ds2490.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947
  1. /*
  2. * dscore.c
  3. *
  4. * Copyright (c) 2004 Evgeniy Polyakov <johnpol@2ka.mipt.ru>
  5. *
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mod_devicetable.h>
  24. #include <linux/usb.h>
  25. #include "../w1_int.h"
  26. #include "../w1.h"
  27. /* COMMAND TYPE CODES */
  28. #define CONTROL_CMD 0x00
  29. #define COMM_CMD 0x01
  30. #define MODE_CMD 0x02
  31. /* CONTROL COMMAND CODES */
  32. #define CTL_RESET_DEVICE 0x0000
  33. #define CTL_START_EXE 0x0001
  34. #define CTL_RESUME_EXE 0x0002
  35. #define CTL_HALT_EXE_IDLE 0x0003
  36. #define CTL_HALT_EXE_DONE 0x0004
  37. #define CTL_FLUSH_COMM_CMDS 0x0007
  38. #define CTL_FLUSH_RCV_BUFFER 0x0008
  39. #define CTL_FLUSH_XMT_BUFFER 0x0009
  40. #define CTL_GET_COMM_CMDS 0x000A
  41. /* MODE COMMAND CODES */
  42. #define MOD_PULSE_EN 0x0000
  43. #define MOD_SPEED_CHANGE_EN 0x0001
  44. #define MOD_1WIRE_SPEED 0x0002
  45. #define MOD_STRONG_PU_DURATION 0x0003
  46. #define MOD_PULLDOWN_SLEWRATE 0x0004
  47. #define MOD_PROG_PULSE_DURATION 0x0005
  48. #define MOD_WRITE1_LOWTIME 0x0006
  49. #define MOD_DSOW0_TREC 0x0007
  50. /* COMMUNICATION COMMAND CODES */
  51. #define COMM_ERROR_ESCAPE 0x0601
  52. #define COMM_SET_DURATION 0x0012
  53. #define COMM_BIT_IO 0x0020
  54. #define COMM_PULSE 0x0030
  55. #define COMM_1_WIRE_RESET 0x0042
  56. #define COMM_BYTE_IO 0x0052
  57. #define COMM_MATCH_ACCESS 0x0064
  58. #define COMM_BLOCK_IO 0x0074
  59. #define COMM_READ_STRAIGHT 0x0080
  60. #define COMM_DO_RELEASE 0x6092
  61. #define COMM_SET_PATH 0x00A2
  62. #define COMM_WRITE_SRAM_PAGE 0x00B2
  63. #define COMM_WRITE_EPROM 0x00C4
  64. #define COMM_READ_CRC_PROT_PAGE 0x00D4
  65. #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
  66. #define COMM_SEARCH_ACCESS 0x00F4
  67. /* Communication command bits */
  68. #define COMM_TYPE 0x0008
  69. #define COMM_SE 0x0008
  70. #define COMM_D 0x0008
  71. #define COMM_Z 0x0008
  72. #define COMM_CH 0x0008
  73. #define COMM_SM 0x0008
  74. #define COMM_R 0x0008
  75. #define COMM_IM 0x0001
  76. #define COMM_PS 0x4000
  77. #define COMM_PST 0x4000
  78. #define COMM_CIB 0x4000
  79. #define COMM_RTS 0x4000
  80. #define COMM_DT 0x2000
  81. #define COMM_SPU 0x1000
  82. #define COMM_F 0x0800
  83. #define COMM_NTP 0x0400
  84. #define COMM_ICP 0x0200
  85. #define COMM_RST 0x0100
  86. #define PULSE_PROG 0x01
  87. #define PULSE_SPUE 0x02
  88. #define BRANCH_MAIN 0xCC
  89. #define BRANCH_AUX 0x33
  90. /*
  91. * Duration of the strong pull-up pulse in milliseconds.
