intelfbhw.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/fb.h>
  28. #include <linux/ioport.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/interrupt.h>
  34. #include <asm/io.h>
  35. #include "intelfb.h"
  36. #include "intelfbhw.h"
  37. struct pll_min_max {
  38. int min_m, max_m, min_m1, max_m1;
  39. int min_m2, max_m2, min_n, max_n;
  40. int min_p, max_p, min_p1, max_p1;
  41. int min_vco, max_vco, p_transition_clk, ref_clk;
  42. int p_inc_lo, p_inc_hi;
  43. };
  44. #define PLLS_I8xx 0
  45. #define PLLS_I9xx 1
  46. #define PLLS_MAX 2
  47. static struct pll_min_max plls[PLLS_MAX] = {
  48. { 108, 140, 18, 26,
  49. 6, 16, 3, 16,
  50. 4, 128, 0, 31,
  51. 930000, 1400000, 165000, 48000,
  52. 4, 2 }, //I8xx
  53. { 75, 120, 10, 20,
  54. 5, 9, 4, 7,
  55. 5, 80, 1, 8,
  56. 1400000, 2800000, 200000, 96000,
  57. 10, 5 } //I9xx
  58. };
  59. int
  60. intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  61. {
  62. u32 tmp;
  63. if (!pdev || !dinfo)
  64. return 1;
  65. switch (pdev->device) {
  66. case PCI_DEVICE_ID_INTEL_830M:
  67. dinfo->name = "Intel(R) 830M";
  68. dinfo->chipset = INTEL_830M;
  69. dinfo->mobile = 1;
  70. dinfo->pll_index = PLLS_I8xx;
  71. return 0;
  72. case PCI_DEVICE_ID_INTEL_845G:
  73. dinfo->name = "Intel(R) 845G";
  74. dinfo->chipset = INTEL_845G;
  75. dinfo->mobile = 0;
  76. dinfo->pll_index = PLLS_I8xx;
  77. return 0;
  78. case PCI_DEVICE_ID_INTEL_85XGM:
  79. tmp = 0;
  80. dinfo->mobile = 1;
  81. dinfo->pll_index = PLLS_I8xx;
  82. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  83. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  84. INTEL_85X_VARIANT_MASK) {
  85. case INTEL_VAR_855GME:
  86. dinfo->name = "Intel(R) 855GME";
  87. dinfo->chipset = INTEL_855GME;
  88. return 0;
  89. case INTEL_VAR_855GM:
  90. dinfo->name = "Intel(R) 855GM";
  91. dinfo->chipset = INTEL_855GM;
  92. return 0;
  93. case INTEL_VAR_852GME:
  94. dinfo->name = "Intel(R) 852GME";
  95. dinfo->chipset = INTEL_852GME;
  96. return 0;
  97. case INTEL_VAR_852GM:
  98. dinfo->name = "Intel(R) 852GM";
  99. dinfo->chipset = INTEL_852GM;
  100. return 0;
  101. default:
  102. dinfo->name = "Intel(R) 852GM/855GM";
  103. dinfo->chipset = INTEL_85XGM;
  104. return 0;
  105. }
  106. break;
  107. case PCI_DEVICE_ID_INTEL_865G:
  108. dinfo->name = "Intel(R) 865G";
  109. dinfo->chipset = INTEL_865G;
  110. dinfo->mobile = 0;
  111. dinfo->pll_index = PLLS_I8xx;
  112. return 0;
  113. case PCI_DEVICE_ID_INTEL_915G:
  114. dinfo->name = "Intel(R) 915G";
  115. dinfo->chipset = INTEL_915G;
  116. dinfo->mobile = 0;
  117. dinfo->pll_index = PLLS_I9xx;
  118. return 0;
  119. case PCI_DEVICE_ID_INTEL_915GM:
  120. dinfo->name = "Intel(R) 915GM";
  121. dinfo->chipset = INTEL_915GM;
  122. dinfo->mobile = 1;
  123. dinfo->pll_index = PLLS_I9xx;
  124. return 0;
  125. case PCI_DEVICE_ID_INTEL_945G:
  126. dinfo->name = "Intel(R) 945G";
  127. dinfo->chipset = INTEL_945G;
  128. dinfo->mobile = 0;
  129. dinfo->pll_index = PLLS_I9xx;
  130. return 0;
  131. case PCI_DEVICE_ID_INTEL_945GM:
  132. dinfo->name = "Intel(R) 945GM";
  133. dinfo->chipset = INTEL_945GM;
  134. dinfo->mobile = 1;
  135. dinfo->pll_index = PLLS_I9xx;
  136. return 0;
  137. default:
  138. return 1;
  139. }
  140. }
  141. int
  142. intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  143. int *stolen_size)
  144. {
  145. struct pci_dev *bridge_dev;
  146. u16 tmp;
  147. int stolen_overhead;
  148. if (!pdev || !aperture_size || !stolen_size)
  149. return 1;
  150. /* Find the bridge device. It is always 0:0.0 */
  151. if (!(bridge_dev = pci_find_slot(0, PCI_DEVFN(0, 0)))) {
  152. ERR_MSG("cannot find bridge device\n");
  153. return 1;
  154. }
  155. /* Get the fb aperture size and "stolen" memory amount. */
  156. tmp = 0;
  157. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  158. switch (pdev->device) {
  159. case PCI_DEVICE_ID_INTEL_915G:
  160. case PCI_DEVICE_ID_INTEL_915GM:
  161. case PCI_DEVICE_ID_INTEL_945G:
  162. case PCI_DEVICE_ID_INTEL_945GM:
  163. /* 915 and 945 chipsets support a 256MB aperture.
  164. Aperture size is determined by inspected the
  165. base address of the aperture. */
  166. if (pci_resource_start(pdev, 2) & 0x08000000)
  167. *aperture_size = MB(128);
  168. else
  169. *aperture_size = MB(256);
  170. break;
  171. default:
  172. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  173. *aperture_size = MB(64);
  174. else
  175. *aperture_size = MB(128);
  176. break;
  177. }
  178. /* Stolen memory size is reduced by the GTT and the popup.
