mount_args *args;
  69. args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
  70. args->logbufs = args->logbufsize = -1;
  71. strncpy(args->fsname, sb->s_id, MAXNAMELEN);
  72. /* Copy the already-parsed mount(2) flags we're interested in */
  73. if (sb->s_flags & MS_DIRSYNC)
  74. args->flags |= XFSMNT_DIRSYNC;
  75. if (sb->s_flags & MS_SYNCHRONOUS)
  76. args->flags |= XFSMNT_WSYNC;
  77. if (silent)
  78. args->flags |= XFSMNT_QUIET;
  79. args->flags |= XFSMNT_32BITINODES;
  80. return args;
  81. }
  82. __uint64_t
  83. xfs_max_file_offset(
  84. unsigned int blockshift)
  85. {
  86. unsigned int pagefactor = 1;
  87. unsigned int bitshift = BITS_PER_LONG - 1;
  88. /* Figure out maximum filesize, on Linux this can depend on
  89. * the filesystem blocksize (on 32 bit platforms).
  90. * __block_prepare_write does this in an [unsigned] long...
  91. * page->index << (PAGE_CACHE_SHIFT - bbits)
  92. * So, for page sized blocks (4K on 32 bit platforms),
  93. * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
  94. * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
  95. * but for smaller blocksizes it is less (bbits = log2 bsize).
  96. * Note1: get_block_t takes a long (implicit cast from above)
  97. * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
  98. * can optionally convert the [unsigned] long from above into
  99. * an [unsigned] long long.
  100. */
  101. #if BITS_PER_LONG == 32
  102. # if defined(CONFIG_LBD)
  103. ASSERT(sizeof(sector_t) == 8);
  104. pagefactor = PAGE_CACHE_SIZE;
  105. bitshift = BITS_PER_LONG;
  106. # else
  107. pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
  108. # endif
  109. #endif
  110. return (((__uint64_t)pagefactor) << bitshift) - 1;
  111. }
  112. STATIC __inline__ void
  113. xfs_set_inodeops(
  114. struct inode *inode)
  115. {
  116. switch (inode->i_mode & S_IFMT) {
  117. case S_IFREG:
  118. inode->i_op = &xfs_inode_operations;
  119. inode->i_fop = &xfs_file_operations;
  120. inode->i_mapping->a_ops = &xfs_address_space_operations;
  121. break;
  122. case S_IFDIR:
  123. inode->i_op = &xfs_dir_inode_operations;
  124. inode->i_fop = &xfs_dir_file_operations;
  125. break;
  126. case S_IFLNK:
  127. inode->i_op = &xfs_symlink_inode_operations;
  128. if (inode->i_blocks)
  129. inode->i_mapping->a_ops = &xfs_address_space_operations;
  130. break;
  131. default:
  132. inode->i_op = &xfs_inode_operations;
  133. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  134. break;
  135. }
  136. }
  137. STATIC __inline__ void
  138. xfs_revalidate_inode(
  139. xfs_mount_t *mp,
  140. bhv_vnode_t *vp,
  141. xfs_inode_t *ip)
  142. {
  143. struct inode *inode = vn_to_inode(vp);
  144. inode->i_mode = ip->i_d.di_mode;
  145. inode->i_nlink = ip->i_d.di_nlink;
  146. inode->i_uid = ip->i_d.di_uid;
  147. inode->i_gid = ip->i_d.di_gid;
  148. switch (inode->i_mode & S_IFMT) {
  149. case S_IFBLK:
  150. case S_IFCHR:
  151. inode->i_rdev =
  152. MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
  153. sysv_minor(ip->i_df.if_u2.if_rdev));
  154. break;
  155. default:
  156. inode->i_rdev = 0;
  157. break;
  158. }
  159. inode->i_generation = ip->i_d.di_gen;
  160. i_size_write(inode, ip->i_d.di_size);
  161. inode->i_blocks =