  92. */
  93. #define PULLUP_PULSE_DURATION 750
  94. /* Status flags */
  95. #define ST_SPUA 0x01 /* Strong Pull-up is active */
  96. #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
  97. #define ST_12VP 0x04 /* external 12V programming voltage is present */
  98. #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
  99. #define ST_HALT 0x10 /* DS2490 is currently halted */
  100. #define ST_IDLE 0x20 /* DS2490 is currently idle */
  101. #define ST_EPOF 0x80
  102. #define SPEED_NORMAL 0x00
  103. #define SPEED_FLEXIBLE 0x01
  104. #define SPEED_OVERDRIVE 0x02
  105. #define NUM_EP 4
  106. #define EP_CONTROL 0
  107. #define EP_STATUS 1
  108. #define EP_DATA_OUT 2
  109. #define EP_DATA_IN 3
  110. struct ds_device
  111. {
  112. struct list_head ds_entry;
  113. struct usb_device *udev;
  114. struct usb_interface *intf;
  115. int ep[NUM_EP];
  116. struct w1_bus_master master;
  117. };
  118. struct ds_status
  119. {
  120. u8 enable;
  121. u8 speed;
  122. u8 pullup_dur;
  123. u8 ppuls_dur;
  124. u8 pulldown_slew;
  125. u8 write1_time;
  126. u8 write0_time;
  127. u8 reserved0;
  128. u8 status;
  129. u8 command0;
  130. u8 command1;
  131. u8 command_buffer_status;
  132. u8 data_out_buffer_status;
  133. u8 data_in_buffer_status;
  134. u8 reserved1;
  135. u8 reserved2;
  136. };
  137. static struct usb_device_id ds_id_table [] = {
  138. { USB_DEVICE(0x04fa, 0x2490) },
  139. { },
  140. };
  141. MODULE_DEVICE_TABLE(usb, ds_id_table);
  142. static int ds_probe(struct usb_interface *, const struct usb_device_id *);
  143. static void ds_disconnect(struct usb_interface *);
  144. static inline void ds_dump_status(unsigned char *, unsigned char *, int);
  145. static int ds_send_control(struct ds_device *, u16, u16);
  146. static int ds_send_control_cmd(struct ds_device *, u16, u16);
  147. static LIST_HEAD(ds_devices);
  148. static DEFINE_MUTEX(ds_mutex);
  149. static struct usb_driver ds_driver = {
  150. .name = "DS9490R",
  151. .probe = ds_probe,
  152. .disconnect = ds_disconnect,
  153. .id_table = ds_id_table,
  154. };
  155. static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
  156. {
  157. int err;
  158. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  159. CONTROL_CMD, 0x40, value, index, NULL, 0, 1000);
  160. if (err < 0) {
  161. printk(KERN_ERR "Failed to send command control message %x.%x: err=%d.\n",
  162. value, index, err);
  163. return err;
  164. }
  165. return err;
  166. }
  167. #if 0
  168. static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
  169. {
  170. int err;
  171. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  172. MODE_CMD, 0x40, value, index, NULL, 0, 1000);
  173. if (err < 0) {
  174. printk(KERN_ERR "Failed to send mode control message %x.%x: err=%d.\n",
  175. value, index, err);
  176. return err;
  177. }
  178. return err;
  179. }
  180. #endif
  181. static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
  182. {
  183. int err;
  184. err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
  185. COMM_CMD, 0x40, value, index, NULL, 0, 1000);
  186. if (err < 0) {
  187. printk(KERN_ERR "Failed to send control message %x.%x: err=%d.\n",
  188. value, index, err);
  189. return err;
  190. }
  191. return err;
  192. }
  193. static inline void ds_dump_status(unsigned char *buf, unsigned char *str, int off)
  194. {
  195. printk("%45s: %8x\n", str, buf[off]);
  196. }
  197. static int ds_recv_status_nodump(struct ds_device *dev, struct ds_status *st,
  198. unsigned char *buf, int size)
  199. {
  200. int count, err;
  201. memset(st, 0, sizeof(st));
  202. count = 0;
  203. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_STATUS]), buf, size, &count, 100);
  204. if (err < 0) {
  205. printk(KERN_ERR "Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err);
  206. return err;
  207. }
  208. if (count >= sizeof(*st))
  209. memcpy(st, buf, sizeof(*st));
  210. return count;
  211. }
  212. static int ds_recv_status(struct ds_device *dev, struct ds_status *st)
  213. {
  214. unsigned char buf[64];
  215. int count, err = 0, i;
