adutux.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901
  1. /*
  2. * adutux - driver for ADU devices from Ontrak Control Systems
  3. * This is an experimental driver. Use at your own risk.
  4. * This driver is not supported by Ontrak Control Systems.
  5. *
  6. * Copyright (c) 2003 John Homppi (SCO, leave this notice here)
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License as
  10. * published by the Free Software Foundation; either version 2 of
  11. * the License, or (at your option) any later version.
  12. *
  13. * derived from the Lego USB Tower driver 0.56:
  14. * Copyright (c) 2003 David Glance <davidgsf@sourceforge.net>
  15. * 2001 Juergen Stuber <stuber@loria.fr>
  16. * that was derived from USB Skeleton driver - 0.5
  17. * Copyright (c) 2001 Greg Kroah-Hartman (greg@kroah.com)
  18. *
  19. */
  20. #include <linux/kernel.h>
  21. #include <linux/errno.h>
  22. #include <linux/init.h>
  23. #include <linux/slab.h>
  24. #include <linux/module.h>
  25. #include <linux/usb.h>
  26. #include <asm/uaccess.h>
  27. #ifdef CONFIG_USB_DEBUG
  28. static int debug = 5;
  29. #else
  30. static int debug = 1;
  31. #endif
  32. /* Use our own dbg macro */
  33. #undef dbg
  34. #define dbg(lvl, format, arg...) \
  35. do { \
  36. if (debug >= lvl) \
  37. printk(KERN_DEBUG __FILE__ " : " format " \n", ## arg); \
  38. } while (0)
  39. /* Version Information */
  40. #define DRIVER_VERSION "v0.0.13"
  41. #define DRIVER_AUTHOR "John Homppi"
  42. #define DRIVER_DESC "adutux (see www.ontrak.net)"
  43. /* Module parameters */
  44. module_param(debug, int, S_IRUGO | S_IWUSR);
  45. MODULE_PARM_DESC(debug, "Debug enabled or not");
  46. /* Define these values to match your device */
  47. #define ADU_VENDOR_ID 0x0a07
  48. #define ADU_PRODUCT_ID 0x0064
  49. /* table of devices that work with this driver */
  50. static struct usb_device_id device_table [] = {
  51. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID) }, /* ADU100 */
  52. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+20) }, /* ADU120 */
  53. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+30) }, /* ADU130 */
  54. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+100) }, /* ADU200 */
  55. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+108) }, /* ADU208 */
  56. { USB_DEVICE(ADU_VENDOR_ID, ADU_PRODUCT_ID+118) }, /* ADU218 */
  57. { }/* Terminating entry */
  58. };
  59. MODULE_DEVICE_TABLE(usb, device_table);
  60. #ifdef CONFIG_USB_DYNAMIC_MINORS
  61. #define ADU_MINOR_BASE 0
  62. #else
  63. #define ADU_MINOR_BASE 67
  64. #endif
  65. /* we can have up to this number of device plugged in at once */
  66. #define MAX_DEVICES 16
  67. #define COMMAND_TIMEOUT (2*HZ) /* 60 second timeout for a command */
  68. /* Structure to hold all of our device specific stuff */
  69. struct adu_device {
  70. struct semaphore sem; /* locks this structure */
  71. struct usb_device* udev; /* save off the usb device pointer */
  72. struct usb_interface* interface;
  73. unsigned char minor; /* the starting minor number for this device */
  74. char serial_number[8];
  75. int open_count; /* number of times this port has been opened */
  76. char* read_buffer_primary;
  77. int read_buffer_length;
  78. char* read_buffer_secondary;
  79. int secondary_head;
  80. int secondary_tail;
  81. spinlock_t buflock;
  82. wait_queue_head_t read_wait;