  179. GTT is 1K per MB of aperture size, and popup is 4K. */
  180. stolen_overhead = (*aperture_size / MB(1)) + 4;
  181. switch(pdev->device) {
  182. case PCI_DEVICE_ID_INTEL_830M:
  183. case PCI_DEVICE_ID_INTEL_845G:
  184. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  185. case INTEL_830_GMCH_GMS_STOLEN_512:
  186. *stolen_size = KB(512) - KB(stolen_overhead);
  187. return 0;
  188. case INTEL_830_GMCH_GMS_STOLEN_1024:
  189. *stolen_size = MB(1) - KB(stolen_overhead);
  190. return 0;
  191. case INTEL_830_GMCH_GMS_STOLEN_8192:
  192. *stolen_size = MB(8) - KB(stolen_overhead);
  193. return 0;
  194. case INTEL_830_GMCH_GMS_LOCAL:
  195. ERR_MSG("only local memory found\n");
  196. return 1;
  197. case INTEL_830_GMCH_GMS_DISABLED:
  198. ERR_MSG("video memory is disabled\n");
  199. return 1;
  200. default:
  201. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  202. tmp & INTEL_830_GMCH_GMS_MASK);
  203. return 1;
  204. }
  205. break;
  206. default:
  207. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  208. case INTEL_855_GMCH_GMS_STOLEN_1M:
  209. *stolen_size = MB(1) - KB(stolen_overhead);
  210. return 0;
  211. case INTEL_855_GMCH_GMS_STOLEN_4M:
  212. *stolen_size = MB(4) - KB(stolen_overhead);
  213. return 0;
  214. case INTEL_855_GMCH_GMS_STOLEN_8M:
  215. *stolen_size = MB(8) - KB(stolen_overhead);
  216. return 0;
  217. case INTEL_855_GMCH_GMS_STOLEN_16M:
  218. *stolen_size = MB(16) - KB(stolen_overhead);
  219. return 0;
  220. case INTEL_855_GMCH_GMS_STOLEN_32M:
  221. *stolen_size = MB(32) - KB(stolen_overhead);
  222. return 0;
  223. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  224. *stolen_size = MB(48) - KB(stolen_overhead);
  225. return 0;
  226. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  227. *stolen_size = MB(64) - KB(stolen_overhead);
  228. return 0;
  229. case INTEL_855_GMCH_GMS_DISABLED:
  230. ERR_MSG("video memory is disabled\n");
  231. return 0;
  232. default:
  233. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  234. tmp & INTEL_855_GMCH_GMS_MASK);
  235. return 1;
  236. }
  237. }
  238. }
  239. int
  240. intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  241. {
  242. int dvo = 0;
  243. if (INREG(LVDS) & PORT_ENABLE)
  244. dvo |= LVDS_PORT;
  245. if (INREG(DVOA) & PORT_ENABLE)
  246. dvo |= DVOA_PORT;
  247. if (INREG(DVOB) & PORT_ENABLE)
  248. dvo |= DVOB_PORT;
  249. if (INREG(DVOC) & PORT_ENABLE)
  250. dvo |= DVOC_PORT;
  251. return dvo;
  252. }
  253. const char *
  254. intelfbhw_dvo_to_string(int dvo)
  255. {
  256. if (dvo & DVOA_PORT)
  257. return "DVO port A";
  258. else if (dvo & DVOB_PORT)
  259. return "DVO port B";
  260. else if (dvo & DVOC_PORT)
  261. return "DVO port C";
  262. else if (dvo & LVDS_PORT)
  263. return "LVDS port";
  264. else
  265. return NULL;
  266. }
  267. int
  268. intelfbhw_validate_mode(struct intelfb_info *dinfo,
  269. struct fb_var_screeninfo *var)
  270. {
  271. int bytes_per_pixel;
  272. int tmp;
  273. #if VERBOSE > 0
  274. DBG_MSG("intelfbhw_validate_mode\n");
  275. #endif
  276. bytes_per_pixel = var->bits_per_pixel / 8;
  277. if (bytes_per_pixel == 3)
  278. bytes_per_pixel = 4;
  279. /* Check if enough video memory. */
  280. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  281. if (tmp > dinfo->fb.size) {
  282. WRN_MSG("Not enough video ram for mode "
  283. "(%d KByte vs %d KByte).\n",
  284. BtoKB(tmp), BtoKB(dinfo->fb.size));
  285. return 1;
  286. }
  287. /* Check if x/y limits are OK. */
  288. if (var->xres - 1 > HACTIVE_MASK) {
  289. WRN_MSG("X resolution too large (%d vs %d).\n",
  290. var->xres, HACTIVE_MASK + 1);
  291. return 1;
  292. }
  293. if (var->yres - 1 > VACTIVE_MASK) {
  294. WRN_MSG("Y resolution too large (%d vs %d).\n",
  295. var->yres, VACTIVE_MASK + 1);
  296. return 1;
  297. }
  298. /* Check for interlaced/doublescan modes. */
  299. if (var->vmode & FB_VMODE_INTERLACED) {
  300. WRN_MSG("Mode is interlaced.\n");
  301. return 1;
  302. }
  303. if (var->vmode & FB_VMODE_DOUBLE) {
  304. WRN_MSG("Mode is double-scan.\n");
  305. return 1;
  306. }
  307. /* Check if clock is OK. */
  308. tmp = 1000000000 / var->pixclock;
  309. if (tmp < MIN_CLOCK) {
  310. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  311. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  312. return 1;
  313. }
  314. if (tmp > MAX_CLOCK) {
  315. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  316. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  317. return 1;
  318. }
  319. return 0;
  320. }
  321. int
  322. intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  323. {
  324. struct intelfb_info *dinfo = GET_DINFO(info);
  325. u32 offset, xoffset, yoffset;
  326. #if VERBOSE > 0
  327. DBG_MSG("intelfbhw_pan_display\n");
  328. #endif
  329. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  330. yoffset = var->yoffset;
  331. if ((xoffset + var->xres > var->xres_virtual) ||
  332. (yoffset + var->yres > var->yres_virtual))
  333. return -EINVAL;
  334. offset = (yoffset * dinfo->pitch) +
  335. (xoffset * var->bits_per_pixel) / 8;
  336. offset += dinfo->fb.offset << 12;
  337. dinfo->vsync.pan_offset = offset;
  338. if ((var->activate & FB_ACTIVATE_VBL) && !intelfbhw_enable_irq(dinfo, 0)) {
  339. dinfo->vsync.pan_display = 1;
  340. } else {
  341. dinfo->vsync.pan_display = 0;
  342. OUTREG(DSPABASE, offset);
  343. }
  344. return 0;
  345. }
  346. /* Blank the screen. */
  347. void
  348. intelfbhw_do_blank(int blank, struct fb_info *info)
  349. {
  350. struct intelfb_info *dinfo = GET_DINFO(info);
  351. u32 tmp;
  352. #if VERBOSE > 0
  353. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  354. #endif
  355. /* Turn plane A on or off */
  356. tmp = INREG(DSPACNTR);
  357. if (blank)
  358. tmp &= ~DISPPLANE_PLANE_ENABLE;
  359. else
  360. tmp |= DISPPLANE_PLANE_ENABLE;
  361. OUTREG(DSPACNTR, tmp);
  362. /* Flush */
  363. tmp = INREG(DSPABASE);
  364. OUTREG(DSPABASE, tmp);
  365. /* Turn off/on the HW cursor */
  366. #if VERBOSE > 0
  367. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  368. #endif
  369. if (dinfo->cursor_on) {
  370. if (blank) {
  371. intelfbhw_cursor_hide(dinfo);
  372. } else {
  373. intelfbhw_cursor_show(dinfo);
  374. }
  375. dinfo->cursor_on = 1;
  376. }
  377. dinfo->cursor_blanked = blank;
  378. /* Set DPMS level */
  379. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  380. switch (blank) {
  381. case FB_BLANK_UNBLANK:
  382. case FB_BLANK_NORMAL:
  383. tmp |= ADPA_DPMS_D0;
  384. break;
  385. case FB_BLANK_VSYNC_SUSPEND:
  386. tmp |= ADPA_DPMS_D1;
  387. break;
  388. case FB_BLANK_HSYNC_SUSPEND:
  389. tmp |= ADPA_DPMS_D2;
  390. break;
  391. case FB_BLANK_POWERDOWN:
  392. tmp |= ADPA_DPMS_D3;
  393. break;
  394. }
  395. OUTREG(ADPA, tmp);
  396. return;
  397. }
  398. void
  399. intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  400. unsigned red, unsigned green, unsigned blue,
  401. unsigned transp)
  402. {
  403. #if VERBOSE > 0
  404. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  405. regno, red, green, blue);
  406. #endif
  407. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  408. PALETTE_A : PALETTE_B;
  409. OUTREG(palette_reg + (regno << 2),
  410. (red << PALETTE_8_RED_SHIFT) |
  411. (green << PALETTE_8_GREEN_SHIFT) |
  412. (blue << PALETTE_8_BLUE_SHIFT));
  413. }
  414. int
  415. intelfbhw_read_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  416. int flag)
  417. {
  418. int i;
  419. #if VERBOSE > 0
  420. DBG_MSG("intelfbhw_read_hw_state\n");
  421. #endif
  422. if (!hw || !dinfo)
  423. return -1;
  424. /* Read in as much of the HW state as possible. */
  425. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  426. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  427. hw->vga_pd = INREG(VGAPD);
  428. hw->dpll_a = INREG(DPLL_A);
  429. hw->dpll_b = INREG(DPLL_B);
  430. hw->fpa0 = INREG(FPA0);
  431. hw->fpa1 = INREG(FPA1);
  432. hw->fpb0 = INREG(FPB0);
  433. hw->fpb1 = INREG(FPB1);
  434. if (flag == 1)
  435. return flag;
  436. #if 0
  437. /* This seems to be a problem with the 852GM/855GM */