  216. memcpy(st, buf, sizeof(*st));
  217. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  218. if (count < 0)
  219. return err;
  220. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
  221. for (i=0; i<count; ++i)
  222. printk("%02x ", buf[i]);
  223. printk("\n");
  224. if (count >= 16) {
  225. ds_dump_status(buf, "enable flag", 0);
  226. ds_dump_status(buf, "1-wire speed", 1);
  227. ds_dump_status(buf, "strong pullup duration", 2);
  228. ds_dump_status(buf, "programming pulse duration", 3);
  229. ds_dump_status(buf, "pulldown slew rate control", 4);
  230. ds_dump_status(buf, "write-1 low time", 5);
  231. ds_dump_status(buf, "data sample offset/write-0 recovery time", 6);
  232. ds_dump_status(buf, "reserved (test register)", 7);
  233. ds_dump_status(buf, "device status flags", 8);
  234. ds_dump_status(buf, "communication command byte 1", 9);
  235. ds_dump_status(buf, "communication command byte 2", 10);
  236. ds_dump_status(buf, "communication command buffer status", 11);
  237. ds_dump_status(buf, "1-wire data output buffer status", 12);
  238. ds_dump_status(buf, "1-wire data input buffer status", 13);
  239. ds_dump_status(buf, "reserved", 14);
  240. ds_dump_status(buf, "reserved", 15);
  241. }
  242. memcpy(st, buf, sizeof(*st));
  243. if (st->status & ST_EPOF) {
  244. printk(KERN_INFO "Resetting device after ST_EPOF.\n");
  245. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  246. if (err)
  247. return err;
  248. count = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  249. if (count < 0)
  250. return err;
  251. }
  252. #if 0
  253. if (st->status & ST_IDLE) {
  254. printk(KERN_INFO "Resetting pulse after ST_IDLE.\n");
  255. err = ds_start_pulse(dev, PULLUP_PULSE_DURATION);
  256. if (err)
  257. return err;
  258. }
  259. #endif
  260. return err;
  261. }
  262. static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
  263. {
  264. int count, err;
  265. struct ds_status st;
  266. count = 0;
  267. err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
  268. buf, size, &count, 1000);
  269. if (err < 0) {
  270. printk(KERN_INFO "Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
  271. usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
  272. ds_recv_status(dev, &st);
  273. return err;
  274. }
  275. #if 0
  276. {
  277. int i;
  278. printk("%s: count=%d: ", __func__, count);
  279. for (i=0; i<count; ++i)
  280. printk("%02x ", buf[i]);
  281. printk("\n");
  282. }
  283. #endif
  284. return count;
  285. }
  286. static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
  287. {
  288. int count, err;
  289. count = 0;
  290. err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
  291. if (err < 0) {
  292. printk(KERN_ERR "Failed to read 1-wire data from 0x02: err=%d.\n", err);
  293. return err;
  294. }
  295. return err;
  296. }
  297. #if 0
  298. int ds_stop_pulse(struct ds_device *dev, int limit)
  299. {
  300. struct ds_status st;
  301. int count = 0, err = 0;
  302. u8 buf[0x20];
  303. do {
  304. err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
  305. if (err)
  306. break;
  307. err = ds_send_control(dev, CTL_RESUME_EXE, 0);
  308. if (err)
  309. break;
  310. err = ds_recv_status_nodump(dev, &st, buf, sizeof(buf));
  311. if (err)
  312. break;
  313. if ((st.status & ST_SPUA) == 0) {
  314. err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
  315. if (err)
  316. break;
  317. }
  318. } while(++count < limit);
  319. return err;
  320. }
  321. int ds_detect(struct ds_device *dev, struct ds_status *st)
  322. {
  323. int err;
  324. err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
  325. if (err)
  326. return err;
  327. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
  328. if (err)
  329. return err;
  330. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
  331. if (err)
  332. return err;
  333. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
  334. if (err)
  335. return err;
  336. err = ds_recv_status(dev, st);
  337. return err;
  338. }
  339. #endif /* 0 */
  340. static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
  341. {