  162. XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
  163. inode->i_atime.tv_sec = ip->i_d.di_atime.t_sec;
  164. inode->i_atime.tv_nsec = ip->i_d.di_atime.t_nsec;
  165. inode->i_mtime.tv_sec = ip->i_d.di_mtime.t_sec;
  166. inode->i_mtime.tv_nsec = ip->i_d.di_mtime.t_nsec;
  167. inode->i_ctime.tv_sec = ip->i_d.di_ctime.t_sec;
  168. inode->i_ctime.tv_nsec = ip->i_d.di_ctime.t_nsec;
  169. if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
  170. inode->i_flags |= S_IMMUTABLE;
  171. else
  172. inode->i_flags &= ~S_IMMUTABLE;
  173. if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
  174. inode->i_flags |= S_APPEND;
  175. else
  176. inode->i_flags &= ~S_APPEND;
  177. if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
  178. inode->i_flags |= S_SYNC;
  179. else
  180. inode->i_flags &= ~S_SYNC;
  181. if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
  182. inode->i_flags |= S_NOATIME;
  183. else
  184. inode->i_flags &= ~S_NOATIME;
  185. vp->v_flag &= ~VMODIFIED;
  186. }
  187. void
  188. xfs_initialize_vnode(
  189. bhv_desc_t *bdp,
  190. bhv_vnode_t *vp,
  191. bhv_desc_t *inode_bhv,
  192. int unlock)
  193. {
  194. xfs_inode_t *ip = XFS_BHVTOI(inode_bhv);
  195. struct inode *inode = vn_to_inode(vp);
  196. if (!inode_bhv->bd_vobj) {
  197. vp->v_vfsp = bhvtovfs(bdp);
  198. bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
  199. bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
  200. }
  201. /*
  202. * We need to set the ops vectors, and unlock the inode, but if
  203. * we have been called during the new inode create process, it is
  204. * too early to fill in the Linux inode. We will get called a
  205. * second time once the inode is properly set up, and then we can
  206. * finish our work.
  207. */
  208. if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
  209. xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
  210. xfs_set_inodeops(inode);
  211. spin_lock(&ip->i_flags_lock);
  212. ip->i_flags &= ~XFS_INEW;
  213. spin_unlock(&ip->i_flags_lock);
  214. barrier();
  215. unlock_new_inode(inode);
  216. }
  217. }
  218. int
  219. xfs_blkdev_get(
  220. xfs_mount_t *mp,
  221. const char *name,
  222. struct block_device **bdevp)
  223. {
  224. int error = 0;
  225. *bdevp = open_bdev_excl(name, 0, mp);
  226. if (IS_ERR(*bdevp)) {
  227. error = PTR_ERR(*bdevp);
  228. printk("XFS: Invalid device [%s], error=%d\n", name, error);
  229. }
  230. return -error;
  231. }
  232. void
  233. xfs_blkdev_put(
  234. struct block_device *bdev)
  235. {
  236. if (bdev)
  237. close_bdev_excl(bdev);
  238. }
  239. /*
  240. * Try to write out the superblock using barriers.
  241. */
  242. STATIC int
  243. xfs_barrier_test(
  244. xfs_mount_t *mp)
  245. {
  246. xfs_buf_t *sbp = xfs_getsb(mp, 0);
  247. int error;
  248. XFS_BUF_UNDONE(sbp);
  249. XFS_BUF_UNREAD(sbp);
  250. XFS_BUF_UNDELAYWRITE(sbp);
  251. XFS_BUF_WRITE(sbp);
  252. XFS_BUF_UNASYNC(sbp);
  253. XFS_BUF_ORDERED(sbp);
  254. xfsbdstrat(mp, sbp);
  255. error = xfs_iowait(sbp);
  256. /*
  257. * Clear all the flags we set and possible error state in the
  258. * buffer. We only did the write to try out whether barriers
  259. * worked and shouldn't leave any traces in the superblock
  260. * buffer.