  438. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  439. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  440. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  441. }
  442. #endif
  443. if (flag == 2)
  444. return flag;
  445. hw->htotal_a = INREG(HTOTAL_A);
  446. hw->hblank_a = INREG(HBLANK_A);
  447. hw->hsync_a = INREG(HSYNC_A);
  448. hw->vtotal_a = INREG(VTOTAL_A);
  449. hw->vblank_a = INREG(VBLANK_A);
  450. hw->vsync_a = INREG(VSYNC_A);
  451. hw->src_size_a = INREG(SRC_SIZE_A);
  452. hw->bclrpat_a = INREG(BCLRPAT_A);
  453. hw->htotal_b = INREG(HTOTAL_B);
  454. hw->hblank_b = INREG(HBLANK_B);
  455. hw->hsync_b = INREG(HSYNC_B);
  456. hw->vtotal_b = INREG(VTOTAL_B);
  457. hw->vblank_b = INREG(VBLANK_B);
  458. hw->vsync_b = INREG(VSYNC_B);
  459. hw->src_size_b = INREG(SRC_SIZE_B);
  460. hw->bclrpat_b = INREG(BCLRPAT_B);
  461. if (flag == 3)
  462. return flag;
  463. hw->adpa = INREG(ADPA);
  464. hw->dvoa = INREG(DVOA);
  465. hw->dvob = INREG(DVOB);
  466. hw->dvoc = INREG(DVOC);
  467. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  468. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  469. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  470. hw->lvds = INREG(LVDS);
  471. if (flag == 4)
  472. return flag;
  473. hw->pipe_a_conf = INREG(PIPEACONF);
  474. hw->pipe_b_conf = INREG(PIPEBCONF);
  475. hw->disp_arb = INREG(DISPARB);
  476. if (flag == 5)
  477. return flag;
  478. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  479. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  480. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  481. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  482. if (flag == 6)
  483. return flag;
  484. for (i = 0; i < 4; i++) {
  485. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  486. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  487. }
  488. if (flag == 7)
  489. return flag;
  490. hw->cursor_size = INREG(CURSOR_SIZE);
  491. if (flag == 8)
  492. return flag;
  493. hw->disp_a_ctrl = INREG(DSPACNTR);
  494. hw->disp_b_ctrl = INREG(DSPBCNTR);
  495. hw->disp_a_base = INREG(DSPABASE);
  496. hw->disp_b_base = INREG(DSPBBASE);
  497. hw->disp_a_stride = INREG(DSPASTRIDE);
  498. hw->disp_b_stride = INREG(DSPBSTRIDE);
  499. if (flag == 9)
  500. return flag;
  501. hw->vgacntrl = INREG(VGACNTRL);
  502. if (flag == 10)
  503. return flag;
  504. hw->add_id = INREG(ADD_ID);
  505. if (flag == 11)
  506. return flag;
  507. for (i = 0; i < 7; i++) {
  508. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  509. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  510. if (i < 3)
  511. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  512. }
  513. for (i = 0; i < 8; i++)
  514. hw->fence[i] = INREG(FENCE + (i << 2));
  515. hw->instpm = INREG(INSTPM);
  516. hw->mem_mode = INREG(MEM_MODE);
  517. hw->fw_blc_0 = INREG(FW_BLC_0);
  518. hw->fw_blc_1 = INREG(FW_BLC_1);
  519. hw->hwstam = INREG16(HWSTAM);
  520. hw->ier = INREG16(IER);
  521. hw->iir = INREG16(IIR);
  522. hw->imr = INREG16(IMR);
  523. return 0;
  524. }
  525. static int calc_vclock3(int index, int m, int n, int p)
  526. {
  527. if (p == 0 || n == 0)
  528. return 0;
  529. return plls[index].ref_clk * m / n / p;
  530. }
  531. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2, int lvds)
  532. {
  533. struct pll_min_max *pll = &plls[index];
  534. u32 m, vco, p;
  535. m = (5 * (m1 + 2)) + (m2 + 2);
  536. n += 2;
  537. vco = pll->ref_clk * m / n;
  538. if (index == PLLS_I8xx) {
  539. p = ((p1 + 2) * (1 << (p2 + 1)));
  540. } else {
  541. p = ((p1) * (p2 ? 5 : 10));
  542. }
  543. return vco / p;
  544. }
  545. #if REGDUMP
  546. static void
  547. intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll, int *o_p1, int *o_p2)
  548. {
  549. int p1, p2;
  550. if (IS_I9XX(dinfo)) {
  551. if (dpll & DPLL_P1_FORCE_DIV2)
  552. p1 = 1;
  553. else
  554. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  555. p1 = ffs(p1);
  556. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  557. } else {
  558. if (dpll & DPLL_P1_FORCE_DIV2)
  559. p1 = 0;
  560. else
  561. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  562. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  563. }
  564. *o_p1 = p1;
  565. *o_p2 = p2;
  566. }
  567. #endif
  568. void
  569. intelfbhw_print_hw_state(struct intelfb_info *dinfo, struct intelfb_hwstate *hw)
  570. {
  571. #if REGDUMP
  572. int i, m1, m2, n, p1, p2;
  573. int index = dinfo->pll_index;
  574. DBG_MSG("intelfbhw_print_hw_state\n");
  575. if (!hw || !dinfo)
  576. return;
  577. /* Read in as much of the HW state as possible. */
  578. printk("hw state dump start\n");
  579. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  580. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  581. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  582. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  583. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  584. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  585. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  586. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  587. m1, m2, n, p1, p2);
  588. printk(" VGA0: clock is %d\n",
  589. calc_vclock(index, m1, m2, n, p1, p2, 0));
  590. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  591. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  592. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  593. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  594. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  595. m1, m2, n, p1, p2);
  596. printk(" VGA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  597. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  598. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  599. printk(" FPA0: 0x%08x\n", hw->fpa0);
  600. printk(" FPA1: 0x%08x\n", hw->fpa1);
  601. printk(" FPB0: 0x%08x\n", hw->fpb0);
  602. printk(" FPB1: 0x%08x\n", hw->fpb1);
  603. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  604. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  605. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  606. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  607. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  608. m1, m2, n, p1, p2);
  609. printk(" PLLA0: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  610. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  611. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  612. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  613. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  614. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  615. m1, m2, n, p1, p2);
  616. printk(" PLLA1: clock is %d\n", calc_vclock(index, m1, m2, n, p1, p2, 0));
  617. #if 0
  618. printk(" PALETTE_A:\n");
  619. for (i = 0; i < PALETTE_8_ENTRIES)
  620. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  621. printk(" PALETTE_B:\n");
  622. for (i = 0; i < PALETTE_8_ENTRIES)
  623. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  624. #endif
  625. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  626. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  627. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  628. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  629. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  630. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  631. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  632. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  633. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  634. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  635. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  636. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  637. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  638. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  639. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  640. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  641. printk(" ADPA: 0x%08x\n", hw->adpa);
  642. printk(" DVOA: 0x%08x\n", hw->dvoa);
  643. printk(" DVOB: 0x%08x\n", hw->dvob);
  644. printk(" DVOC: 0x%08x\n", hw->dvoc);