  342. u8 buf[0x20];
  343. int err, count = 0;
  344. do {
  345. err = ds_recv_status_nodump(dev, st, buf, sizeof(buf));
  346. #if 0
  347. if (err >= 0) {
  348. int i;
  349. printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
  350. for (i=0; i<err; ++i)
  351. printk("%02x ", buf[i]);
  352. printk("\n");
  353. }
  354. #endif
  355. } while(!(buf[0x08] & 0x20) && !(err < 0) && ++count < 100);
  356. if (((err > 16) && (buf[0x10] & 0x01)) || count >= 100 || err < 0) {
  357. ds_recv_status(dev, st);
  358. return -1;
  359. } else
  360. return 0;
  361. }
  362. static int ds_reset(struct ds_device *dev, struct ds_status *st)
  363. {
  364. int err;
  365. //err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_F | COMM_IM | COMM_SE, SPEED_FLEXIBLE);
  366. err = ds_send_control(dev, 0x43, SPEED_NORMAL);
  367. if (err)
  368. return err;
  369. ds_wait_status(dev, st);
  370. #if 0
  371. if (st->command_buffer_status) {
  372. printk(KERN_INFO "Short circuit.\n");
  373. return -EIO;
  374. }
  375. #endif
  376. return 0;
  377. }
  378. #if 0
  379. static int ds_set_speed(struct ds_device *dev, int speed)
  380. {
  381. int err;
  382. if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
  383. return -EINVAL;
  384. if (speed != SPEED_OVERDRIVE)
  385. speed = SPEED_FLEXIBLE;
  386. speed &= 0xff;
  387. err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
  388. if (err)
  389. return err;
  390. return err;
  391. }
  392. #endif /* 0 */
  393. static int ds_start_pulse(struct ds_device *dev, int delay)
  394. {
  395. int err;
  396. u8 del = 1 + (u8)(delay >> 4);
  397. struct ds_status st;
  398. #if 0
  399. err = ds_stop_pulse(dev, 10);
  400. if (err)
  401. return err;
  402. err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE);
  403. if (err)
  404. return err;
  405. #endif
  406. err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
  407. if (err)
  408. return err;
  409. err = ds_send_control(dev, COMM_PULSE | COMM_IM | COMM_F, 0);
  410. if (err)
  411. return err;
  412. mdelay(delay);
  413. ds_wait_status(dev, &st);
  414. return err;
  415. }
  416. static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
  417. {
  418. int err, count;
  419. struct ds_status st;
  420. u16 value = (COMM_BIT_IO | COMM_IM) | ((bit) ? COMM_D : 0);
  421. u16 cmd;
  422. err = ds_send_control(dev, value, 0);
  423. if (err)
  424. return err;
  425. count = 0;
  426. do {
  427. err = ds_wait_status(dev, &st);
  428. if (err)
  429. return err;
  430. cmd = st.command0 | (st.command1 << 8);
  431. } while (cmd != value && ++count < 10);
  432. if (err < 0 || count >= 10) {
  433. printk(KERN_ERR "Failed to obtain status.\n");
  434. return -EINVAL;
  435. }
  436. err = ds_recv_data(dev, tbit, sizeof(*tbit));
  437. if (err < 0)
  438. return err;
  439. return 0;
  440. }
  441. static int ds_write_bit(struct ds_device *dev, u8 bit)
  442. {
  443. int err;
  444. struct ds_status st;
  445. err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit) ? COMM_D : 0, 0);
  446. if (err)
  447. return err;
  448. ds_wait_status(dev, &st);
  449. return 0;
  450. }
  451. static int ds_write_byte(struct ds_device *dev, u8 byte)
  452. {
  453. int err;
  454. struct ds_status st;
  455. u8 rbyte;
  456. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | COMM_SPU, byte);
  457. if (err)
  458. return err;
  459. err = ds_wait_status(dev, &st);
  460. if (err)
  461. return err;
  462. err = ds_recv_data(dev, &rbyte, sizeof(rbyte));
  463. if (err < 0)
  464. return err;
  465. ds_start_pulse(dev, PULLUP_PULSE_DURATION);
  466. return !(byte == rbyte);
  467. }
  468. static int ds_read_byte(struct ds_device *dev, u8 *byte)
  469. {
  470. int err;
  471. struct ds_status st;
  472. err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM , 0xff);
  473. if (err)
  474. return err;
  475. ds_wait_status(dev, &st);
  476. err = ds_recv_data(dev, byte, sizeof(*byte));
  477. if (err < 0)
  478. return err;
  479. return 0;
  480. }
  481. static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
  482. {
  483. struct ds_status st;