  261. */
  262. XFS_BUF_DONE(sbp);
  263. XFS_BUF_ERROR(sbp, 0);
  264. XFS_BUF_UNORDERED(sbp);
  265. xfs_buf_relse(sbp);
  266. return error;
  267. }
  268. void
  269. xfs_mountfs_check_barriers(xfs_mount_t *mp)
  270. {
  271. int error;
  272. if (mp->m_logdev_targp != mp->m_ddev_targp) {
  273. xfs_fs_cmn_err(CE_NOTE, mp,
  274. "Disabling barriers, not supported with external log device");
  275. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  276. return;
  277. }
  278. if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
  279. QUEUE_ORDERED_NONE) {
  280. xfs_fs_cmn_err(CE_NOTE, mp,
  281. "Disabling barriers, not supported by the underlying device");
  282. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  283. return;
  284. }
  285. if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
  286. xfs_fs_cmn_err(CE_NOTE, mp,
  287. "Disabling barriers, underlying device is readonly");
  288. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  289. return;
  290. }
  291. error = xfs_barrier_test(mp);
  292. if (error) {
  293. xfs_fs_cmn_err(CE_NOTE, mp,
  294. "Disabling barriers, trial barrier write failed");
  295. mp->m_flags &= ~XFS_MOUNT_BARRIER;
  296. return;
  297. }
  298. }
  299. void
  300. xfs_blkdev_issue_flush(
  301. xfs_buftarg_t *buftarg)
  302. {
  303. blkdev_issue_flush(buftarg->bt_bdev, NULL);
  304. }
  305. STATIC struct inode *
  306. xfs_fs_alloc_inode(
  307. struct super_block *sb)
  308. {
  309. bhv_vnode_t *vp;
  310. vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
  311. if (unlikely(!vp))
  312. return NULL;
  313. return vn_to_inode(vp);
  314. }
  315. STATIC void
  316. xfs_fs_destroy_inode(
  317. struct inode *inode)
  318. {
  319. kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
  320. }
  321. STATIC void
  322. xfs_fs_inode_init_once(
  323. void *vnode,
  324. kmem_zone_t *zonep,
  325. unsigned long flags)
  326. {
  327. if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
  328. SLAB_CTOR_CONSTRUCTOR)
  329. inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
  330. }
  331. STATIC int
  332. xfs_init_zones(void)
  333. {
  334. xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
  335. KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
  336. KM_ZONE_SPREAD,
  337. xfs_fs_inode_init_once);
  338. if (!xfs_vnode_zone)
  339. goto out;
  340. xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
  341. if (!xfs_ioend_zone)
  342. goto out_destroy_vnode_zone;
  343. xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
  344. xfs_ioend_zone);
  345. if (!xfs_ioend_pool)
  346. goto out_free_ioend_zone;
  347. return 0;
  348. out_free_ioend_zone:
  349. kmem_zone_destroy(xfs_ioend_zone);
  350. out_destroy_vnode_zone:
  351. kmem_zone_destroy(xfs_vnode_zone);
  352. out:
  353. return -ENOMEM;
  354. }
  355. STATIC void
  356. xfs_destroy_zones(void)
  357. {
  358. mempool_destroy(xfs_ioend_pool);
  359. kmem_zone_destroy(xfs_vnode_zone);
  360. kmem_zone_destroy(xfs_ioend_zone);
  361. }
  362. /*
  363. * Attempt to flush the inode, this will actually fail
  364. * if the inode is pinned, but we dirty the inode again
  365. * at the point when it is unpinned after a log write,
  366. * since this is when the inode itself becomes flushable.
  367. */
  368. STATIC int
  369. xfs_fs_write_inode(
  370. struct inode *inode,
  371. int sync)
  372. {
  373. bhv_vnode_t *vp = vn_from_inode(inode);
  374. int error = 0, flags = FLUSH_INODE;
  375. if (vp) {
  376. vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
  377. if (sync)
  378. flags |= FLUSH_SYNC;
  379. error = bhv_vop_iflush(vp, flags);
  380. if (error == EAGAIN)
  381. error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
  382. }
  383. return -error;
  384. }
  385. STATIC void
  386. xfs_fs_clear_inode(
  387. struct inode *inode)
  388. {
  389. bhv_vnode_t *vp = vn_from_inode(inode);
  390. vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
  391. XFS_STATS_INC(vn_rele);
  392. XFS_STATS_INC(vn_remove);
  393. XFS_STATS_INC(vn_reclaim);
  394. XFS_STATS_DEC(vn_active);
  395. /*
  396. * This can happen because xfs_iget_core calls xfs_idestroy if we
  397. * find an inode with di_mode == 0 but without IGET_CREATE set.
