pxa2xx_spi.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/errno.h>
  29. #include <linux/delay.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/hardware.h>
  33. #include <asm/delay.h>
  34. #include <asm/dma.h>
  35. #include <asm/arch/hardware.h>
  36. #include <asm/arch/pxa-regs.h>
  37. #include <asm/arch/pxa2xx_spi.h>
  38. MODULE_AUTHOR("Stephen Street");
  39. MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller");
  40. MODULE_LICENSE("GPL");
  41. #define MAX_BUSES 3
  42. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  43. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  44. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  45. #define DEFINE_SSP_REG(reg, off) \
  46. static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
  47. static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
  48. DEFINE_SSP_REG(SSCR0, 0x00)
  49. DEFINE_SSP_REG(SSCR1, 0x04)
  50. DEFINE_SSP_REG(SSSR, 0x08)
  51. DEFINE_SSP_REG(SSITR, 0x0c)
  52. DEFINE_SSP_REG(SSDR, 0x10)
  53. DEFINE_SSP_REG(SSTO, 0x28)
  54. DEFINE_SSP_REG(SSPSP, 0x2c)
  55. #define START_STATE ((void*)0)
  56. #define RUNNING_STATE ((void*)1)
  57. #define DONE_STATE ((void*)2)
  58. #define ERROR_STATE ((void*)-1)
  59. #define QUEUE_RUNNING 0
  60. #define QUEUE_STOPPED 1
  61. struct driver_data {
  62. /* Driver model hookup */
  63. struct platform_device *pdev;
  64. /* SPI framework hookup */
  65. enum pxa_ssp_type ssp_type;
  66. struct spi_master *master;
  67. /* PXA hookup */
  68. struct pxa2xx_spi_master *master_info;
  69. /* DMA setup stuff */
  70. int rx_channel;
  71. int tx_channel;
  72. u32 *null_dma_buf;
  73. /* SSP register addresses */
  74. void *ioaddr;
  75. u32 ssdr_physical;
  76. /* SSP masks*/
  77. u32 dma_cr1;
  78. u32 int_cr1;
  79. u32 clear_sr;
  80. u32 mask_sr;
  81. /* Driver message queue */
  82. struct workqueue_struct *workqueue;
  83. struct work_struct pump_messages;
  84. spinlock_t lock;
  85. struct list_head queue;
  86. int busy;
  87. int run;
  88. /* Message Transfer pump */
  89. struct tasklet_struct pump_transfers;
  90. /* Current message transfer state info */
  91. struct spi_message* cur_msg;
  92. struct spi_transfer* cur_transfer;
  93. struct chip_data *cur_chip;
  94. size_t len;
  95. void *tx;
  96. void *tx_end;
  97. void *rx;
  98. void *rx_end;
  99. int dma_mapped;
  100. dma_addr_t rx_dma;
  101. dma_addr_t tx_dma;
  102. size_t rx_map_len;
  103. size_t tx_map_len;
  104. u8 n_bytes;
  105. u32 dma_width;
  106. int cs_change;
  107. void (*write)(struct driver_data *drv_data);
  108. void (*read)(struct driver_data *drv_data);
  109. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  110. void (*cs_control)(u32 command);
  111. };
  112. struct chip_data {
  113. u32 cr0;
  114. u32 cr1;
  115. u32 to;
  116. u32 psp;
  117. u32 timeout;
  118. u8 n_bytes;
  119. u32 dma_width;
  120. u32 dma_burst_size;
  121. u32 threshold;
  122. u32 dma_threshold;
  123. u8 enable_dma;
  124. u8 bits_per_word;
  125. u32 speed_hz;
  126. void (*write)(struct driver_data *drv_data);
  127. void (*read)(struct driver_data *drv_data);
  128. void (*cs_control)(u32 command);
  129. };
  130. static void pump_messages(void *data);
  131. static int flush(struct driver_data *drv_data)
  132. {
  133. unsigned long limit = loops_per_jiffy << 1;
  134. void *reg = drv_data->ioaddr;
  135. do {
  136. while (read_SSSR(reg) & SSSR_RNE) {
  137. read_SSDR(reg);
  138. }