  484. int err;
  485. if (len > 64*1024)
  486. return -E2BIG;
  487. memset(buf, 0xFF, len);
  488. err = ds_send_data(dev, buf, len);
  489. if (err < 0)
  490. return err;
  491. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
  492. if (err)
  493. return err;
  494. ds_wait_status(dev, &st);
  495. memset(buf, 0x00, len);
  496. err = ds_recv_data(dev, buf, len);
  497. return err;
  498. }
  499. static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
  500. {
  501. int err;
  502. struct ds_status st;
  503. err = ds_send_data(dev, buf, len);
  504. if (err < 0)
  505. return err;
  506. ds_wait_status(dev, &st);
  507. err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | COMM_SPU, len);
  508. if (err)
  509. return err;
  510. ds_wait_status(dev, &st);
  511. err = ds_recv_data(dev, buf, len);
  512. if (err < 0)
  513. return err;
  514. ds_start_pulse(dev, PULLUP_PULSE_DURATION);
  515. return !(err == len);
  516. }
  517. #if 0
  518. static int ds_search(struct ds_device *dev, u64 init, u64 *buf, u8 id_number, int conditional_search)
  519. {
  520. int err;
  521. u16 value, index;
  522. struct ds_status st;
  523. memset(buf, 0, sizeof(buf));
  524. err = ds_send_data(ds_dev, (unsigned char *)&init, 8);
  525. if (err)
  526. return err;
  527. ds_wait_status(ds_dev, &st);
  528. value = COMM_SEARCH_ACCESS | COMM_IM | COMM_SM | COMM_F | COMM_RTS;
  529. index = (conditional_search ? 0xEC : 0xF0) | (id_number << 8);
  530. err = ds_send_control(ds_dev, value, index);
  531. if (err)
  532. return err;
  533. ds_wait_status(ds_dev, &st);
  534. err = ds_recv_data(ds_dev, (unsigned char *)buf, 8*id_number);
  535. if (err < 0)
  536. return err;
  537. return err/8;
  538. }
  539. static int ds_match_access(struct ds_device *dev, u64 init)
  540. {
  541. int err;
  542. struct ds_status st;
  543. err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
  544. if (err)
  545. return err;
  546. ds_wait_status(dev, &st);
  547. err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
  548. if (err)
  549. return err;
  550. ds_wait_status(dev, &st);
  551. return 0;
  552. }
  553. static int ds_set_path(struct ds_device *dev, u64 init)
  554. {
  555. int err;
  556. struct ds_status st;
  557. u8 buf[9];
  558. memcpy(buf, &init, 8);
  559. buf[8] = BRANCH_MAIN;
  560. err = ds_send_data(dev, buf, sizeof(buf));
  561. if (err)
  562. return err;
  563. ds_wait_status(dev, &st);
  564. err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
  565. if (err)
  566. return err;
  567. ds_wait_status(dev, &st);
  568. return 0;
  569. }
  570. #endif /* 0 */
  571. static u8 ds9490r_touch_bit(void *data, u8 bit)
  572. {
  573. u8 ret;
  574. struct ds_device *dev = data;
  575. if (ds_touch_bit(dev, bit, &ret))
  576. return 0;
  577. return ret;
  578. }
  579. static void ds9490r_write_bit(void *data, u8 bit)
  580. {
  581. struct ds_device *dev = data;
  582. ds_write_bit(dev, bit);
  583. }
  584. static void ds9490r_write_byte(void *data, u8 byte)
  585. {
  586. struct ds_device *dev = data;
  587. ds_write_byte(dev, byte);
  588. }
  589. static u8 ds9490r_read_bit(void *data)
  590. {
  591. struct ds_device *dev = data;
  592. int err;
  593. u8 bit = 0;
  594. err = ds_touch_bit(dev, 1, &bit);
  595. if (err)
  596. return 0;
  597. return bit & 1;
  598. }
  599. static u8 ds9490r_read_byte(void *data)
  600. {
  601. struct ds_device *dev = data;
  602. int err;
  603. u8 byte = 0;
  604. err = ds_read_byte(dev, &byte);
  605. if (err)
  606. return 0;
  607. return byte;
  608. }
  609. static void ds9490r_write_block(void *data, const u8 *buf, int len)
  610. {
  611. struct ds_device *dev = data;
  612. ds_write_block(dev, (u8 *)buf, len);
  613. }
  614. static u8 ds9490r_read_block(void *data, u8 *buf, int len)
  615. {
  616. struct ds_device *dev = data;
  617. int err;
  618. err = ds_read_block(dev, buf, len);
  619. if (err < 0)
  620. return 0;
  621. return len;
  622. }
  623. static u8 ds9490r_reset(void *data)
  624. {
  625. struct ds_device *dev = data;
  626. struct ds_status st;
  627. int err;