  398. */
  399. if (VNHEAD(vp))
  400. bhv_vop_inactive(vp, NULL);
  401. VN_LOCK(vp);
  402. vp->v_flag &= ~VMODIFIED;
  403. VN_UNLOCK(vp, 0);
  404. if (VNHEAD(vp))
  405. if (bhv_vop_reclaim(vp))
  406. panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
  407. ASSERT(VNHEAD(vp) == NULL);
  408. #ifdef XFS_VNODE_TRACE
  409. ktrace_free(vp->v_trace);
  410. #endif
  411. }
  412. /*
  413. * Enqueue a work item to be picked up by the vfs xfssyncd thread.
  414. * Doing this has two advantages:
  415. * - It saves on stack space, which is tight in certain situations
  416. * - It can be used (with care) as a mechanism to avoid deadlocks.
  417. * Flushing while allocating in a full filesystem requires both.
  418. */
  419. STATIC void
  420. xfs_syncd_queue_work(
  421. struct bhv_vfs *vfs,
  422. void *data,
  423. void (*syncer)(bhv_vfs_t *, void *))
  424. {
  425. struct bhv_vfs_sync_work *work;
  426. work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
  427. INIT_LIST_HEAD(&work->w_list);
  428. work->w_syncer = syncer;
  429. work->w_data = data;
  430. work->w_vfs = vfs;
  431. spin_lock(&vfs->vfs_sync_lock);
  432. list_add_tail(&work->w_list, &vfs->vfs_sync_list);
  433. spin_unlock(&vfs->vfs_sync_lock);
  434. wake_up_process(vfs->vfs_sync_task);
  435. }
  436. /*
  437. * Flush delayed allocate data, attempting to free up reserved space
  438. * from existing allocations. At this point a new allocation attempt
  439. * has failed with ENOSPC and we are in the process of scratching our
  440. * heads, looking about for more room...
  441. */
  442. STATIC void
  443. xfs_flush_inode_work(
  444. bhv_vfs_t *vfs,
  445. void *inode)
  446. {
  447. filemap_flush(((struct inode *)inode)->i_mapping);
  448. iput((struct inode *)inode);
  449. }
  450. void
  451. xfs_flush_inode(
  452. xfs_inode_t *ip)
  453. {
  454. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  455. struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
  456. igrab(inode);
  457. xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
  458. delay(msecs_to_jiffies(500));
  459. }
  460. /*
  461. * This is the "bigger hammer" version of xfs_flush_inode_work...
  462. * (IOW, "If at first you don't succeed, use a Bigger Hammer").
  463. */
  464. STATIC void
  465. xfs_flush_device_work(
  466. bhv_vfs_t *vfs,
  467. void *inode)
  468. {
  469. sync_blockdev(vfs->vfs_super->s_bdev);
  470. iput((struct inode *)inode);
  471. }
  472. void
  473. xfs_flush_device(
  474. xfs_inode_t *ip)
  475. {
  476. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  477. struct bhv_vfs *vfs = XFS_MTOVFS(ip->i_mount);
  478. igrab(inode);
  479. xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
  480. delay(msecs_to_jiffies(500));
  481. xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
  482. }
  483. STATIC void
  484. vfs_sync_worker(
  485. bhv_vfs_t *vfsp,
  486. void *unused)
  487. {
  488. int error;
  489. if (!(vfsp->vfs_flag & VFS_RDONLY))
  490. error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
  491. SYNC_ATTR | SYNC_REFCACHE, NULL);
  492. vfsp->vfs_sync_seq++;
  493. wmb();
  494. wake_up(&vfsp->vfs_wait_single_sync_task);
  495. }
  496. STATIC int
  497. xfssyncd(
  498. void *arg)
  499. {
  500. long timeleft;
  501. bhv_vfs_t *vfsp = (bhv_vfs_t *) arg;
  502. bhv_vfs_sync_work_t *work, *n;
  503. LIST_HEAD (tmp);
  504. timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
  505. for (;;) {
  506. timeleft = schedule_timeout_interruptible(timeleft);
  507. /* swsusp */
  508. try_to_freeze();
  509. if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
  510. break;
  511. spin_lock(&vfsp->vfs_sync_lock);
  512. /*
  513. * We can get woken by laptop mode, to do a sync -
  514. * that's the (only!) case where the list would be
  515. * empty with time remaining.