  83. wait_queue_head_t write_wait;
  84. char* interrupt_in_buffer;
  85. struct usb_endpoint_descriptor* interrupt_in_endpoint;
  86. struct urb* interrupt_in_urb;
  87. int read_urb_finished;
  88. char* interrupt_out_buffer;
  89. struct usb_endpoint_descriptor* interrupt_out_endpoint;
  90. struct urb* interrupt_out_urb;
  91. };
  92. /* prevent races between open() and disconnect */
  93. static DEFINE_MUTEX(disconnect_mutex);
  94. static struct usb_driver adu_driver;
  95. static void adu_debug_data(int level, const char *function, int size,
  96. const unsigned char *data)
  97. {
  98. int i;
  99. if (debug < level)
  100. return;
  101. printk(KERN_DEBUG __FILE__": %s - length = %d, data = ",
  102. function, size);
  103. for (i = 0; i < size; ++i)
  104. printk("%.2x ", data[i]);
  105. printk("\n");
  106. }
  107. /**
  108. * adu_abort_transfers
  109. * aborts transfers and frees associated data structures
  110. */
  111. static void adu_abort_transfers(struct adu_device *dev)
  112. {
  113. dbg(2," %s : enter", __FUNCTION__);
  114. if (dev == NULL) {
  115. dbg(1," %s : dev is null", __FUNCTION__);
  116. goto exit;
  117. }
  118. if (dev->udev == NULL) {
  119. dbg(1," %s : udev is null", __FUNCTION__);
  120. goto exit;
  121. }
  122. dbg(2," %s : udev state %d", __FUNCTION__, dev->udev->state);
  123. if (dev->udev->state == USB_STATE_NOTATTACHED) {
  124. dbg(1," %s : udev is not attached", __FUNCTION__);
  125. goto exit;
  126. }
  127. /* shutdown transfer */
  128. usb_unlink_urb(dev->interrupt_in_urb);
  129. usb_unlink_urb(dev->interrupt_out_urb);
  130. exit:
  131. dbg(2," %s : leave", __FUNCTION__);
  132. }
  133. static void adu_delete(struct adu_device *dev)
  134. {
  135. dbg(2, "%s enter", __FUNCTION__);
  136. adu_abort_transfers(dev);
  137. /* free data structures */
  138. usb_free_urb(dev->interrupt_in_urb);
  139. usb_free_urb(dev->interrupt_out_urb);
  140. kfree(dev->read_buffer_primary);
  141. kfree(dev->read_buffer_secondary);
  142. kfree(dev->interrupt_in_buffer);
  143. kfree(dev->interrupt_out_buffer);
  144. kfree(dev);
  145. dbg(2, "%s : leave", __FUNCTION__);
  146. }
  147. static void adu_interrupt_in_callback(struct urb *urb)
  148. {
  149. struct adu_device *dev = urb->context;
  150. dbg(4," %s : enter, status %d", __FUNCTION__, urb->status);
  151. adu_debug_data(5, __FUNCTION__, urb->actual_length,
  152. urb->transfer_buffer);
  153. spin_lock(&dev->buflock);
  154. if (urb->status != 0) {
  155. if ((urb->status != -ENOENT) && (urb->status != -ECONNRESET)) {
  156. dbg(1," %s : nonzero status received: %d",
  157. __FUNCTION__, urb->status);
  158. }
  159. goto exit;
  160. }
  161. if (urb->actual_length > 0 && dev->interrupt_in_buffer[0] != 0x00) {
  162. if (dev->read_buffer_length <
  163. (4 * le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize)) -
  164. (urb->actual_length)) {
  165. memcpy (dev->read_buffer_primary +
  166. dev->read_buffer_length,
  167. dev->interrupt_in_buffer, urb->actual_length);
  168. dev->read_buffer_length += urb->actual_length;
  169. dbg(2," %s reading %d ", __FUNCTION__,
  170. urb->actual_length);
  171. } else {
  172. dbg(1," %s : read_buffer overflow", __FUNCTION__);
  173. }
  174. }
  175. exit:
  176. dev->read_urb_finished = 1;
  177. spin_unlock(&dev->buflock);
  178. /* always wake up so we recover from errors */
  179. wake_up_interruptible(&dev->read_wait);
