keyspan_remote.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. /*
  2. * keyspan_remote: USB driver for the Keyspan DMR
  3. *
  4. * Copyright (C) 2005 Zymeta Corporation - Michael Downey (downey@zymeta.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation, version 2.
  9. *
  10. * This driver has been put together with the support of Innosys, Inc.
  11. * and Keyspan, Inc the manufacturers of the Keyspan USB DMR product.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/errno.h>
  15. #include <linux/init.h>
  16. #include <linux/slab.h>
  17. #include <linux/module.h>
  18. #include <linux/moduleparam.h>
  19. #include <linux/usb/input.h>
  20. #define DRIVER_VERSION "v0.1"
  21. #define DRIVER_AUTHOR "Michael Downey <downey@zymeta.com>"
  22. #define DRIVER_DESC "Driver for the USB Keyspan remote control."
  23. #define DRIVER_LICENSE "GPL"
  24. /* Parameters that can be passed to the driver. */
  25. static int debug;
  26. module_param(debug, int, 0444);
  27. MODULE_PARM_DESC(debug, "Enable extra debug messages and information");
  28. /* Vendor and product ids */
  29. #define USB_KEYSPAN_VENDOR_ID 0x06CD
  30. #define USB_KEYSPAN_PRODUCT_UIA11 0x0202
  31. /* Defines for converting the data from the remote. */
  32. #define ZERO 0x18
  33. #define ZERO_MASK 0x1F /* 5 bits for a 0 */
  34. #define ONE 0x3C
  35. #define ONE_MASK 0x3F /* 6 bits for a 1 */
  36. #define SYNC 0x3F80
  37. #define SYNC_MASK 0x3FFF /* 14 bits for a SYNC sequence */
  38. #define STOP 0x00
  39. #define STOP_MASK 0x1F /* 5 bits for the STOP sequence */
  40. #define GAP 0xFF
  41. #define RECV_SIZE 8 /* The UIA-11 type have a 8 byte limit. */
  42. /* table of devices that work with this driver */
  43. static struct usb_device_id keyspan_table[] = {
  44. { USB_DEVICE(USB_KEYSPAN_VENDOR_ID, USB_KEYSPAN_PRODUCT_UIA11) },
  45. { } /* Terminating entry */
  46. };
  47. /* Structure to store all the real stuff that a remote sends to us. */
  48. struct keyspan_message {
  49. u16 system;
  50. u8 button;
  51. u8 toggle;
  52. };
  53. /* Structure used for all the bit testing magic needed to be done. */
  54. struct bit_tester {
  55. u32 tester;
  56. int len;
  57. int pos;
  58. int bits_left;
  59. u8 buffer[32];
  60. };
  61. /* Structure to hold all of our driver specific stuff */
  62. struct usb_keyspan {
  63. char name[128];
  64. char phys[64];
  65. struct usb_device* udev;
  66. struct input_dev *input;
  67. struct usb_interface* interface;
  68. struct usb_endpoint_descriptor* in_endpoint;
  69. struct urb* irq_urb;
  70. int open;
  71. dma_addr_t in_dma;
  72. unsigned char* in_buffer;
  73. /* variables used to parse messages from remote. */
  74. struct bit_tester data;
  75. int stage;
  76. int toggle;
  77. };
  78. /*
  79. * Table that maps the 31 possible keycodes to input keys.
  80. * Currently there are 15 and 17 button models so RESERVED codes
  81. * are blank areas in the mapping.
