123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429 |
- #
- # USB Gadget support on a system involves
- # (a) a peripheral controller, and
- # (b) the gadget driver using it.
- #
- # NOTE: Gadget support ** DOES NOT ** depend on host-side CONFIG_USB !!
- #
- # - Host systems (like PCs) need CONFIG_USB (with "A" jacks).
- # - Peripherals (like PDAs) need CONFIG_USB_GADGET (with "B" jacks).
- # - Some systems have both kinds of controllers.
- #
- # With help from a special transceiver and a "Mini-AB" jack, systems with
- # both kinds of controller can also support "USB On-the-Go" (CONFIG_USB_OTG).
- #
- menu "USB Gadget Support"
- config USB_GADGET
- tristate "Support for USB Gadgets"
- help
- USB is a master/slave protocol, organized with one master
- host (such as a PC) controlling up to 127 peripheral devices.
- The USB hardware is asymmetric, which makes it easier to set up:
- you can't connect a "to-the-host" connector to a peripheral.
- Linux can run in the host, or in the peripheral. In both cases
- you need a low level bus controller driver, and some software
- talking to it. Peripheral controllers are often discrete silicon,
- or are integrated with the CPU in a microcontroller. The more
- familiar host side controllers have names like "EHCI", "OHCI",
- or "UHCI", and are usually integrated into southbridges on PC
- motherboards.
- Enable this configuration option if you want to run Linux inside
- a USB peripheral device. Configure one hardware driver for your
- peripheral/device side bus controller, and a "gadget driver" for
- your peripheral protocol. (If you use modular gadget drivers,
- you may configure more than one.)
- If in doubt, say "N" and don't enable these drivers; most people
- don't have this kind of hardware (except maybe inside Linux PDAs).
- For more information, see <http://www.linux-usb.org/gadget> and
- the kernel DocBook documentation for this API.
- config USB_GADGET_DEBUG_FILES
- boolean "Debugging information files"
- depends on USB_GADGET && PROC_FS
- help
- Some of the drivers in the "gadget" framework can expose
- debugging information in files such as /proc/driver/udc
- (for a peripheral controller). The information in these
- files may help when you're troubleshooting or bringing up a
- driver on a new board. Enable these files by choosing "Y"
- here. If in doubt, or to conserve kernel memory, say "N".
- config USB_GADGET_SELECTED
- boolean
- #
- # USB Peripheral Controller Support
- #
- choice
- prompt "USB Peripheral Controller"
- depends on USB_GADGET
- help
- A USB device uses a controller to talk to its host.
- Systems should have only one such upstream link.
- Many controller drivers are platform-specific; these
- often need board-specific hooks.
- config USB_GADGET_NET2280
- boolean "NetChip 228x"
- depends on PCI
- select USB_GADGET_DUALSPEED
- help
- NetChip 2280 / 2282 is a PCI based USB peripheral controller which
- supports both full and high speed USB 2.0 data transfers.
-
- It has six configurable endpoints, as well as endpoint zero
- (for control transfers) and several endpoints with dedicated
- functions.
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "net2280" and force all
- gadget drivers to also be dynamically linked.
- config USB_NET2280
- tristate
- depends on USB_GADGET_NET2280
- default USB_GADGET
- select USB_GADGET_SELECTED
- config USB_GADGET_PXA2XX
- boolean "PXA 25x or IXP 4xx"
- depends on (ARCH_PXA && PXA25x) || ARCH_IXP4XX
- help
- Intel's PXA 25x series XScale ARM-5TE processors include
- an integrated full speed USB 1.1 device controller. The
- controller in the IXP 4xx series is register-compatible.
- It has fifteen fixed-function endpoints, as well as endpoint
- zero (for control transfers).
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "pxa2xx_udc" and force all
- gadget drivers to also be dynamically linked.
- config USB_PXA2XX
- tristate
- depends on USB_GADGET_PXA2XX
- default USB_GADGET
- select USB_GADGET_SELECTED
- # if there's only one gadget driver, using only two bulk endpoints,
- # don't waste memory for the other endpoints
- config USB_PXA2XX_SMALL
- depends on USB_GADGET_PXA2XX
- bool
- default n if USB_ETH_RNDIS
- default y if USB_ZERO
- default y if USB_ETH
- default y if USB_G_SERIAL
- config USB_GADGET_GOKU
- boolean "Toshiba TC86C001 'Goku-S'"
- depends on PCI
- help
- The Toshiba TC86C001 is a PCI device which includes controllers
- for full speed USB devices, IDE, I2C, SIO, plus a USB host (OHCI).
-
- The device controller has three configurable (bulk or interrupt)
- endpoints, plus endpoint zero (for control transfers).
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "goku_udc" and to force all
- gadget drivers to also be dynamically linked.