  645. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  646. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  647. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  648. printk(" LVDS: 0x%08x\n", hw->lvds);
  649. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  650. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  651. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  652. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  653. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  654. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  655. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  656. printk(" CURSOR_A_PALETTE: ");
  657. for (i = 0; i < 4; i++) {
  658. printk("0x%08x", hw->cursor_a_palette[i]);
  659. if (i < 3)
  660. printk(", ");
  661. }
  662. printk("\n");
  663. printk(" CURSOR_B_PALETTE: ");
  664. for (i = 0; i < 4; i++) {
  665. printk("0x%08x", hw->cursor_b_palette[i]);
  666. if (i < 3)
  667. printk(", ");
  668. }
  669. printk("\n");
  670. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  671. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  672. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  673. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  674. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  675. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  676. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  677. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  678. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  679. for (i = 0; i < 7; i++) {
  680. printk(" SWF0%d 0x%08x\n", i,
  681. hw->swf0x[i]);
  682. }
  683. for (i = 0; i < 7; i++) {
  684. printk(" SWF1%d 0x%08x\n", i,
  685. hw->swf1x[i]);
  686. }
  687. for (i = 0; i < 3; i++) {
  688. printk(" SWF3%d 0x%08x\n", i,
  689. hw->swf3x[i]);
  690. }
  691. for (i = 0; i < 8; i++)
  692. printk(" FENCE%d 0x%08x\n", i,
  693. hw->fence[i]);
  694. printk(" INSTPM 0x%08x\n", hw->instpm);
  695. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  696. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  697. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  698. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  699. printk(" IER 0x%04x\n", hw->ier);
  700. printk(" IIR 0x%04x\n", hw->iir);
  701. printk(" IMR 0x%04x\n", hw->imr);
  702. printk("hw state dump end\n");
  703. #endif
  704. }
  705. /* Split the M parameter into M1 and M2. */
  706. static int
  707. splitm(int index, unsigned int m, unsigned int *retm1, unsigned int *retm2)
  708. {
  709. int m1, m2;
  710. int testm;
  711. struct pll_min_max *pll = &plls[index];
  712. /* no point optimising too much - brute force m */
  713. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  714. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  715. testm = (5 * (m1 + 2)) + (m2 + 2);
  716. if (testm == m) {
  717. *retm1 = (unsigned int)m1;
  718. *retm2 = (unsigned int)m2;
  719. return 0;
  720. }
  721. }
  722. }
  723. return 1;
  724. }
  725. /* Split the P parameter into P1 and P2. */
  726. static int
  727. splitp(int index, unsigned int p, unsigned int *retp1, unsigned int *retp2)
  728. {
  729. int p1, p2;
  730. struct pll_min_max *pll = &plls[index];
  731. if (index == PLLS_I9xx) {
  732. p2 = (p % 10) ? 1 : 0;
  733. p1 = p / (p2 ? 5 : 10);
  734. *retp1 = (unsigned int)p1;
  735. *retp2 = (unsigned int)p2;
  736. return 0;
  737. }
  738. if (p % 4 == 0)
  739. p2 = 1;
  740. else
  741. p2 = 0;
  742. p1 = (p / (1 << (p2 + 1))) - 2;
  743. if (p % 4 == 0 && p1 < pll->min_p1) {
  744. p2 = 0;
  745. p1 = (p / (1 << (p2 + 1))) - 2;
  746. }
  747. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  748. (p1 + 2) * (1 << (p2 + 1)) != p) {
  749. return 1;
  750. } else {
  751. *retp1 = (unsigned int)p1;
  752. *retp2 = (unsigned int)p2;
  753. return 0;
  754. }
  755. }
  756. static int
  757. calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2, u32 *retn, u32 *retp1,
  758. u32 *retp2, u32 *retclock)
  759. {
  760. u32 m1, m2, n, p1, p2, n1, testm;
  761. u32 f_vco, p, p_best = 0, m, f_out = 0;
  762. u32 err_max, err_target, err_best = 10000000;
  763. u32 n_best = 0, m_best = 0, f_best, f_err;
  764. u32 p_min, p_max, p_inc, div_max;
  765. struct pll_min_max *pll = &plls[index];
  766. /* Accept 0.5% difference, but aim for 0.1% */
  767. err_max = 5 * clock / 1000;
  768. err_target = clock / 1000;
  769. DBG_MSG("Clock is %d\n", clock);
  770. div_max = pll->max_vco / clock;
  771. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  772. p_min = p_inc;
  773. p_max = ROUND_DOWN_TO(div_max, p_inc);
  774. if (p_min < pll->min_p)
  775. p_min = pll->min_p;
  776. if (p_max > pll->max_p)
  777. p_max = pll->max_p;
  778. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  779. p = p_min;
  780. do {
  781. if (splitp(index, p, &p1, &p2)) {
  782. WRN_MSG("cannot split p = %d\n", p);
  783. p += p_inc;
  784. continue;
  785. }
  786. n = pll->min_n;
  787. f_vco = clock * p;
  788. do {
  789. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  790. if (m < pll->min_m)
  791. m = pll->min_m + 1;
  792. if (m > pll->max_m)
  793. m = pll->max_m - 1;
  794. for (testm = m - 1; testm <= m; testm++) {
  795. f_out = calc_vclock3(index, m, n, p);
  796. if (splitm(index, testm, &m1, &m2)) {
  797. WRN_MSG("cannot split m = %d\n", m);
  798. n++;
  799. continue;
  800. }
  801. if (clock > f_out)
  802. f_err = clock - f_out;
  803. else/* slightly bias the error for bigger clocks */
  804. f_err = f_out - clock + 1;
  805. if (f_err < err_best) {
  806. m_best = testm;
  807. n_best = n;
  808. p_best = p;
  809. f_best = f_out;
  810. err_best = f_err;
  811. }
  812. }
  813. n++;
  814. } while ((n <= pll->max_n) && (f_out >= clock));
  815. p += p_inc;
  816. } while ((p <= p_max));
  817. if (!m_best) {
  818. WRN_MSG("cannot find parameters for clock %d\n", clock);
  819. return 1;
  820. }
  821. m = m_best;
  822. n = n_best;
  823. p = p_best;
  824. splitm(index, m, &m1, &m2);
  825. splitp(index, p, &p1, &p2);
  826. n1 = n - 2;
  827. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  828. "f: %d (%d), VCO: %d\n",
  829. m, m1, m2, n, n1, p, p1, p2,
  830. calc_vclock3(index, m, n, p),
  831. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  832. calc_vclock3(index, m, n, p) * p);
  833. *retm1 = m1;
  834. *retm2 = m2;
  835. *retn = n1;
  836. *retp1 = p1;
  837. *retp2 = p2;
  838. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  839. return 0;
  840. }
  841. static __inline__ int
  842. check_overflow(u32 value, u32 limit, const char *description)
  843. {
  844. if (value > limit) {
  845. WRN_MSG("%s value %d exceeds limit %d\n",
  846. description, value, limit);
  847. return 1;
  848. }
  849. return 0;
  850. }
  851. /* It is assumed that hw is filled in with the initial state information. */
  852. int
  853. intelfbhw_mode_to_hw(struct intelfb_info *dinfo, struct intelfb_hwstate *hw,
  854. struct fb_var_screeninfo *var)
  855. {
  856. int pipe = PIPE_A;
  857. u32 *dpll, *fp0, *fp1;
  858. u32 m1, m2, n, p1, p2, clock_target, clock;
  859. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  860. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  861. u32 vsync_pol, hsync_pol;
  862. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  863. u32 stride_alignment;
  864. DBG_MSG("intelfbhw_mode_to_hw\n");
  865. /* Disable VGA */
  866. hw->vgacntrl |= VGA_DISABLE;
  867. /* Check whether pipe A or pipe B is enabled. */
  868. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  869. pipe = PIPE_A;
  870. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  871. pipe = PIPE_B;
  872. /* Set which pipe's registers will be set. */
  873. if (pipe == PIPE_B) {
  874. dpll = &hw->dpll_b;
  875. fp0 = &hw->fpb0;
  876. fp1 = &hw->fpb1;
  877. hs = &hw->hsync_b;
  878. hb = &hw->hblank_b;
  879. ht = &hw->htotal_b;
  880. vs = &hw->vsync_b;
  881. vb = &hw->vblank_b;
  882. vt = &hw->vtotal_b;
  883. ss = &hw->src_size_b;
  884. pipe_conf = &hw->pipe_b_conf;
  885. } else {
  886. dpll = &hw->dpll_a;
  887. fp0 = &hw->fpa0;
  888. fp1 = &hw->fpa1;
  889. hs = &hw->hsync_a;