  180. adu_debug_data(5, __FUNCTION__, urb->actual_length,
  181. urb->transfer_buffer);
  182. dbg(4," %s : leave, status %d", __FUNCTION__, urb->status);
  183. }
  184. static void adu_interrupt_out_callback(struct urb *urb)
  185. {
  186. struct adu_device *dev = urb->context;
  187. dbg(4," %s : enter, status %d", __FUNCTION__, urb->status);
  188. adu_debug_data(5,__FUNCTION__, urb->actual_length, urb->transfer_buffer);
  189. if (urb->status != 0) {
  190. if ((urb->status != -ENOENT) &&
  191. (urb->status != -ECONNRESET)) {
  192. dbg(1, " %s :nonzero status received: %d",
  193. __FUNCTION__, urb->status);
  194. }
  195. goto exit;
  196. }
  197. wake_up_interruptible(&dev->write_wait);
  198. exit:
  199. adu_debug_data(5, __FUNCTION__, urb->actual_length,
  200. urb->transfer_buffer);
  201. dbg(4," %s : leave, status %d", __FUNCTION__, urb->status);
  202. }
  203. static int adu_open(struct inode *inode, struct file *file)
  204. {
  205. struct adu_device *dev = NULL;
  206. struct usb_interface *interface;
  207. int subminor;
  208. int retval = 0;
  209. dbg(2,"%s : enter", __FUNCTION__);
  210. subminor = iminor(inode);
  211. mutex_lock(&disconnect_mutex);
  212. interface = usb_find_interface(&adu_driver, subminor);
  213. if (!interface) {
  214. err("%s - error, can't find device for minor %d",
  215. __FUNCTION__, subminor);
  216. retval = -ENODEV;
  217. goto exit_no_device;
  218. }
  219. dev = usb_get_intfdata(interface);
  220. if (!dev) {
  221. retval = -ENODEV;
  222. goto exit_no_device;
  223. }
  224. /* lock this device */
  225. if ((retval = down_interruptible(&dev->sem))) {
  226. dbg(2, "%s : sem down failed", __FUNCTION__);
  227. goto exit_no_device;
  228. }
  229. /* increment our usage count for the device */
  230. ++dev->open_count;
  231. dbg(2,"%s : open count %d", __FUNCTION__, dev->open_count);
  232. /* save device in the file's private structure */
  233. file->private_data = dev;
  234. /* initialize in direction */
  235. dev->read_buffer_length = 0;
  236. /* fixup first read by having urb waiting for it */
  237. usb_fill_int_urb(dev->interrupt_in_urb,dev->udev,
  238. usb_rcvintpipe(dev->udev,
  239. dev->interrupt_in_endpoint->bEndpointAddress),
  240. dev->interrupt_in_buffer,
  241. le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize),
  242. adu_interrupt_in_callback, dev,
  243. dev->interrupt_in_endpoint->bInterval);
  244. /* dev->interrupt_in_urb->transfer_flags |= URB_ASYNC_UNLINK; */
  245. dev->read_urb_finished = 0;
  246. usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
  247. /* we ignore failure */
  248. /* end of fixup for first read */
  249. up(&dev->sem);
  250. exit_no_device:
  251. mutex_unlock(&disconnect_mutex);
  252. dbg(2,"%s : leave, return value %d ", __FUNCTION__, retval);
  253. return retval;
  254. }
  255. static int adu_release_internal(struct adu_device *dev)
  256. {
  257. int retval = 0;
  258. dbg(2," %s : enter", __FUNCTION__);
  259. if (dev->udev == NULL) {
  260. /* the device was unplugged before the file was released */
  261. adu_delete(dev);
  262. goto exit;
  263. }
  264. /* decrement our usage count for the device */
  265. --dev->open_count;
  266. dbg(2," %s : open count %d", __FUNCTION__, dev->open_count);
  267. if (dev->open_count <= 0) {
  268. adu_abort_transfers(dev);
  269. dev->open_count = 0;
  270. }