  82. */
  83. static const int keyspan_key_table[] = {
  84. KEY_RESERVED, /* 0 is just a place holder. */
  85. KEY_RESERVED,
  86. KEY_STOP,
  87. KEY_PLAYCD,
  88. KEY_RESERVED,
  89. KEY_PREVIOUSSONG,
  90. KEY_REWIND,
  91. KEY_FORWARD,
  92. KEY_NEXTSONG,
  93. KEY_RESERVED,
  94. KEY_RESERVED,
  95. KEY_RESERVED,
  96. KEY_PAUSE,
  97. KEY_VOLUMEUP,
  98. KEY_RESERVED,
  99. KEY_RESERVED,
  100. KEY_RESERVED,
  101. KEY_VOLUMEDOWN,
  102. KEY_RESERVED,
  103. KEY_UP,
  104. KEY_RESERVED,
  105. KEY_MUTE,
  106. KEY_LEFT,
  107. KEY_ENTER,
  108. KEY_RIGHT,
  109. KEY_RESERVED,
  110. KEY_RESERVED,
  111. KEY_DOWN,
  112. KEY_RESERVED,
  113. KEY_KPASTERISK,
  114. KEY_RESERVED,
  115. KEY_MENU
  116. };
  117. static struct usb_driver keyspan_driver;
  118. /*
  119. * Debug routine that prints out what we've received from the remote.
  120. */
  121. static void keyspan_print(struct usb_keyspan* dev) /*unsigned char* data)*/
  122. {
  123. char codes[4 * RECV_SIZE];
  124. int i;
  125. for (i = 0; i < RECV_SIZE; i++)
  126. snprintf(codes + i * 3, 4, "%02x ", dev->in_buffer[i]);
  127. dev_info(&dev->udev->dev, "%s\n", codes);
  128. }
  129. /*
  130. * Routine that manages the bit_tester structure. It makes sure that there are
  131. * at least bits_needed bits loaded into the tester.
  132. */
  133. static int keyspan_load_tester(struct usb_keyspan* dev, int bits_needed)
  134. {
  135. if (dev->data.bits_left >= bits_needed)
  136. return 0;
  137. /*
  138. * Somehow we've missed the last message. The message will be repeated
  139. * though so it's not too big a deal
  140. */
  141. if (dev->data.pos >= dev->data.len) {
  142. dev_dbg(&dev->udev->dev,
  143. "%s - Error ran out of data. pos: %d, len: %d\n",
  144. __FUNCTION__, dev->data.pos, dev->data.len);
  145. return -1;
  146. }
  147. /* Load as much as we can into the tester. */
  148. while ((dev->data.bits_left + 7 < (sizeof(dev->data.tester) * 8)) &&
  149. (dev->data.pos < dev->data.len)) {
  150. dev->data.tester += (dev->data.buffer[dev->data.pos++] << dev->data.bits_left);
  151. dev->data.bits_left += 8;
  152. }
  153. return 0;
  154. }
  155. /*
  156. * Routine that handles all the logic needed to parse out the message from the remote.
  157. */
  158. static void keyspan_check_data(struct usb_keyspan *remote)
  159. {
  160. int i;
  161. int found = 0;
  162. struct keyspan_message message;
  163. switch(remote->stage) {
  164. case 0:
  165. /*
  166. * In stage 0 we want to find the start of a message. The remote sends a 0xFF as filler.
  167. * So the first byte that isn't a FF should be the start of a new message.
  168. */
  169. for (i = 0; i < RECV_SIZE && remote->in_buffer[i] == GAP; ++i);
  170. if (i < RECV_SIZE) {
  171. memcpy(remote->data.buffer, remote->in_buffer, RECV_SIZE);
  172. remote->data.len = RECV_SIZE;
  173. remote->data.pos = 0;
  174. remote->data.tester = 0;
  175. remote->data.bits_left = 0;
  176. remote->stage = 1;
  177. }
  178. break;
  179. case 1:
  180. /*
  181. * Stage 1 we should have 16 bytes and should be able to detect a
  182. * SYNC. The SYNC is 14 bits, 7 0's and then 7 1's.
  183. */
  184. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  185. remote->data.len += RECV_SIZE;
  186. found = 0;
  187. while ((remote->data.bits_left >= 14 || remote->data.pos < remote->data.len) && !found) {
  188. for (i = 0; i < 8; ++i) {
  189. if (keyspan_load_tester(remote, 14) != 0) {
  190. remote->stage = 0;
  191. return;
  192. }
  193. if ((remote->data.tester & SYNC_MASK) == SYNC) {
  194. remote->data.tester = remote->data.tester >> 14;
  195. remote->data.bits_left -= 14;
  196. found = 1;
  197. break;
  198. } else {
  199. remote->data.tester = remote->data.tester >> 1;
  200. --remote->data.bits_left;
  201. }
  202. }
  203. }
  204. if (!found) {
  205. remote->stage = 0;
  206. remote->data.len = 0;
  207. } else {
  208. remote->stage = 2;
  209. }
  210. break;
  211. case 2:
  212. /*
  213. * Stage 2 we should have 24 bytes which will be enough for a full
  214. * message. We need to parse out the system code, button code,
  215. * toggle code, and stop.