  516. */
  517. if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
  518. if (!timeleft)
  519. timeleft = xfs_syncd_centisecs *
  520. msecs_to_jiffies(10);
  521. INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
  522. list_add_tail(&vfsp->vfs_sync_work.w_list,
  523. &vfsp->vfs_sync_list);
  524. }
  525. list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
  526. list_move(&work->w_list, &tmp);
  527. spin_unlock(&vfsp->vfs_sync_lock);
  528. list_for_each_entry_safe(work, n, &tmp, w_list) {
  529. (*work->w_syncer)(vfsp, work->w_data);
  530. list_del(&work->w_list);
  531. if (work == &vfsp->vfs_sync_work)
  532. continue;
  533. kmem_free(work, sizeof(struct bhv_vfs_sync_work));
  534. }
  535. }
  536. return 0;
  537. }
  538. STATIC int
  539. xfs_fs_start_syncd(
  540. bhv_vfs_t *vfsp)
  541. {
  542. vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
  543. vfsp->vfs_sync_work.w_vfs = vfsp;
  544. vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
  545. if (IS_ERR(vfsp->vfs_sync_task))
  546. return -PTR_ERR(vfsp->vfs_sync_task);
  547. return 0;
  548. }
  549. STATIC void
  550. xfs_fs_stop_syncd(
  551. bhv_vfs_t *vfsp)
  552. {
  553. kthread_stop(vfsp->vfs_sync_task);
  554. }
  555. STATIC void
  556. xfs_fs_put_super(
  557. struct super_block *sb)
  558. {
  559. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  560. int error;
  561. xfs_fs_stop_syncd(vfsp);
  562. bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
  563. error = bhv_vfs_unmount(vfsp, 0, NULL);
  564. if (error) {
  565. printk("XFS: unmount got error=%d\n", error);
  566. printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
  567. } else {
  568. vfs_deallocate(vfsp);
  569. }
  570. }
  571. STATIC void
  572. xfs_fs_write_super(
  573. struct super_block *sb)
  574. {
  575. if (!(sb->s_flags & MS_RDONLY))
  576. bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
  577. sb->s_dirt = 0;
  578. }
  579. STATIC int
  580. xfs_fs_sync_super(
  581. struct super_block *sb,
  582. int wait)
  583. {
  584. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  585. int error;
  586. int flags;
  587. if (unlikely(sb->s_frozen == SB_FREEZE_WRITE))
  588. flags = SYNC_QUIESCE;
  589. else
  590. flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
  591. error = bhv_vfs_sync(vfsp, flags, NULL);
  592. sb->s_dirt = 0;
  593. if (unlikely(laptop_mode)) {
  594. int prev_sync_seq = vfsp->vfs_sync_seq;
  595. /*
  596. * The disk must be active because we're syncing.
  597. * We schedule xfssyncd now (now that the disk is
  598. * active) instead of later (when it might not be).
  599. */
  600. wake_up_process(vfsp->vfs_sync_task);
  601. /*
  602. * We have to wait for the sync iteration to complete.
  603. * If we don't, the disk activity caused by the sync
  604. * will come after the sync is completed, and that
  605. * triggers another sync from laptop mode.