  271. exit:
  272. dbg(2," %s : leave", __FUNCTION__);
  273. return retval;
  274. }
  275. static int adu_release(struct inode *inode, struct file *file)
  276. {
  277. struct adu_device *dev = NULL;
  278. int retval = 0;
  279. dbg(2," %s : enter", __FUNCTION__);
  280. if (file == NULL) {
  281. dbg(1," %s : file is NULL", __FUNCTION__);
  282. retval = -ENODEV;
  283. goto exit;
  284. }
  285. dev = file->private_data;
  286. if (dev == NULL) {
  287. dbg(1," %s : object is NULL", __FUNCTION__);
  288. retval = -ENODEV;
  289. goto exit;
  290. }
  291. /* lock our device */
  292. down(&dev->sem); /* not interruptible */
  293. if (dev->open_count <= 0) {
  294. dbg(1," %s : device not opened", __FUNCTION__);
  295. retval = -ENODEV;
  296. goto exit;
  297. }
  298. /* do the work */
  299. retval = adu_release_internal(dev);
  300. exit:
  301. if (dev)
  302. up(&dev->sem);
  303. dbg(2," %s : leave, return value %d", __FUNCTION__, retval);
  304. return retval;
  305. }
  306. static ssize_t adu_read(struct file *file, __user char *buffer, size_t count,
  307. loff_t *ppos)
  308. {
  309. struct adu_device *dev;
  310. size_t bytes_read = 0;
  311. size_t bytes_to_read = count;
  312. int i;
  313. int retval = 0;
  314. int timeout = 0;
  315. int should_submit = 0;
  316. unsigned long flags;
  317. DECLARE_WAITQUEUE(wait, current);
  318. dbg(2," %s : enter, count = %Zd, file=%p", __FUNCTION__, count, file);
  319. dev = file->private_data;
  320. dbg(2," %s : dev=%p", __FUNCTION__, dev);
  321. /* lock this object */
  322. if (down_interruptible(&dev->sem))
  323. return -ERESTARTSYS;
  324. /* verify that the device wasn't unplugged */
  325. if (dev->udev == NULL || dev->minor == 0) {
  326. retval = -ENODEV;
  327. err("No device or device unplugged %d", retval);
  328. goto exit;
  329. }
  330. /* verify that some data was requested */
  331. if (count == 0) {
  332. dbg(1," %s : read request of 0 bytes", __FUNCTION__);
  333. goto exit;
  334. }
  335. timeout = COMMAND_TIMEOUT;
  336. dbg(2," %s : about to start looping", __FUNCTION__);
  337. while (bytes_to_read) {
  338. int data_in_secondary = dev->secondary_tail - dev->secondary_head;
  339. dbg(2," %s : while, data_in_secondary=%d, status=%d",
  340. __FUNCTION__, data_in_secondary,
  341. dev->interrupt_in_urb->status);
  342. if (data_in_secondary) {
  343. /* drain secondary buffer */
  344. int amount = bytes_to_read < data_in_secondary ? bytes_to_read : data_in_secondary;
  345. i = copy_to_user(buffer, dev->read_buffer_secondary+dev->secondary_head, amount);
  346. if (i < 0) {
  347. retval = -EFAULT;
  348. goto exit;
  349. }
  350. dev->secondary_head += (amount - i);
  351. bytes_read += (amount - i);
  352. bytes_to_read -= (amount - i);
  353. if (i) {
  354. retval = bytes_read ? bytes_read : -EFAULT;
  355. goto exit;
  356. }
  357. } else {
  358. /* we check the primary buffer */
  359. spin_lock_irqsave (&dev->buflock, flags);
  360. if (dev->read_buffer_length) {
  361. /* we secure access to the primary */
  362. char *tmp;
  363. dbg(2," %s : swap, read_buffer_length = %d",
  364. __FUNCTION__, dev->read_buffer_length);
  365. tmp = dev->read_buffer_secondary;
  366. dev->read_buffer_secondary = dev->read_buffer_primary;
  367. dev->read_buffer_primary = tmp;
  368. dev->secondary_head = 0;
  369. dev->secondary_tail = dev->read_buffer_length;