  216. */
  217. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  218. remote->data.len += RECV_SIZE;
  219. message.system = 0;
  220. for (i = 0; i < 9; i++) {
  221. keyspan_load_tester(remote, 6);
  222. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  223. message.system = message.system << 1;
  224. remote->data.tester = remote->data.tester >> 5;
  225. remote->data.bits_left -= 5;
  226. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  227. message.system = (message.system << 1) + 1;
  228. remote->data.tester = remote->data.tester >> 6;
  229. remote->data.bits_left -= 6;
  230. } else {
  231. err("%s - Unknown sequence found in system data.\n", __FUNCTION__);
  232. remote->stage = 0;
  233. return;
  234. }
  235. }
  236. message.button = 0;
  237. for (i = 0; i < 5; i++) {
  238. keyspan_load_tester(remote, 6);
  239. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  240. message.button = message.button << 1;
  241. remote->data.tester = remote->data.tester >> 5;
  242. remote->data.bits_left -= 5;
  243. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  244. message.button = (message.button << 1) + 1;
  245. remote->data.tester = remote->data.tester >> 6;
  246. remote->data.bits_left -= 6;
  247. } else {
  248. err("%s - Unknown sequence found in button data.\n", __FUNCTION__);
  249. remote->stage = 0;
  250. return;
  251. }
  252. }
  253. keyspan_load_tester(remote, 6);
  254. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  255. message.toggle = 0;
  256. remote->data.tester = remote->data.tester >> 5;
  257. remote->data.bits_left -= 5;
  258. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  259. message.toggle = 1;
  260. remote->data.tester = remote->data.tester >> 6;
  261. remote->data.bits_left -= 6;
  262. } else {
  263. err("%s - Error in message, invalid toggle.\n", __FUNCTION__);
  264. remote->stage = 0;
  265. return;
  266. }
  267. keyspan_load_tester(remote, 5);
  268. if ((remote->data.tester & STOP_MASK) == STOP) {
  269. remote->data.tester = remote->data.tester >> 5;
  270. remote->data.bits_left -= 5;
  271. } else {
  272. err("Bad message recieved, no stop bit found.\n");
  273. }
  274. dev_dbg(&remote->udev->dev,
  275. "%s found valid message: system: %d, button: %d, toggle: %d\n",
  276. __FUNCTION__, message.system, message.button, message.toggle);
  277. if (message.toggle != remote->toggle) {
  278. input_report_key(remote->input, keyspan_key_table[message.button], 1);
  279. input_report_key(remote->input, keyspan_key_table[message.button], 0);
  280. input_sync(remote->input);
  281. remote->toggle = message.toggle;
  282. }
  283. remote->stage = 0;
  284. break;
  285. }
  286. }
  287. /*
  288. * Routine for sending all the initialization messages to the remote.
  289. */
  290. static int keyspan_setup(struct usb_device* dev)
  291. {
  292. int retval = 0;
  293. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  294. 0x11, 0x40, 0x5601, 0x0, NULL, 0, 0);
  295. if (retval) {
  296. dev_dbg(&dev->dev, "%s - failed to set bit rate due to error: %d\n",
  297. __FUNCTION__, retval);
  298. return(retval);
  299. }
  300. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  301. 0x44, 0x40, 0x0, 0x0, NULL, 0, 0);
  302. if (retval) {
  303. dev_dbg(&dev->dev, "%s - failed to set resume sensitivity due to error: %d\n",
  304. __FUNCTION__, retval);
  305. return(retval);
  306. }
  307. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  308. 0x22, 0x40, 0x0, 0x0, NULL, 0, 0);
  309. if (retval) {
  310. dev_dbg(&dev->dev, "%s - failed to turn receive on due to error: %d\n",
  311. __FUNCTION__, retval);
  312. return(retval);
  313. }
  314. dev_dbg(&dev->dev, "%s - Setup complete.\n", __FUNCTION__);
  315. return(retval);
  316. }
  317. /*
  318. * Routine used to handle a new message that has come in.