  890. hb = &hw->hblank_a;
  891. ht = &hw->htotal_a;
  892. vs = &hw->vsync_a;
  893. vb = &hw->vblank_a;
  894. vt = &hw->vtotal_a;
  895. ss = &hw->src_size_a;
  896. pipe_conf = &hw->pipe_a_conf;
  897. }
  898. /* Use ADPA register for sync control. */
  899. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  900. /* sync polarity */
  901. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  902. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  903. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  904. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  905. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  906. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  907. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  908. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  909. /* Connect correct pipe to the analog port DAC */
  910. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  911. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  912. /* Set DPMS state to D0 (on) */
  913. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  914. hw->adpa |= ADPA_DPMS_D0;
  915. hw->adpa |= ADPA_DAC_ENABLE;
  916. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  917. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  918. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  919. /* Desired clock in kHz */
  920. clock_target = 1000000000 / var->pixclock;
  921. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  922. &n, &p1, &p2, &clock)) {
  923. WRN_MSG("calc_pll_params failed\n");
  924. return 1;
  925. }
  926. /* Check for overflow. */
  927. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  928. return 1;
  929. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  930. return 1;
  931. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  932. return 1;
  933. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  934. return 1;
  935. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  936. return 1;
  937. *dpll &= ~DPLL_P1_FORCE_DIV2;
  938. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  939. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  940. if (IS_I9XX(dinfo)) {
  941. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  942. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  943. } else {
  944. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  945. }
  946. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  947. (m1 << FP_M1_DIVISOR_SHIFT) |
  948. (m2 << FP_M2_DIVISOR_SHIFT);
  949. *fp1 = *fp0;
  950. hw->dvob &= ~PORT_ENABLE;
  951. hw->dvoc &= ~PORT_ENABLE;
  952. /* Use display plane A. */
  953. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  954. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  955. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  956. switch (intelfb_var_to_depth(var)) {
  957. case 8:
  958. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  959. break;
  960. case 15:
  961. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  962. break;
  963. case 16:
  964. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  965. break;
  966. case 24:
  967. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  968. break;
  969. }
  970. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  971. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  972. /* Set CRTC registers. */
  973. hactive = var->xres;
  974. hsync_start = hactive + var->right_margin;
  975. hsync_end = hsync_start + var->hsync_len;
  976. htotal = hsync_end + var->left_margin;
  977. hblank_start = hactive;
  978. hblank_end = htotal;
  979. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  980. hactive, hsync_start, hsync_end, htotal, hblank_start,
  981. hblank_end);
  982. vactive = var->yres;
  983. vsync_start = vactive + var->lower_margin;
  984. vsync_end = vsync_start + var->vsync_len;
  985. vtotal = vsync_end + var->upper_margin;
  986. vblank_start = vactive;
  987. vblank_end = vtotal;
  988. vblank_end = vsync_end + 1;
  989. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  990. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  991. vblank_end);
  992. /* Adjust for register values, and check for overflow. */
  993. hactive--;
  994. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  995. return 1;
  996. hsync_start--;
  997. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  998. return 1;
  999. hsync_end--;
  1000. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1001. return 1;
  1002. htotal--;
  1003. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1004. return 1;
  1005. hblank_start--;
  1006. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1007. return 1;
  1008. hblank_end--;
  1009. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1010. return 1;
  1011. vactive--;
  1012. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1013. return 1;
  1014. vsync_start--;
  1015. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1016. return 1;
  1017. vsync_end--;
  1018. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1019. return 1;
  1020. vtotal--;
  1021. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1022. return 1;
  1023. vblank_start--;
  1024. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1025. return 1;
  1026. vblank_end--;
  1027. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1028. return 1;
  1029. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1030. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1031. (hblank_end << HSYNCEND_SHIFT);
  1032. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1033. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1034. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1035. (vblank_end << VSYNCEND_SHIFT);
  1036. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1037. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1038. (vactive << SRC_SIZE_VERT_SHIFT);
  1039. hw->disp_a_stride = dinfo->pitch;
  1040. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1041. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1042. var->xoffset * var->bits_per_pixel / 8;
  1043. hw->disp_a_base += dinfo->fb.offset << 12;
  1044. /* Check stride alignment. */
  1045. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1046. STRIDE_ALIGNMENT;
  1047. if (hw->disp_a_stride % stride_alignment != 0) {
  1048. WRN_MSG("display stride %d has bad alignment %d\n",
  1049. hw->disp_a_stride, stride_alignment);
  1050. return 1;
  1051. }
  1052. /* Set the palette to 8-bit mode. */
  1053. *pipe_conf &= ~PIPECONF_GAMMA;
  1054. return 0;
  1055. }
  1056. /* Program a (non-VGA) video mode. */
  1057. int
  1058. intelfbhw_program_mode(struct intelfb_info *dinfo,
  1059. const struct intelfb_hwstate *hw, int blank)
  1060. {
  1061. int pipe = PIPE_A;
  1062. u32 tmp;
  1063. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1064. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1065. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg;
  1066. u32 hsync_reg, htotal_reg, hblank_reg;
  1067. u32 vsync_reg, vtotal_reg, vblank_reg;
  1068. u32 src_size_reg;
  1069. u32 count, tmp_val[3];
  1070. /* Assume single pipe, display plane A, analog CRT. */
  1071. #if VERBOSE > 0
  1072. DBG_MSG("intelfbhw_program_mode\n");
  1073. #endif
  1074. /* Disable VGA */
  1075. tmp = INREG(VGACNTRL);
  1076. tmp |= VGA_DISABLE;
  1077. OUTREG(VGACNTRL, tmp);
  1078. /* Check whether pipe A or pipe B is enabled. */
  1079. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1080. pipe = PIPE_A;
  1081. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1082. pipe = PIPE_B;
  1083. dinfo->pipe = pipe;
  1084. if (pipe == PIPE_B) {
  1085. dpll = &hw->dpll_b;
  1086. fp0 = &hw->fpb0;
  1087. fp1 = &hw->fpb1;
  1088. pipe_conf = &hw->pipe_b_conf;
  1089. hs = &hw->hsync_b;
  1090. hb = &hw->hblank_b;
  1091. ht = &hw->htotal_b;
  1092. vs = &hw->vsync_b;
  1093. vb = &hw->vblank_b;
  1094. vt = &hw->vtotal_b;
  1095. ss = &hw->src_size_b;
  1096. dpll_reg = DPLL_B;
  1097. fp0_reg = FPB0;
  1098. fp1_reg = FPB1;
  1099. pipe_conf_reg = PIPEBCONF;
  1100. hsync_reg = HSYNC_B;
  1101. htotal_reg = HTOTAL_B;
  1102. hblank_reg = HBLANK_B;
  1103. vsync_reg = VSYNC_B;