  370. dev->read_buffer_length = 0;
  371. spin_unlock_irqrestore(&dev->buflock, flags);
  372. /* we have a free buffer so use it */
  373. should_submit = 1;
  374. } else {
  375. /* even the primary was empty - we may need to do IO */
  376. if (dev->interrupt_in_urb->status == -EINPROGRESS) {
  377. /* somebody is doing IO */
  378. spin_unlock_irqrestore(&dev->buflock, flags);
  379. dbg(2," %s : submitted already", __FUNCTION__);
  380. } else {
  381. /* we must initiate input */
  382. dbg(2," %s : initiate input", __FUNCTION__);
  383. dev->read_urb_finished = 0;
  384. usb_fill_int_urb(dev->interrupt_in_urb,dev->udev,
  385. usb_rcvintpipe(dev->udev,
  386. dev->interrupt_in_endpoint->bEndpointAddress),
  387. dev->interrupt_in_buffer,
  388. le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize),
  389. adu_interrupt_in_callback,
  390. dev,
  391. dev->interrupt_in_endpoint->bInterval);
  392. retval = usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
  393. if (!retval) {
  394. spin_unlock_irqrestore(&dev->buflock, flags);
  395. dbg(2," %s : submitted OK", __FUNCTION__);
  396. } else {
  397. if (retval == -ENOMEM) {
  398. retval = bytes_read ? bytes_read : -ENOMEM;
  399. }
  400. spin_unlock_irqrestore(&dev->buflock, flags);
  401. dbg(2," %s : submit failed", __FUNCTION__);
  402. goto exit;
  403. }
  404. }
  405. /* we wait for I/O to complete */
  406. set_current_state(TASK_INTERRUPTIBLE);
  407. add_wait_queue(&dev->read_wait, &wait);
  408. if (!dev->read_urb_finished)
  409. timeout = schedule_timeout(COMMAND_TIMEOUT);
  410. else
  411. set_current_state(TASK_RUNNING);
  412. remove_wait_queue(&dev->read_wait, &wait);
  413. if (timeout <= 0) {
  414. dbg(2," %s : timeout", __FUNCTION__);
  415. retval = bytes_read ? bytes_read : -ETIMEDOUT;
  416. goto exit;
  417. }
  418. if (signal_pending(current)) {
  419. dbg(2," %s : signal pending", __FUNCTION__);
  420. retval = bytes_read ? bytes_read : -EINTR;
  421. goto exit;
  422. }
  423. }
  424. }
  425. }
  426. retval = bytes_read;
  427. /* if the primary buffer is empty then use it */
  428. if (should_submit && !dev->interrupt_in_urb->status==-EINPROGRESS) {
  429. usb_fill_int_urb(dev->interrupt_in_urb,dev->udev,
  430. usb_rcvintpipe(dev->udev,
  431. dev->interrupt_in_endpoint->bEndpointAddress),
  432. dev->interrupt_in_buffer,
  433. le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize),
  434. adu_interrupt_in_callback,
  435. dev,
  436. dev->interrupt_in_endpoint->bInterval);
  437. /* dev->interrupt_in_urb->transfer_flags |= URB_ASYNC_UNLINK; */
  438. dev->read_urb_finished = 0;
  439. usb_submit_urb(dev->interrupt_in_urb, GFP_KERNEL);
  440. /* we ignore failure */
  441. }
  442. exit:
  443. /* unlock the device */
  444. up(&dev->sem);
  445. dbg(2," %s : leave, return value %d", __FUNCTION__, retval);
  446. return retval;
  447. }
  448. static ssize_t adu_write(struct file *file, const __user char *buffer,
  449. size_t count, loff_t *ppos)
  450. {
  451. struct adu_device *dev;
  452. size_t bytes_written = 0;
  453. size_t bytes_to_write;
  454. size_t buffer_size;
  455. int retval = 0;
  456. int timeout = 0;
  457. dbg(2," %s : enter, count = %Zd", __FUNCTION__, count);
  458. dev = file->private_data;
  459. /* lock this object */
  460. down_interruptible(&dev->sem);
  461. /* verify that the device wasn't unplugged */
  462. if (dev->udev == NULL || dev->minor == 0) {