  319. */
  320. static void keyspan_irq_recv(struct urb *urb)
  321. {
  322. struct usb_keyspan *dev = urb->context;
  323. int retval;
  324. /* Check our status in case we need to bail out early. */
  325. switch (urb->status) {
  326. case 0:
  327. break;
  328. /* Device went away so don't keep trying to read from it. */
  329. case -ECONNRESET:
  330. case -ENOENT:
  331. case -ESHUTDOWN:
  332. return;
  333. default:
  334. goto resubmit;
  335. break;
  336. }
  337. if (debug)
  338. keyspan_print(dev);
  339. keyspan_check_data(dev);
  340. resubmit:
  341. retval = usb_submit_urb(urb, GFP_ATOMIC);
  342. if (retval)
  343. err ("%s - usb_submit_urb failed with result: %d", __FUNCTION__, retval);
  344. }
  345. static int keyspan_open(struct input_dev *dev)
  346. {
  347. struct usb_keyspan *remote = dev->private;
  348. remote->irq_urb->dev = remote->udev;
  349. if (usb_submit_urb(remote->irq_urb, GFP_KERNEL))
  350. return -EIO;
  351. return 0;
  352. }
  353. static void keyspan_close(struct input_dev *dev)
  354. {
  355. struct usb_keyspan *remote = dev->private;
  356. usb_kill_urb(remote->irq_urb);
  357. }
  358. static struct usb_endpoint_descriptor *keyspan_get_in_endpoint(struct usb_host_interface *iface)
  359. {
  360. struct usb_endpoint_descriptor *endpoint;
  361. int i;
  362. for (i = 0; i < iface->desc.bNumEndpoints; ++i) {
  363. endpoint = &iface->endpoint[i].desc;
  364. if (usb_endpoint_is_int_in(endpoint)) {
  365. /* we found our interrupt in endpoint */
  366. return endpoint;
  367. }
  368. }
  369. return NULL;
  370. }
  371. /*
  372. * Routine that sets up the driver to handle a specific USB device detected on the bus.
  373. */
  374. static int keyspan_probe(struct usb_interface *interface, const struct usb_device_id *id)
  375. {
  376. struct usb_device *udev = interface_to_usbdev(interface);
  377. struct usb_endpoint_descriptor *endpoint;
  378. struct usb_keyspan *remote;
  379. struct input_dev *input_dev;
  380. int i, retval;
  381. endpoint = keyspan_get_in_endpoint(interface->cur_altsetting);
  382. if (!endpoint)
  383. return -ENODEV;
  384. remote = kzalloc(sizeof(*remote), GFP_KERNEL);
  385. input_dev = input_allocate_device();
  386. if (!remote || !input_dev) {
  387. retval = -ENOMEM;
  388. goto fail1;
  389. }
  390. remote->udev = udev;
  391. remote->input = input_dev;
  392. remote->interface = interface;
  393. remote->in_endpoint = endpoint;
  394. remote->toggle = -1; /* Set to -1 so we will always not match the toggle from the first remote message. */
  395. remote->in_buffer = usb_buffer_alloc(udev, RECV_SIZE, SLAB_ATOMIC, &remote->in_dma);
  396. if (!remote->in_buffer) {
  397. retval = -ENOMEM;
  398. goto fail1;
  399. }
  400. remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL);
  401. if (!remote->irq_urb) {
  402. retval = -ENOMEM;
  403. goto fail2;
  404. }
  405. retval = keyspan_setup(udev);
  406. if (retval) {
  407. retval = -ENODEV;
  408. goto fail3;
  409. }
  410. if (udev->manufacturer)
  411. strlcpy(remote->name, udev->manufacturer, sizeof(remote->name));
  412. if (udev->product) {
  413. if (udev->manufacturer)
  414. strlcat(remote->name, " ", sizeof(remote->name));
  415. strlcat(remote->name, udev->product, sizeof(remote->name));
  416. }
  417. if (!strlen(remote->name))