  1104. vtotal_reg = VTOTAL_B;
  1105. vblank_reg = VBLANK_B;
  1106. src_size_reg = SRC_SIZE_B;
  1107. } else {
  1108. dpll = &hw->dpll_a;
  1109. fp0 = &hw->fpa0;
  1110. fp1 = &hw->fpa1;
  1111. pipe_conf = &hw->pipe_a_conf;
  1112. hs = &hw->hsync_a;
  1113. hb = &hw->hblank_a;
  1114. ht = &hw->htotal_a;
  1115. vs = &hw->vsync_a;
  1116. vb = &hw->vblank_a;
  1117. vt = &hw->vtotal_a;
  1118. ss = &hw->src_size_a;
  1119. dpll_reg = DPLL_A;
  1120. fp0_reg = FPA0;
  1121. fp1_reg = FPA1;
  1122. pipe_conf_reg = PIPEACONF;
  1123. hsync_reg = HSYNC_A;
  1124. htotal_reg = HTOTAL_A;
  1125. hblank_reg = HBLANK_A;
  1126. vsync_reg = VSYNC_A;
  1127. vtotal_reg = VTOTAL_A;
  1128. vblank_reg = VBLANK_A;
  1129. src_size_reg = SRC_SIZE_A;
  1130. }
  1131. /* turn off pipe */
  1132. tmp = INREG(pipe_conf_reg);
  1133. tmp &= ~PIPECONF_ENABLE;
  1134. OUTREG(pipe_conf_reg, tmp);
  1135. count = 0;
  1136. do {
  1137. tmp_val[count%3] = INREG(0x70000);
  1138. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1]==tmp_val[2]))
  1139. break;
  1140. count++;
  1141. udelay(1);
  1142. if (count % 200 == 0) {
  1143. tmp = INREG(pipe_conf_reg);
  1144. tmp &= ~PIPECONF_ENABLE;
  1145. OUTREG(pipe_conf_reg, tmp);
  1146. }
  1147. } while(count < 2000);
  1148. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1149. /* Disable planes A and B. */
  1150. tmp = INREG(DSPACNTR);
  1151. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1152. OUTREG(DSPACNTR, tmp);
  1153. tmp = INREG(DSPBCNTR);
  1154. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1155. OUTREG(DSPBCNTR, tmp);
  1156. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1157. mdelay(20);
  1158. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1159. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1160. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1161. /* Disable Sync */
  1162. tmp = INREG(ADPA);
  1163. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1164. tmp |= ADPA_DPMS_D3;
  1165. OUTREG(ADPA, tmp);
  1166. /* do some funky magic - xyzzy */
  1167. OUTREG(0x61204, 0xabcd0000);
  1168. /* turn off PLL */
  1169. tmp = INREG(dpll_reg);
  1170. dpll_reg &= ~DPLL_VCO_ENABLE;
  1171. OUTREG(dpll_reg, tmp);
  1172. /* Set PLL parameters */
  1173. OUTREG(fp0_reg, *fp0);
  1174. OUTREG(fp1_reg, *fp1);
  1175. /* Enable PLL */
  1176. OUTREG(dpll_reg, *dpll);
  1177. /* Set DVOs B/C */
  1178. OUTREG(DVOB, hw->dvob);
  1179. OUTREG(DVOC, hw->dvoc);
  1180. /* undo funky magic */
  1181. OUTREG(0x61204, 0x00000000);
  1182. /* Set ADPA */
  1183. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1184. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1185. /* Set pipe parameters */
  1186. OUTREG(hsync_reg, *hs);
  1187. OUTREG(hblank_reg, *hb);
  1188. OUTREG(htotal_reg, *ht);
  1189. OUTREG(vsync_reg, *vs);
  1190. OUTREG(vblank_reg, *vb);
  1191. OUTREG(vtotal_reg, *vt);
  1192. OUTREG(src_size_reg, *ss);
  1193. /* Enable pipe */
  1194. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1195. /* Enable sync */
  1196. tmp = INREG(ADPA);
  1197. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1198. tmp |= ADPA_DPMS_D0;
  1199. OUTREG(ADPA, tmp);
  1200. /* setup display plane */
  1201. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1202. /*
  1203. * i830M errata: the display plane must be enabled
  1204. * to allow writes to the other bits in the plane
  1205. * control register.
  1206. */
  1207. tmp = INREG(DSPACNTR);
  1208. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1209. tmp |= DISPPLANE_PLANE_ENABLE;
  1210. OUTREG(DSPACNTR, tmp);
  1211. OUTREG(DSPACNTR,
  1212. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1213. mdelay(1);
  1214. }
  1215. }
  1216. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1217. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1218. OUTREG(DSPABASE, hw->disp_a_base);
  1219. /* Enable plane */
  1220. if (!blank) {
  1221. tmp = INREG(DSPACNTR);
  1222. tmp |= DISPPLANE_PLANE_ENABLE;
  1223. OUTREG(DSPACNTR, tmp);
  1224. OUTREG(DSPABASE, hw->disp_a_base);
  1225. }
  1226. return 0;
  1227. }
  1228. /* forward declarations */
  1229. static void refresh_ring(struct intelfb_info *dinfo);
  1230. static void reset_state(struct intelfb_info *dinfo);
  1231. static void do_flush(struct intelfb_info *dinfo);
  1232. static int
  1233. wait_ring(struct intelfb_info *dinfo, int n)
  1234. {
  1235. int i = 0;
  1236. unsigned long end;
  1237. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1238. #if VERBOSE > 0
  1239. DBG_MSG("wait_ring: %d\n", n);
  1240. #endif
  1241. end = jiffies + (HZ * 3);
  1242. while (dinfo->ring_space < n) {
  1243. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1244. if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
  1245. dinfo->ring_space = dinfo->ring_head
  1246. - (dinfo->ring_tail + RING_MIN_FREE);
  1247. else
  1248. dinfo->ring_space = (dinfo->ring.size +
  1249. dinfo->ring_head)
  1250. - (dinfo->ring_tail + RING_MIN_FREE);
  1251. if (dinfo->ring_head != last_head) {
  1252. end = jiffies + (HZ * 3);
  1253. last_head = dinfo->ring_head;
  1254. }
  1255. i++;
  1256. if (time_before(end, jiffies)) {
  1257. if (!i) {
  1258. /* Try again */
  1259. reset_state(dinfo);
  1260. refresh_ring(dinfo);
  1261. do_flush(dinfo);
  1262. end = jiffies + (HZ * 3);
  1263. i = 1;
  1264. } else {
  1265. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1266. dinfo->ring_space, n);
  1267. WRN_MSG("lockup - turning off hardware "
  1268. "acceleration\n");
  1269. dinfo->ring_lockup = 1;
  1270. break;
  1271. }
  1272. }
  1273. udelay(1);
  1274. }
  1275. return i;
  1276. }
  1277. static void
  1278. do_flush(struct intelfb_info *dinfo) {
  1279. START_RING(2);
  1280. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1281. OUT_RING(MI_NOOP);
  1282. ADVANCE_RING();
  1283. }
  1284. void
  1285. intelfbhw_do_sync(struct intelfb_info *dinfo)
  1286. {
  1287. #if VERBOSE > 0
  1288. DBG_MSG("intelfbhw_do_sync\n");
  1289. #endif
  1290. if (!dinfo->accel)
  1291. return;
  1292. /*
  1293. * Send a flush, then wait until the ring is empty. This is what
  1294. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1295. * than the recommended method (both have problems).
  1296. */
  1297. do_flush(dinfo);
  1298. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1299. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1300. }
  1301. static void
  1302. refresh_ring(struct intelfb_info *dinfo)
  1303. {
  1304. #if VERBOSE > 0
  1305. DBG_MSG("refresh_ring\n");
  1306. #endif
  1307. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1308. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1309. if (dinfo->ring_tail + RING_MIN_FREE < dinfo->ring_head)
  1310. dinfo->ring_space = dinfo->ring_head
  1311. - (dinfo->ring_tail + RING_MIN_FREE);
  1312. else
  1313. dinfo->ring_space = (dinfo->ring.size + dinfo->ring_head)
  1314. - (dinfo->ring_tail + RING_MIN_FREE);
  1315. }
  1316. static void
  1317. reset_state(struct intelfb_info *dinfo)
  1318. {
  1319. int i;
  1320. u32 tmp;
  1321. #if VERBOSE > 0
  1322. DBG_MSG("reset_state\n");
  1323. #endif
  1324. for (i = 0; i < FENCE_NUM; i++)
  1325. OUTREG(FENCE + (i << 2), 0);
  1326. /* Flush the ring buffer if it's enabled. */
  1327. tmp = INREG(PRI_RING_LENGTH);
  1328. if (tmp & RING_ENABLE) {
  1329. #if VERBOSE > 0
  1330. DBG_MSG("reset_state: ring was enabled\n");
  1331. #endif
  1332. refresh_ring(dinfo);
  1333. intelfbhw_do_sync(dinfo);
  1334. DO_RING_IDLE();
  1335. }
  1336. OUTREG(PRI_RING_LENGTH, 0);
  1337. OUTREG(PRI_RING_HEAD, 0);
  1338. OUTREG(PRI_RING_TAIL, 0);
  1339. OUTREG(PRI_RING_START, 0);
  1340. }
  1341. /* Stop the 2D engine, and turn off the ring buffer. */
  1342. void
  1343. intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1344. {
  1345. #if VERBOSE > 0
  1346. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n", dinfo->accel,
  1347. dinfo->ring_active);
  1348. #endif
  1349. if (!dinfo->accel)
  1350. return;
  1351. dinfo->ring_active = 0;
  1352. reset_state(dinfo);
  1353. }
  1354. /*
  1355. * Enable the ring buffer, and initialise the 2D engine.