  463. retval = -ENODEV;
  464. err("No device or device unplugged %d", retval);
  465. goto exit;
  466. }
  467. /* verify that we actually have some data to write */
  468. if (count == 0) {
  469. dbg(1," %s : write request of 0 bytes", __FUNCTION__);
  470. goto exit;
  471. }
  472. while (count > 0) {
  473. if (dev->interrupt_out_urb->status == -EINPROGRESS) {
  474. timeout = COMMAND_TIMEOUT;
  475. while (timeout > 0) {
  476. if (signal_pending(current)) {
  477. dbg(1," %s : interrupted", __FUNCTION__);
  478. retval = -EINTR;
  479. goto exit;
  480. }
  481. up(&dev->sem);
  482. timeout = interruptible_sleep_on_timeout(&dev->write_wait, timeout);
  483. down_interruptible(&dev->sem);
  484. if (timeout > 0) {
  485. break;
  486. }
  487. dbg(1," %s : interrupted timeout: %d", __FUNCTION__, timeout);
  488. }
  489. dbg(1," %s : final timeout: %d", __FUNCTION__, timeout);
  490. if (timeout == 0) {
  491. dbg(1, "%s - command timed out.", __FUNCTION__);
  492. retval = -ETIMEDOUT;
  493. goto exit;
  494. }
  495. dbg(4," %s : in progress, count = %Zd", __FUNCTION__, count);
  496. } else {
  497. dbg(4," %s : sending, count = %Zd", __FUNCTION__, count);
  498. /* write the data into interrupt_out_buffer from userspace */
  499. buffer_size = le16_to_cpu(dev->interrupt_out_endpoint->wMaxPacketSize);
  500. bytes_to_write = count > buffer_size ? buffer_size : count;
  501. dbg(4," %s : buffer_size = %Zd, count = %Zd, bytes_to_write = %Zd",
  502. __FUNCTION__, buffer_size, count, bytes_to_write);
  503. if (copy_from_user(dev->interrupt_out_buffer, buffer, bytes_to_write) != 0) {
  504. retval = -EFAULT;
  505. goto exit;
  506. }
  507. /* send off the urb */
  508. usb_fill_int_urb(
  509. dev->interrupt_out_urb,
  510. dev->udev,
  511. usb_sndintpipe(dev->udev, dev->interrupt_out_endpoint->bEndpointAddress),
  512. dev->interrupt_out_buffer,
  513. bytes_to_write,
  514. adu_interrupt_out_callback,
  515. dev,
  516. dev->interrupt_in_endpoint->bInterval);
  517. /* dev->interrupt_in_urb->transfer_flags |= URB_ASYNC_UNLINK; */
  518. dev->interrupt_out_urb->actual_length = bytes_to_write;
  519. retval = usb_submit_urb(dev->interrupt_out_urb, GFP_KERNEL);
  520. if (retval < 0) {
  521. err("Couldn't submit interrupt_out_urb %d", retval);
  522. goto exit;
  523. }
  524. buffer += bytes_to_write;
  525. count -= bytes_to_write;
  526. bytes_written += bytes_to_write;
  527. }
  528. }
  529. retval = bytes_written;
  530. exit:
  531. /* unlock the device */
  532. up(&dev->sem);
  533. dbg(2," %s : leave, return value %d", __FUNCTION__, retval);
  534. return retval;
  535. }
  536. /* file operations needed when we register this driver */
  537. static struct file_operations adu_fops = {
  538. .owner = THIS_MODULE,
  539. .read = adu_read,
  540. .write = adu_write,
  541. .open = adu_open,
  542. .release = adu_release,
  543. };
  544. /*
  545. * usb class driver info in order to get a minor number from the usb core,
  546. * and to have the device registered with devfs and the driver core
  547. */
  548. static struct usb_class_driver adu_class = {
  549. .name = "usb/adutux%d",
  550. .fops = &adu_fops,
  551. .minor_base = ADU_MINOR_BASE,
  552. };
  553. /**
  554. * adu_probe
  555. *
  556. * Called by the usb core when a new device is connected that it thinks
  557. * this driver might be interested in.