  628. memset(&st, 0, sizeof(st));
  629. err = ds_reset(dev, &st);
  630. if (err)
  631. return 1;
  632. return 0;
  633. }
  634. static int ds_w1_init(struct ds_device *dev)
  635. {
  636. memset(&dev->master, 0, sizeof(struct w1_bus_master));
  637. dev->master.data = dev;
  638. dev->master.touch_bit = &ds9490r_touch_bit;
  639. dev->master.read_bit = &ds9490r_read_bit;
  640. dev->master.write_bit = &ds9490r_write_bit;
  641. dev->master.read_byte = &ds9490r_read_byte;
  642. dev->master.write_byte = &ds9490r_write_byte;
  643. dev->master.read_block = &ds9490r_read_block;
  644. dev->master.write_block = &ds9490r_write_block;
  645. dev->master.reset_bus = &ds9490r_reset;
  646. return w1_add_master_device(&dev->master);
  647. }
  648. static void ds_w1_fini(struct ds_device *dev)
  649. {
  650. w1_remove_master_device(&dev->master);
  651. }
  652. static int ds_probe(struct usb_interface *intf,
  653. const struct usb_device_id *udev_id)
  654. {
  655. struct usb_device *udev = interface_to_usbdev(intf);
  656. struct usb_endpoint_descriptor *endpoint;
  657. struct usb_host_interface *iface_desc;
  658. struct ds_device *dev;
  659. int i, err;
  660. dev = kmalloc(sizeof(struct ds_device), GFP_KERNEL);
  661. if (!dev) {
  662. printk(KERN_INFO "Failed to allocate new DS9490R structure.\n");
  663. return -ENOMEM;
  664. }
  665. dev->udev = usb_get_dev(udev);
  666. if (!dev->udev) {
  667. err = -ENOMEM;
  668. goto err_out_free;
  669. }
  670. memset(dev->ep, 0, sizeof(dev->ep));
  671. usb_set_intfdata(intf, dev);
  672. err = usb_set_interface(dev->udev, intf->altsetting[0].desc.bInterfaceNumber, 3);
  673. if (err) {
  674. printk(KERN_ERR "Failed to set alternative setting 3 for %d interface: err=%d.\n",
  675. intf->altsetting[0].desc.bInterfaceNumber, err);
  676. goto err_out_clear;
  677. }
  678. err = usb_reset_configuration(dev->udev);
  679. if (err) {
  680. printk(KERN_ERR "Failed to reset configuration: err=%d.\n", err);
  681. goto err_out_clear;
  682. }
  683. iface_desc = &intf->altsetting[0];
  684. if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
  685. printk(KERN_INFO "Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints);
  686. err = -EINVAL;
  687. goto err_out_clear;
  688. }
  689. /*
  690. * This loop doesn'd show control 0 endpoint,
  691. * so we will fill only 1-3 endpoints entry.
  692. */
  693. for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
  694. endpoint = &iface_desc->endpoint[i].desc;
  695. dev->ep[i+1] = endpoint->bEndpointAddress;
  696. #if 0
  697. printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
  698. i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
  699. (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
  700. endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
  701. #endif
  702. }
  703. err = ds_w1_init(dev);
  704. if (err)
  705. goto err_out_clear;
  706. mutex_lock(&ds_mutex);
  707. list_add_tail(&dev->ds_entry, &ds_devices);
  708. mutex_unlock(&ds_mutex);
  709. return 0;
  710. err_out_clear:
  711. usb_set_intfdata(intf, NULL);
  712. usb_put_dev(dev->udev);
  713. err_out_free:
  714. kfree(dev);
  715. return err;
  716. }
  717. static void ds_disconnect(struct usb_interface *intf)
  718. {
  719. struct ds_device *dev;
  720. dev = usb_get_intfdata(intf);
  721. if (!dev)
  722. return;
  723. mutex_lock(&ds_mutex);
  724. list_del(&dev->ds_entry);
  725. mutex_unlock(&ds_mutex);
  726. ds_w1_fini(dev);
  727. usb_set_intfdata(intf, NULL);
  728. usb_put_dev(dev->udev);
  729. kfree(dev);
  730. }
  731. static int ds_init(void)
  732. {
  733. int err;
  734. err = usb_register(&ds_driver);
  735. if (err) {
  736. printk(KERN_INFO "Failed to register DS9490R USB device: err=%d.\n", err);
  737. return err;
  738. }
  739. return 0;
  740. }
  741. static void ds_fini(void)
  742. {
  743. usb_deregister(&ds_driver);
  744. }
  745. module_init(ds_init);
  746. module_exit(ds_fini);
  747. MODULE_LICENSE("GPL");
  748. MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
  749. MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");