  1356. * It is assumed that the graphics engine has been stopped by previously
  1357. * calling intelfb_2d_stop().
  1358. */
  1359. void
  1360. intelfbhw_2d_start(struct intelfb_info *dinfo)
  1361. {
  1362. #if VERBOSE > 0
  1363. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1364. dinfo->accel, dinfo->ring_active);
  1365. #endif
  1366. if (!dinfo->accel)
  1367. return;
  1368. /* Initialise the primary ring buffer. */
  1369. OUTREG(PRI_RING_LENGTH, 0);
  1370. OUTREG(PRI_RING_TAIL, 0);
  1371. OUTREG(PRI_RING_HEAD, 0);
  1372. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1373. OUTREG(PRI_RING_LENGTH,
  1374. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1375. RING_NO_REPORT | RING_ENABLE);
  1376. refresh_ring(dinfo);
  1377. dinfo->ring_active = 1;
  1378. }
  1379. /* 2D fillrect (solid fill or invert) */
  1380. void
  1381. intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w, u32 h,
  1382. u32 color, u32 pitch, u32 bpp, u32 rop)
  1383. {
  1384. u32 br00, br09, br13, br14, br16;
  1385. #if VERBOSE > 0
  1386. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1387. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1388. #endif
  1389. br00 = COLOR_BLT_CMD;
  1390. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1391. br13 = (rop << ROP_SHIFT) | pitch;
  1392. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1393. br16 = color;
  1394. switch (bpp) {
  1395. case 8:
  1396. br13 |= COLOR_DEPTH_8;
  1397. break;
  1398. case 16:
  1399. br13 |= COLOR_DEPTH_16;
  1400. break;
  1401. case 32:
  1402. br13 |= COLOR_DEPTH_32;
  1403. br00 |= WRITE_ALPHA | WRITE_RGB;
  1404. break;
  1405. }
  1406. START_RING(6);
  1407. OUT_RING(br00);
  1408. OUT_RING(br13);
  1409. OUT_RING(br14);
  1410. OUT_RING(br09);
  1411. OUT_RING(br16);
  1412. OUT_RING(MI_NOOP);
  1413. ADVANCE_RING();
  1414. #if VERBOSE > 0
  1415. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1416. dinfo->ring_tail, dinfo->ring_space);
  1417. #endif
  1418. }
  1419. void
  1420. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1421. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1422. {
  1423. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1424. #if VERBOSE > 0
  1425. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1426. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1427. #endif
  1428. br00 = XY_SRC_COPY_BLT_CMD;
  1429. br09 = dinfo->fb_start;
  1430. br11 = (pitch << PITCH_SHIFT);
  1431. br12 = dinfo->fb_start;
  1432. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1433. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1434. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1435. ((dsty + h) << HEIGHT_SHIFT);
  1436. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1437. switch (bpp) {
  1438. case 8:
  1439. br13 |= COLOR_DEPTH_8;
  1440. break;
  1441. case 16:
  1442. br13 |= COLOR_DEPTH_16;
  1443. break;
  1444. case 32:
  1445. br13 |= COLOR_DEPTH_32;
  1446. br00 |= WRITE_ALPHA | WRITE_RGB;
  1447. break;
  1448. }
  1449. START_RING(8);
  1450. OUT_RING(br00);
  1451. OUT_RING(br13);
  1452. OUT_RING(br22);
  1453. OUT_RING(br23);
  1454. OUT_RING(br09);
  1455. OUT_RING(br26);
  1456. OUT_RING(br11);
  1457. OUT_RING(br12);
  1458. ADVANCE_RING();
  1459. }
  1460. int
  1461. intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1462. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch, u32 bpp)
  1463. {
  1464. int nbytes, ndwords, pad, tmp;
  1465. u32 br00, br09, br13, br18, br19, br22, br23;
  1466. int dat, ix, iy, iw;
  1467. int i, j;
  1468. #if VERBOSE > 0
  1469. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1470. #endif
  1471. /* size in bytes of a padded scanline */
  1472. nbytes = ROUND_UP_TO(w, 16) / 8;
  1473. /* Total bytes of padded scanline data to write out. */
  1474. nbytes = nbytes * h;
  1475. /*
  1476. * Check if the glyph data exceeds the immediate mode limit.
  1477. * It would take a large font (1K pixels) to hit this limit.
  1478. */
  1479. if (nbytes > MAX_MONO_IMM_SIZE)
  1480. return 0;
  1481. /* Src data is packaged a dword (32-bit) at a time. */
  1482. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1483. /*
  1484. * Ring has to be padded to a quad word. But because the command starts
  1485. with 7 bytes, pad only if there is an even number of ndwords
  1486. */
  1487. pad = !(ndwords % 2);
  1488. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1489. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1490. br09 = dinfo->fb_start;
  1491. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1492. br18 = bg;
  1493. br19 = fg;
  1494. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1495. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1496. switch (bpp) {
  1497. case 8:
  1498. br13 |= COLOR_DEPTH_8;
  1499. break;
  1500. case 16:
  1501. br13 |= COLOR_DEPTH_16;
  1502. break;
  1503. case 32:
  1504. br13 |= COLOR_DEPTH_32;
  1505. br00 |= WRITE_ALPHA | WRITE_RGB;
  1506. break;
  1507. }
  1508. START_RING(8 + ndwords);
  1509. OUT_RING(br00);
  1510. OUT_RING(br13);
  1511. OUT_RING(br22);
  1512. OUT_RING(br23);
  1513. OUT_RING(br09);
  1514. OUT_RING(br18);
  1515. OUT_RING(br19);
  1516. ix = iy = 0;
  1517. iw = ROUND_UP_TO(w, 8) / 8;
  1518. while (ndwords--) {
  1519. dat = 0;
  1520. for (j = 0; j < 2; ++j) {
  1521. for (i = 0; i < 2; ++i) {
  1522. if (ix != iw || i == 0)
  1523. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1524. }
  1525. if (ix == iw && iy != (h-1)) {
  1526. ix = 0;
  1527. ++iy;
  1528. }
  1529. }
  1530. OUT_RING(dat);
  1531. }
  1532. if (pad)
  1533. OUT_RING(MI_NOOP);
  1534. ADVANCE_RING();
  1535. return 1;
  1536. }
  1537. /* HW cursor functions. */
  1538. void
  1539. intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1540. {
  1541. u32 tmp;
  1542. #if VERBOSE > 0
  1543. DBG_MSG("intelfbhw_cursor_init\n");
  1544. #endif
  1545. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1546. if (!dinfo->cursor.physical)
  1547. return;
  1548. tmp = INREG(CURSOR_A_CONTROL);
  1549. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1550. CURSOR_MEM_TYPE_LOCAL |
  1551. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1552. tmp |= CURSOR_MODE_DISABLE;
  1553. OUTREG(CURSOR_A_CONTROL, tmp);
  1554. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1555. } else {
  1556. tmp = INREG(CURSOR_CONTROL);
  1557. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1558. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1559. tmp = CURSOR_FORMAT_3C;
  1560. OUTREG(CURSOR_CONTROL, tmp);
  1561. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1562. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1563. (64 << CURSOR_SIZE_V_SHIFT);
  1564. OUTREG(CURSOR_SIZE, tmp);
  1565. }
  1566. }
  1567. void
  1568. intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1569. {
  1570. u32 tmp;
  1571. #if VERBOSE > 0
  1572. DBG_MSG("intelfbhw_cursor_hide\n");
  1573. #endif
  1574. dinfo->cursor_on = 0;
  1575. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1576. if (!dinfo->cursor.physical)
  1577. return;
  1578. tmp = INREG(CURSOR_A_CONTROL);
  1579. tmp &= ~CURSOR_MODE_MASK;
  1580. tmp |= CURSOR_MODE_DISABLE;
  1581. OUTREG(CURSOR_A_CONTROL, tmp);
  1582. /* Flush changes */
  1583. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1584. } else {
  1585. tmp = INREG(CURSOR_CONTROL);
  1586. tmp &= ~CURSOR_ENABLE;
  1587. OUTREG(CURSOR_CONTROL, tmp);
  1588. }
  1589. }
  1590. void
  1591. intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1592. {
  1593. u32 tmp;
  1594. #if VERBOSE > 0
  1595. DBG_MSG("intelfbhw_cursor_show\n");
  1596. #endif
  1597. dinfo->cursor_on = 1;
  1598. if (dinfo->cursor_blanked)
  1599. return;
  1600. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1601. if (!dinfo->cursor.physical)
  1602. return;
  1603. tmp = INREG(CURSOR_A_CONTROL);
  1604. tmp &= ~CURSOR_MODE_MASK;
  1605. tmp |= CURSOR_MODE_64_4C_AX;
  1606. OUTREG(CURSOR_A_CONTROL, tmp);
  1607. /* Flush changes */
  1608. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1609. } else {
  1610. tmp = INREG(CURSOR_CONTROL);
  1611. tmp |= CURSOR_ENABLE;
  1612. OUTREG(CURSOR_CONTROL, tmp);
  1613. }
  1614. }
  1615. void
  1616. intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1617. {
  1618. u32 tmp;
  1619. #if VERBOSE > 0
  1620. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1621. #endif
  1622. /*
  1623. * Sets the position. The coordinates are assumed to already
  1624. * have any offset adjusted. Assume that the cursor is never
  1625. * completely off-screen, and that x, y are always >= 0.