  558. */
  559. static int adu_probe(struct usb_interface *interface,
  560. const struct usb_device_id *id)
  561. {
  562. struct usb_device *udev = interface_to_usbdev(interface);
  563. struct adu_device *dev = NULL;
  564. struct usb_host_interface *iface_desc;
  565. struct usb_endpoint_descriptor *endpoint;
  566. int retval = -ENODEV;
  567. int in_end_size;
  568. int out_end_size;
  569. int i;
  570. dbg(2," %s : enter", __FUNCTION__);
  571. if (udev == NULL) {
  572. dev_err(&interface->dev, "udev is NULL.\n");
  573. goto exit;
  574. }
  575. /* allocate memory for our device state and intialize it */
  576. dev = kzalloc(sizeof(struct adu_device), GFP_KERNEL);
  577. if (dev == NULL) {
  578. dev_err(&interface->dev, "Out of memory\n");
  579. retval = -ENOMEM;
  580. goto exit;
  581. }
  582. init_MUTEX(&dev->sem);
  583. spin_lock_init(&dev->buflock);
  584. dev->udev = udev;
  585. init_waitqueue_head(&dev->read_wait);
  586. init_waitqueue_head(&dev->write_wait);
  587. iface_desc = &interface->altsetting[0];
  588. /* set up the endpoint information */
  589. for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
  590. endpoint = &iface_desc->endpoint[i].desc;
  591. if (usb_endpoint_is_int_in(endpoint))
  592. dev->interrupt_in_endpoint = endpoint;
  593. if (usb_endpoint_is_int_out(endpoint))
  594. dev->interrupt_out_endpoint = endpoint;
  595. }
  596. if (dev->interrupt_in_endpoint == NULL) {
  597. dev_err(&interface->dev, "interrupt in endpoint not found\n");
  598. goto error;
  599. }
  600. if (dev->interrupt_out_endpoint == NULL) {
  601. dev_err(&interface->dev, "interrupt out endpoint not found\n");
  602. goto error;
  603. }
  604. in_end_size = le16_to_cpu(dev->interrupt_in_endpoint->wMaxPacketSize);
  605. out_end_size = le16_to_cpu(dev->interrupt_out_endpoint->wMaxPacketSize);
  606. dev->read_buffer_primary = kmalloc((4 * in_end_size), GFP_KERNEL);
  607. if (!dev->read_buffer_primary) {
  608. dev_err(&interface->dev, "Couldn't allocate read_buffer_primary\n");
  609. retval = -ENOMEM;
  610. goto error;
  611. }
  612. /* debug code prime the buffer */
  613. memset(dev->read_buffer_primary, 'a', in_end_size);
  614. memset(dev->read_buffer_primary + in_end_size, 'b', in_end_size);
  615. memset(dev->read_buffer_primary + (2 * in_end_size), 'c', in_end_size);
  616. memset(dev->read_buffer_primary + (3 * in_end_size), 'd', in_end_size);
  617. dev->read_buffer_secondary = kmalloc((4 * in_end_size), GFP_KERNEL);
  618. if (!dev->read_buffer_secondary) {
  619. dev_err(&interface->dev, "Couldn't allocate read_buffer_secondary\n");
  620. retval = -ENOMEM;
  621. goto error;
  622. }
  623. /* debug code prime the buffer */
  624. memset(dev->read_buffer_secondary, 'e', in_end_size);
  625. memset(dev->read_buffer_secondary + in_end_size, 'f', in_end_size);
  626. memset(dev->read_buffer_secondary + (2 * in_end_size), 'g', in_end_size);
  627. memset(dev->read_buffer_secondary + (3 * in_end_size), 'h', in_end_size);
  628. dev->interrupt_in_buffer = kmalloc(in_end_size, GFP_KERNEL);
  629. if (!dev->interrupt_in_buffer) {
  630. dev_err(&interface->dev, "Couldn't allocate interrupt_in_buffer\n");
  631. goto error;
  632. }
  633. /* debug code prime the buffer */
  634. memset(dev->interrupt_in_buffer, 'i', in_end_size);
  635. dev->interrupt_in_urb = usb_alloc_urb(0, GFP_KERNEL);
  636. if (!dev->interrupt_in_urb) {
  637. dev_err(&interface->dev, "Couldn't allocate interrupt_in_urb\n");
  638. goto error;
  639. }
  640. dev->interrupt_out_buffer = kmalloc(out_end_size, GFP_KERNEL);
  641. if (!dev->interrupt_out_buffer) {
  642. dev_err(&interface->dev, "Couldn't allocate interrupt_out_buffer\n");
  643. goto error;