  606. */
  607. wait_event(vfsp->vfs_wait_single_sync_task,
  608. vfsp->vfs_sync_seq != prev_sync_seq);
  609. }
  610. return -error;
  611. }
  612. STATIC int
  613. xfs_fs_statfs(
  614. struct dentry *dentry,
  615. struct kstatfs *statp)
  616. {
  617. return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
  618. vn_from_inode(dentry->d_inode));
  619. }
  620. STATIC int
  621. xfs_fs_remount(
  622. struct super_block *sb,
  623. int *flags,
  624. char *options)
  625. {
  626. bhv_vfs_t *vfsp = vfs_from_sb(sb);
  627. struct xfs_mount_args *args = xfs_args_allocate(sb, 0);
  628. int error;
  629. error = bhv_vfs_parseargs(vfsp, options, args, 1);
  630. if (!error)
  631. error = bhv_vfs_mntupdate(vfsp, flags, args);
  632. kmem_free(args, sizeof(*args));
  633. return -error;
  634. }
  635. STATIC void
  636. xfs_fs_lockfs(
  637. struct super_block *sb)
  638. {
  639. bhv_vfs_freeze(vfs_from_sb(sb));
  640. }
  641. STATIC int
  642. xfs_fs_show_options(
  643. struct seq_file *m,
  644. struct vfsmount *mnt)
  645. {
  646. return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
  647. }
  648. STATIC int
  649. xfs_fs_quotasync(
  650. struct super_block *sb,
  651. int type)
  652. {
  653. return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
  654. }
  655. STATIC int
  656. xfs_fs_getxstate(
  657. struct super_block *sb,
  658. struct fs_quota_stat *fqs)
  659. {
  660. return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
  661. }
  662. STATIC int
  663. xfs_fs_setxstate(
  664. struct super_block *sb,
  665. unsigned int flags,
  666. int op)
  667. {
  668. return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
  669. }
  670. STATIC int
  671. xfs_fs_getxquota(
  672. struct super_block *sb,
  673. int type,
  674. qid_t id,
  675. struct fs_disk_quota *fdq)
  676. {
  677. return -bhv_vfs_quotactl(vfs_from_sb(sb),
  678. (type == USRQUOTA) ? Q_XGETQUOTA :
  679. ((type == GRPQUOTA) ? Q_XGETGQUOTA :
  680. Q_XGETPQUOTA), id, (caddr_t)fdq);
  681. }
  682. STATIC int
  683. xfs_fs_setxquota(
  684. struct super_block *sb,
  685. int type,
  686. qid_t id,
  687. struct fs_disk_quota *fdq)
  688. {
  689. return -bhv_vfs_quotactl(vfs_from_sb(sb),
  690. (type == USRQUOTA) ? Q_XSETQLIM :
  691. ((type == GRPQUOTA) ? Q_XSETGQLIM :
  692. Q_XSETPQLIM), id, (caddr_t)fdq);
  693. }
  694. STATIC int
  695. xfs_fs_fill_super(
  696. struct super_block *sb,
  697. void *data,
  698. int silent)
  699. {
  700. struct bhv_vnode *rootvp;
  701. struct bhv_vfs *vfsp = vfs_allocate(sb);
  702. struct xfs_mount_args *args = xfs_args_allocate(sb, silent);
  703. struct kstatfs statvfs;
  704. int error;
  705. bhv_insert_all_vfsops(vfsp);
  706. error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
  707. if (error) {
  708. bhv_remove_all_vfsops(vfsp, 1);
  709. goto fail_vfsop;
  710. }
  711. sb_min_blocksize(sb, BBSIZE);
  712. sb->s_export_op = &xfs_export_operations;
  713. sb->s_qcop = &xfs_quotactl_operations;
  714. sb->s_op = &xfs_super_operations;
  715. error = bhv_vfs_mount(vfsp, args, NULL);
  716. if (error) {
  717. bhv_remove_all_vfsops(vfsp, 1);
  718. goto fail_vfsop;
  719. }
  720. error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
  721. if (error)
  722. goto fail_unmount;
  723. sb->s_dirt = 1;
  724. sb->s_magic = statvfs.f_type;
  725. sb->s_blocksize = statvfs.f_bsize;
  726. sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