- config USB_GOKU
- tristate
- depends on USB_GADGET_GOKU
- default USB_GADGET
- select USB_GADGET_SELECTED
- config USB_GADGET_LH7A40X
- boolean "LH7A40X"
- depends on ARCH_LH7A40X
- help
- This driver provides USB Device Controller driver for LH7A40x
- config USB_LH7A40X
- tristate
- depends on USB_GADGET_LH7A40X
- default USB_GADGET
- select USB_GADGET_SELECTED
- config USB_GADGET_OMAP
- boolean "OMAP USB Device Controller"
- depends on ARCH_OMAP
- select ISP1301_OMAP if MACH_OMAP_H2 || MACH_OMAP_H3
- help
- Many Texas Instruments OMAP processors have flexible full
- speed USB device controllers, with support for up to 30
- endpoints (plus endpoint zero). This driver supports the
- controller in the OMAP 1611, and should work with controllers
- in other OMAP processors too, given minor tweaks.
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "omap_udc" and force all
- gadget drivers to also be dynamically linked.
- config USB_OMAP
- tristate
- depends on USB_GADGET_OMAP
- default USB_GADGET
- select USB_GADGET_SELECTED
- config USB_OTG
- boolean "OTG Support"
- depends on USB_GADGET_OMAP && ARCH_OMAP_OTG && USB_OHCI_HCD
- help
- The most notable feature of USB OTG is support for a
- "Dual-Role" device, which can act as either a device
- or a host. The initial role choice can be changed
- later, when two dual-role devices talk to each other.
- Select this only if your OMAP board has a Mini-AB connector.
- config USB_GADGET_AT91
- boolean "AT91 USB Device Port"
- depends on ARCH_AT91RM9200
- select USB_GADGET_SELECTED
- help
- Many Atmel AT91 processors (such as the AT91RM2000) have a
- full speed USB Device Port with support for five configurable
- endpoints (plus endpoint zero).
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "at91_udc" and force all
- gadget drivers to also be dynamically linked.
- config USB_AT91
- tristate
- depends on USB_GADGET_AT91
- default USB_GADGET
- config USB_GADGET_DUMMY_HCD
- boolean "Dummy HCD (DEVELOPMENT)"
- depends on (USB=y || (USB=m && USB_GADGET=m)) && EXPERIMENTAL
- select USB_GADGET_DUALSPEED
- help
- This host controller driver emulates USB, looping all data transfer
- requests back to a USB "gadget driver" in the same host. The host
- side is the master; the gadget side is the slave. Gadget drivers
- can be high, full, or low speed; and they have access to endpoints
- like those from NET2280, PXA2xx, or SA1100 hardware.
-
- This may help in some stages of creating a driver to embed in a
- Linux device, since it lets you debug several parts of the gadget
- driver without its hardware or drivers being involved.
-
- Since such a gadget side driver needs to interoperate with a host
- side Linux-USB device driver, this may help to debug both sides
- of a USB protocol stack.
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "dummy_hcd" and force all
- gadget drivers to also be dynamically linked.
- config USB_DUMMY_HCD
- tristate
- depends on USB_GADGET_DUMMY_HCD
- default USB_GADGET
- select USB_GADGET_SELECTED
- # NOTE: Please keep dummy_hcd LAST so that "real hardware" appears
- # first and will be selected by default.
- endchoice
- config USB_GADGET_DUALSPEED
- bool
- depends on USB_GADGET
- default n
- help
- Means that gadget drivers should include extra descriptors
- and code to handle dual-speed controllers.
- #
- # USB Gadget Drivers
- #
- choice
- tristate "USB Gadget Drivers"
- depends on USB_GADGET && USB_GADGET_SELECTED
- default USB_ETH
- help
- A Linux "Gadget Driver" talks to the USB Peripheral Controller
- driver through the abstract "gadget" API. Some other operating
- systems call these "client" drivers, of which "class drivers"
- are a subset (implementing a USB device class specification).
- A gadget driver implements one or more USB functions using
- the peripheral hardware.
- Gadget drivers are hardware-neutral, or "platform independent",
- except that they sometimes must understand quirks or limitations
- of the particular controllers they work with. For example, when
- a controller doesn't support alternate configurations or provide
- enough of the right types of endpoints, the gadget driver might
- not be able work with that controller, or might need to implement
- a less common variant of a device class protocol.
- # this first set of drivers all depend on bulk-capable hardware.
- config USB_ZERO
- tristate "Gadget Zero (DEVELOPMENT)"
- depends on EXPERIMENTAL
- help
- Gadget Zero is a two-configuration device. It either sinks and
- sources bulk data; or it loops back a configurable number of
- transfers. It also implements control requests, for "chapter 9"
- conformance. The driver needs only two bulk-capable endpoints, so
- it can work on top of most device-side usb controllers. It's
- useful for testing, and is also a working example showing how
- USB "gadget drivers" can be written.