  418. snprintf(remote->name, sizeof(remote->name),
  419. "USB Keyspan Remote %04x:%04x",
  420. le16_to_cpu(udev->descriptor.idVendor),
  421. le16_to_cpu(udev->descriptor.idProduct));
  422. usb_make_path(udev, remote->phys, sizeof(remote->phys));
  423. strlcat(remote->phys, "/input0", sizeof(remote->phys));
  424. input_dev->name = remote->name;
  425. input_dev->phys = remote->phys;
  426. usb_to_input_id(udev, &input_dev->id);
  427. input_dev->cdev.dev = &interface->dev;
  428. input_dev->evbit[0] = BIT(EV_KEY); /* We will only report KEY events. */
  429. for (i = 0; i < ARRAY_SIZE(keyspan_key_table); i++)
  430. if (keyspan_key_table[i] != KEY_RESERVED)
  431. set_bit(keyspan_key_table[i], input_dev->keybit);
  432. input_dev->private = remote;
  433. input_dev->open = keyspan_open;
  434. input_dev->close = keyspan_close;
  435. /*
  436. * Initialize the URB to access the device. The urb gets sent to the device in keyspan_open()
  437. */
  438. usb_fill_int_urb(remote->irq_urb,
  439. remote->udev, usb_rcvintpipe(remote->udev, remote->in_endpoint->bEndpointAddress),
  440. remote->in_buffer, RECV_SIZE, keyspan_irq_recv, remote,
  441. remote->in_endpoint->bInterval);
  442. remote->irq_urb->transfer_dma = remote->in_dma;
  443. remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  444. /* we can register the device now, as it is ready */
  445. input_register_device(remote->input);
  446. /* save our data pointer in this interface device */
  447. usb_set_intfdata(interface, remote);
  448. return 0;
  449. fail3: usb_free_urb(remote->irq_urb);
  450. fail2: usb_buffer_free(udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  451. fail1: kfree(remote);
  452. input_free_device(input_dev);
  453. return retval;
  454. }
  455. /*
  456. * Routine called when a device is disconnected from the USB.
  457. */
  458. static void keyspan_disconnect(struct usb_interface *interface)
  459. {
  460. struct usb_keyspan *remote;
  461. remote = usb_get_intfdata(interface);
  462. usb_set_intfdata(interface, NULL);
  463. if (remote) { /* We have a valid driver structure so clean up everything we allocated. */
  464. input_unregister_device(remote->input);
  465. usb_kill_urb(remote->irq_urb);
  466. usb_free_urb(remote->irq_urb);
  467. usb_buffer_free(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  468. kfree(remote);
  469. }
  470. }
  471. /*
  472. * Standard driver set up sections
  473. */
  474. static struct usb_driver keyspan_driver =
  475. {
  476. .name = "keyspan_remote",
  477. .probe = keyspan_probe,
  478. .disconnect = keyspan_disconnect,
  479. .id_table = keyspan_table
  480. };
  481. static int __init usb_keyspan_init(void)
  482. {
  483. int result;
  484. /* register this driver with the USB subsystem */
  485. result = usb_register(&keyspan_driver);
  486. if (result)
  487. err("usb_register failed. Error number %d\n", result);
  488. return result;
  489. }
  490. static void __exit usb_keyspan_exit(void)
  491. {
  492. /* deregister this driver with the USB subsystem */
  493. usb_deregister(&keyspan_driver);
  494. }
  495. module_init(usb_keyspan_init);
  496. module_exit(usb_keyspan_exit);
  497. MODULE_DEVICE_TABLE(usb, keyspan_table);
  498. MODULE_AUTHOR(DRIVER_AUTHOR);
  499. MODULE_DESCRIPTION(DRIVER_DESC);
  500. MODULE_LICENSE(DRIVER_LICENSE);