  727. sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
  728. sb->s_time_gran = 1;
  729. set_posix_acl_flag(sb);
  730. error = bhv_vfs_root(vfsp, &rootvp);
  731. if (error)
  732. goto fail_unmount;
  733. sb->s_root = d_alloc_root(vn_to_inode(rootvp));
  734. if (!sb->s_root) {
  735. error = ENOMEM;
  736. goto fail_vnrele;
  737. }
  738. if (is_bad_inode(sb->s_root->d_inode)) {
  739. error = EINVAL;
  740. goto fail_vnrele;
  741. }
  742. if ((error = xfs_fs_start_syncd(vfsp)))
  743. goto fail_vnrele;
  744. vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
  745. kmem_free(args, sizeof(*args));
  746. return 0;
  747. fail_vnrele:
  748. if (sb->s_root) {
  749. dput(sb->s_root);
  750. sb->s_root = NULL;
  751. } else {
  752. VN_RELE(rootvp);
  753. }
  754. fail_unmount:
  755. bhv_vfs_unmount(vfsp, 0, NULL);
  756. fail_vfsop:
  757. vfs_deallocate(vfsp);
  758. kmem_free(args, sizeof(*args));
  759. return -error;
  760. }
  761. STATIC int
  762. xfs_fs_get_sb(
  763. struct file_system_type *fs_type,
  764. int flags,
  765. const char *dev_name,
  766. void *data,
  767. struct vfsmount *mnt)
  768. {
  769. return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
  770. mnt);
  771. }
  772. STATIC struct super_operations xfs_super_operations = {
  773. .alloc_inode = xfs_fs_alloc_inode,
  774. .destroy_inode = xfs_fs_destroy_inode,
  775. .write_inode = xfs_fs_write_inode,
  776. .clear_inode = xfs_fs_clear_inode,
  777. .put_super = xfs_fs_put_super,
  778. .write_super = xfs_fs_write_super,
  779. .sync_fs = xfs_fs_sync_super,
  780. .write_super_lockfs = xfs_fs_lockfs,
  781. .statfs = xfs_fs_statfs,
  782. .remount_fs = xfs_fs_remount,
  783. .show_options = xfs_fs_show_options,
  784. };
  785. STATIC struct quotactl_ops xfs_quotactl_operations = {
  786. .quota_sync = xfs_fs_quotasync,
  787. .get_xstate = xfs_fs_getxstate,
  788. .set_xstate = xfs_fs_setxstate,
  789. .get_xquota = xfs_fs_getxquota,
  790. .set_xquota = xfs_fs_setxquota,
  791. };
  792. STATIC struct file_system_type xfs_fs_type = {
  793. .owner = THIS_MODULE,
  794. .name = "xfs",
  795. .get_sb = xfs_fs_get_sb,
  796. .kill_sb = kill_block_super,
  797. .fs_flags = FS_REQUIRES_DEV,
  798. };
  799. STATIC int __init
  800. init_xfs_fs( void )
  801. {
  802. int error;
  803. struct sysinfo si;
  804. static char message[] __initdata = KERN_INFO \
  805. XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
  806. printk(message);
  807. si_meminfo(&si);
  808. xfs_physmem = si.totalram;
  809. ktrace_init(64);
  810. error = xfs_init_zones();
  811. if (error < 0)
  812. goto undo_zones;
  813. error = xfs_buf_init();
  814. if (error < 0)
  815. goto undo_buffers;
  816. vn_init();
  817. xfs_init();
  818. uuid_init();
  819. vfs_initquota();
  820. error = register_filesystem(&xfs_fs_type);
  821. if (error)
  822. goto undo_register;
  823. return 0;
  824. undo_register:
  825. xfs_buf_terminate();
  826. undo_buffers:
  827. xfs_destroy_zones();
  828. undo_zones:
  829. return error;
  830. }
  831. STATIC void __exit
  832. exit_xfs_fs( void )
  833. {
  834. vfs_exitquota();
  835. unregister_filesystem(&xfs_fs_type);
  836. xfs_cleanup();
  837. xfs_buf_terminate();
  838. xfs_destroy_zones();
  839. ktrace_uninit();
  840. }
  841. module_init(init_xfs_fs);
  842. module_exit(exit_xfs_fs);
  843. MODULE_AUTHOR("Silicon Graphics, Inc.");
  844. MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
  845. MODULE_LICENSE("GPL");