  1626. */
  1627. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1628. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1629. OUTREG(CURSOR_A_POSITION, tmp);
  1630. if (IS_I9XX(dinfo)) {
  1631. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1632. }
  1633. }
  1634. void
  1635. intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1636. {
  1637. #if VERBOSE > 0
  1638. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1639. #endif
  1640. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1641. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1642. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1643. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1644. }
  1645. void
  1646. intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1647. u8 *data)
  1648. {
  1649. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1650. int i, j, w = width / 8;
  1651. int mod = width % 8, t_mask, d_mask;
  1652. #if VERBOSE > 0
  1653. DBG_MSG("intelfbhw_cursor_load\n");
  1654. #endif
  1655. if (!dinfo->cursor.virtual)
  1656. return;
  1657. t_mask = 0xff >> mod;
  1658. d_mask = ~(0xff >> mod);
  1659. for (i = height; i--; ) {
  1660. for (j = 0; j < w; j++) {
  1661. writeb(0x00, addr + j);
  1662. writeb(*(data++), addr + j+8);
  1663. }
  1664. if (mod) {
  1665. writeb(t_mask, addr + j);
  1666. writeb(*(data++) & d_mask, addr + j+8);
  1667. }
  1668. addr += 16;
  1669. }
  1670. }
  1671. void
  1672. intelfbhw_cursor_reset(struct intelfb_info *dinfo) {
  1673. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1674. int i, j;
  1675. #if VERBOSE > 0
  1676. DBG_MSG("intelfbhw_cursor_reset\n");
  1677. #endif
  1678. if (!dinfo->cursor.virtual)
  1679. return;
  1680. for (i = 64; i--; ) {
  1681. for (j = 0; j < 8; j++) {
  1682. writeb(0xff, addr + j+0);
  1683. writeb(0x00, addr + j+8);
  1684. }
  1685. addr += 16;
  1686. }
  1687. }
  1688. static irqreturn_t
  1689. intelfbhw_irq(int irq, void *dev_id) {
  1690. int handled = 0;
  1691. u16 tmp;
  1692. struct intelfb_info *dinfo = (struct intelfb_info *)dev_id;
  1693. spin_lock(&dinfo->int_lock);
  1694. tmp = INREG16(IIR);
  1695. tmp &= VSYNC_PIPE_A_INTERRUPT;
  1696. if (tmp == 0) {
  1697. spin_unlock(&dinfo->int_lock);
  1698. return IRQ_RETVAL(handled);
  1699. }
  1700. OUTREG16(IIR, tmp);
  1701. if (tmp & VSYNC_PIPE_A_INTERRUPT) {
  1702. dinfo->vsync.count++;
  1703. if (dinfo->vsync.pan_display) {
  1704. dinfo->vsync.pan_display = 0;
  1705. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1706. }
  1707. wake_up_interruptible(&dinfo->vsync.wait);
  1708. handled = 1;
  1709. }
  1710. spin_unlock(&dinfo->int_lock);
  1711. return IRQ_RETVAL(handled);
  1712. }
  1713. int
  1714. intelfbhw_enable_irq(struct intelfb_info *dinfo, int reenable) {
  1715. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1716. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, SA_SHIRQ, "intelfb", dinfo)) {
  1717. clear_bit(0, &dinfo->irq_flags);
  1718. return -EINVAL;
  1719. }
  1720. spin_lock_irq(&dinfo->int_lock);
  1721. OUTREG16(HWSTAM, 0xfffe);
  1722. OUTREG16(IMR, 0x0);
  1723. OUTREG16(IER, VSYNC_PIPE_A_INTERRUPT);
  1724. spin_unlock_irq(&dinfo->int_lock);
  1725. } else if (reenable) {
  1726. u16 ier;
  1727. spin_lock_irq(&dinfo->int_lock);
  1728. ier = INREG16(IER);
  1729. if ((ier & VSYNC_PIPE_A_INTERRUPT)) {
  1730. DBG_MSG("someone disabled the IRQ [%08X]\n", ier);
  1731. OUTREG(IER, VSYNC_PIPE_A_INTERRUPT);
  1732. }
  1733. spin_unlock_irq(&dinfo->int_lock);
  1734. }
  1735. return 0;
  1736. }
  1737. void
  1738. intelfbhw_disable_irq(struct intelfb_info *dinfo) {
  1739. u16 tmp;
  1740. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1741. if (dinfo->vsync.pan_display) {
  1742. dinfo->vsync.pan_display = 0;
  1743. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1744. }
  1745. spin_lock_irq(&dinfo->int_lock);
  1746. OUTREG16(HWSTAM, 0xffff);
  1747. OUTREG16(IMR, 0xffff);
  1748. OUTREG16(IER, 0x0);
  1749. tmp = INREG16(IIR);
  1750. OUTREG16(IIR, tmp);
  1751. spin_unlock_irq(&dinfo->int_lock);
  1752. free_irq(dinfo->pdev->irq, dinfo);
  1753. }
  1754. }
  1755. int
  1756. intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe) {
  1757. struct intelfb_vsync *vsync;
  1758. unsigned int count;
  1759. int ret;
  1760. switch (pipe) {
  1761. case 0:
  1762. vsync = &dinfo->vsync;
  1763. break;
  1764. default:
  1765. return -ENODEV;
  1766. }
  1767. ret = intelfbhw_enable_irq(dinfo, 0);
  1768. if (ret) {
  1769. return ret;
  1770. }
  1771. count = vsync->count;
  1772. ret = wait_event_interruptible_timeout(vsync->wait, count != vsync->count, HZ/10);
  1773. if (ret < 0) {
  1774. return ret;
  1775. }
  1776. if (ret == 0) {
  1777. intelfbhw_enable_irq(dinfo, 1);
  1778. DBG_MSG("wait_for_vsync timed out!\n");
  1779. return -ETIMEDOUT;
  1780. }
  1781. return 0;
  1782. }