- Make this be the first driver you try using on top of any new
- USB peripheral controller driver. Then you can use host-side
- test software, like the "usbtest" driver, to put your hardware
- and its driver through a basic set of functional tests.
- Gadget Zero also works with the host-side "usb-skeleton" driver,
- and with many kinds of host-side test software. You may need
- to tweak product and vendor IDs before host software knows about
- this device, and arrange to select an appropriate configuration.
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "g_zero".
- config USB_ZERO_HNPTEST
- boolean "HNP Test Device"
- depends on USB_ZERO && USB_OTG
- help
- You can configure this device to enumerate using the device
- identifiers of the USB-OTG test device. That means that when
- this gadget connects to another OTG device, with this one using
- the "B-Peripheral" role, that device will use HNP to let this
- one serve as the USB host instead (in the "B-Host" role).
- config USB_ETH
- tristate "Ethernet Gadget (with CDC Ethernet support)"
- depends on NET
- help
- This driver implements Ethernet style communication, in either
- of two ways:
-
- - The "Communication Device Class" (CDC) Ethernet Control Model.
- That protocol is often avoided with pure Ethernet adapters, in
- favor of simpler vendor-specific hardware, but is widely
- supported by firmware for smart network devices.
- - On hardware can't implement that protocol, a simple CDC subset
- is used, placing fewer demands on USB.
- RNDIS support is a third option, more demanding than that subset.
- Within the USB device, this gadget driver exposes a network device
- "usbX", where X depends on what other networking devices you have.
- Treat it like a two-node Ethernet link: host, and gadget.
- The Linux-USB host-side "usbnet" driver interoperates with this
- driver, so that deep I/O queues can be supported. On 2.4 kernels,
- use "CDCEther" instead, if you're using the CDC option. That CDC
- mode should also interoperate with standard CDC Ethernet class
- drivers on other host operating systems.
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "g_ether".
- config USB_ETH_RNDIS
- bool "RNDIS support (EXPERIMENTAL)"
- depends on USB_ETH && EXPERIMENTAL
- default y
- help
- Microsoft Windows XP bundles the "Remote NDIS" (RNDIS) protocol,
- and Microsoft provides redistributable binary RNDIS drivers for
- older versions of Windows.
- If you say "y" here, the Ethernet gadget driver will try to provide
- a second device configuration, supporting RNDIS to talk to such
- Microsoft USB hosts.
-
- To make MS-Windows work with this, use Documentation/usb/linux.inf
- as the "driver info file". For versions of MS-Windows older than
- XP, you'll need to download drivers from Microsoft's website; a URL
- is given in comments found in that info file.
- config USB_GADGETFS
- tristate "Gadget Filesystem (EXPERIMENTAL)"
- depends on EXPERIMENTAL
- help
- This driver provides a filesystem based API that lets user mode
- programs implement a single-configuration USB device, including
- endpoint I/O and control requests that don't relate to enumeration.
- All endpoints, transfer speeds, and transfer types supported by
- the hardware are available, through read() and write() calls.
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "gadgetfs".
- config USB_FILE_STORAGE
- tristate "File-backed Storage Gadget"
- help
- The File-backed Storage Gadget acts as a USB Mass Storage
- disk drive. As its storage repository it can use a regular
- file or a block device (in much the same way as the "loop"
- device driver), specified as a module parameter.
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "g_file_storage".
- config USB_FILE_STORAGE_TEST
- bool "File-backed Storage Gadget testing version"
- depends on USB_FILE_STORAGE
- default n
- help
- Say "y" to generate the larger testing version of the
- File-backed Storage Gadget, useful for probing the
- behavior of USB Mass Storage hosts. Not needed for
- normal operation.
- config USB_G_SERIAL
- tristate "Serial Gadget (with CDC ACM support)"
- help
- The Serial Gadget talks to the Linux-USB generic serial driver.
- This driver supports a CDC-ACM module option, which can be used
- to interoperate with MS-Windows hosts or with the Linux-USB
- "cdc-acm" driver.
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "g_serial".
- For more information, see Documentation/usb/gadget_serial.txt
- which includes instructions and a "driver info file" needed to
- make MS-Windows work with this driver.
- config USB_MIDI_GADGET
- tristate "MIDI Gadget (EXPERIMENTAL)"
- depends on SND && EXPERIMENTAL
- select SND_RAWMIDI
- help
- The MIDI Gadget acts as a USB Audio device, with one MIDI
- input and one MIDI output. These MIDI jacks appear as
- a sound "card" in the ALSA sound system. Other MIDI
- connections can then be made on the gadget system, using
- ALSA's aconnect utility etc.
- Say "y" to link the driver statically, or "m" to build a
- dynamically linked module called "g_midi".
- # put drivers that need isochronous transfer support (for audio
- # or video class gadget drivers), or specific hardware, here.
- # - none yet
- endchoice
- endmenu
|