  644. }
  645. dev->interrupt_out_urb = usb_alloc_urb(0, GFP_KERNEL);
  646. if (!dev->interrupt_out_urb) {
  647. dev_err(&interface->dev, "Couldn't allocate interrupt_out_urb\n");
  648. goto error;
  649. }
  650. if (!usb_string(udev, udev->descriptor.iSerialNumber, dev->serial_number,
  651. sizeof(dev->serial_number))) {
  652. dev_err(&interface->dev, "Could not retrieve serial number\n");
  653. goto error;
  654. }
  655. dbg(2," %s : serial_number=%s", __FUNCTION__, dev->serial_number);
  656. /* we can register the device now, as it is ready */
  657. usb_set_intfdata(interface, dev);
  658. retval = usb_register_dev(interface, &adu_class);
  659. if (retval) {
  660. /* something prevented us from registering this driver */
  661. dev_err(&interface->dev, "Not able to get a minor for this device.\n");
  662. usb_set_intfdata(interface, NULL);
  663. goto error;
  664. }
  665. dev->minor = interface->minor;
  666. /* let the user know what node this device is now attached to */
  667. dev_info(&interface->dev, "ADU%d %s now attached to /dev/usb/adutux%d",
  668. udev->descriptor.idProduct, dev->serial_number,
  669. (dev->minor - ADU_MINOR_BASE));
  670. exit:
  671. dbg(2," %s : leave, return value %p (dev)", __FUNCTION__, dev);
  672. return retval;
  673. error:
  674. adu_delete(dev);
  675. return retval;
  676. }
  677. /**
  678. * adu_disconnect
  679. *
  680. * Called by the usb core when the device is removed from the system.
  681. */
  682. static void adu_disconnect(struct usb_interface *interface)
  683. {
  684. struct adu_device *dev;
  685. int minor;
  686. dbg(2," %s : enter", __FUNCTION__);
  687. mutex_lock(&disconnect_mutex); /* not interruptible */
  688. dev = usb_get_intfdata(interface);
  689. usb_set_intfdata(interface, NULL);
  690. down(&dev->sem); /* not interruptible */
  691. minor = dev->minor;
  692. /* give back our minor */
  693. usb_deregister_dev(interface, &adu_class);
  694. dev->minor = 0;
  695. /* if the device is not opened, then we clean up right now */
  696. dbg(2," %s : open count %d", __FUNCTION__, dev->open_count);
  697. if (!dev->open_count) {
  698. up(&dev->sem);
  699. adu_delete(dev);
  700. } else {
  701. dev->udev = NULL;
  702. up(&dev->sem);
  703. }
  704. mutex_unlock(&disconnect_mutex);
  705. dev_info(&interface->dev, "ADU device adutux%d now disconnected",
  706. (minor - ADU_MINOR_BASE));
  707. dbg(2," %s : leave", __FUNCTION__);
  708. }
  709. /* usb specific object needed to register this driver with the usb subsystem */
  710. static struct usb_driver adu_driver = {
  711. .name = "adutux",
  712. .probe = adu_probe,
  713. .disconnect = adu_disconnect,
  714. .id_table = device_table,
  715. };
  716. static int __init adu_init(void)
  717. {
  718. int result;
  719. dbg(2," %s : enter", __FUNCTION__);
  720. /* register this driver with the USB subsystem */
  721. result = usb_register(&adu_driver);
  722. if (result < 0) {
  723. err("usb_register failed for the "__FILE__" driver. "
  724. "Error number %d", result);
  725. goto exit;
  726. }
  727. info("adutux " DRIVER_DESC " " DRIVER_VERSION);
  728. info("adutux is an experimental driver. Use at your own risk");
  729. exit:
  730. dbg(2," %s : leave, return value %d", __FUNCTION__, result);
  731. return result;
  732. }
  733. static void __exit adu_exit(void)
  734. {
  735. dbg(2," %s : enter", __FUNCTION__);
  736. /* deregister this driver with the USB subsystem */
  737. usb_deregister(&adu_driver);
  738. dbg(2," %s : leave", __FUNCTION__);
  739. }
  740. module_init(adu_init);
  741. module_exit(adu_exit);
  742. MODULE_AUTHOR(DRIVER_AUTHOR);
  743. MODULE_DESCRIPTION(DRIVER_DESC);
  744. MODULE_LICENSE("GPL");