  139. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  140. write_SSSR(SSSR_ROR, reg);
  141. return limit;
  142. }
  143. static void restore_state(struct driver_data *drv_data)
  144. {
  145. void *reg = drv_data->ioaddr;
  146. /* Clear status and disable clock */
  147. write_SSSR(drv_data->clear_sr, reg);
  148. write_SSCR0(drv_data->cur_chip->cr0 & ~SSCR0_SSE, reg);
  149. /* Load the registers */
  150. write_SSCR1(drv_data->cur_chip->cr1, reg);
  151. write_SSCR0(drv_data->cur_chip->cr0, reg);
  152. if (drv_data->ssp_type != PXA25x_SSP) {
  153. write_SSTO(0, reg);
  154. write_SSPSP(drv_data->cur_chip->psp, reg);
  155. }
  156. }
  157. static void null_cs_control(u32 command)
  158. {
  159. }
  160. static void null_writer(struct driver_data *drv_data)
  161. {
  162. void *reg = drv_data->ioaddr;
  163. u8 n_bytes = drv_data->n_bytes;
  164. while ((read_SSSR(reg) & SSSR_TNF)
  165. && (drv_data->tx < drv_data->tx_end)) {
  166. write_SSDR(0, reg);
  167. drv_data->tx += n_bytes;
  168. }
  169. }
  170. static void null_reader(struct driver_data *drv_data)
  171. {
  172. void *reg = drv_data->ioaddr;
  173. u8 n_bytes = drv_data->n_bytes;
  174. while ((read_SSSR(reg) & SSSR_RNE)
  175. && (drv_data->rx < drv_data->rx_end)) {
  176. read_SSDR(reg);
  177. drv_data->rx += n_bytes;
  178. }
  179. }
  180. static void u8_writer(struct driver_data *drv_data)
  181. {
  182. void *reg = drv_data->ioaddr;
  183. while ((read_SSSR(reg) & SSSR_TNF)
  184. && (drv_data->tx < drv_data->tx_end)) {
  185. write_SSDR(*(u8 *)(drv_data->tx), reg);
  186. ++drv_data->tx;
  187. }
  188. }
  189. static void u8_reader(struct driver_data *drv_data)
  190. {
  191. void *reg = drv_data->ioaddr;
  192. while ((read_SSSR(reg) & SSSR_RNE)
  193. && (drv_data->rx < drv_data->rx_end)) {
  194. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  195. ++drv_data->rx;
  196. }
  197. }
  198. static void u16_writer(struct driver_data *drv_data)
  199. {
  200. void *reg = drv_data->ioaddr;
  201. while ((read_SSSR(reg) & SSSR_TNF)
  202. && (drv_data->tx < drv_data->tx_end)) {
  203. write_SSDR(*(u16 *)(drv_data->tx), reg);
  204. drv_data->tx += 2;
  205. }
  206. }
  207. static void u16_reader(struct driver_data *drv_data)
  208. {
  209. void *reg = drv_data->ioaddr;
  210. while ((read_SSSR(reg) & SSSR_RNE)
  211. && (drv_data->rx < drv_data->rx_end)) {
  212. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  213. drv_data->rx += 2;
  214. }
  215. }
  216. static void u32_writer(struct driver_data *drv_data)
  217. {
  218. void *reg = drv_data->ioaddr;
  219. while ((read_SSSR(reg) & SSSR_TNF)
  220. && (drv_data->tx < drv_data->tx_end)) {
  221. write_SSDR(*(u32 *)(drv_data->tx), reg);
  222. drv_data->tx += 4;
  223. }
  224. }
  225. static void u32_reader(struct driver_data *drv_data)
  226. {
  227. void *reg = drv_data->ioaddr;
  228. while ((read_SSSR(reg) & SSSR_RNE)
  229. && (drv_data->rx < drv_data->rx_end)) {
  230. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  231. drv_data->rx += 4;
  232. }
  233. }
  234. static void *next_transfer(struct driver_data *drv_data)
  235. {
  236. struct spi_message *msg = drv_data->cur_msg;
  237. struct spi_transfer *trans = drv_data->cur_transfer;
  238. /* Move to next transfer */
  239. if (trans->transfer_list.next != &msg->transfers) {
  240. drv_data->cur_transfer =
  241. list_entry(trans->transfer_list.next,
  242. struct spi_transfer,
  243. transfer_list);
  244. return RUNNING_STATE;
  245. } else
  246. return DONE_STATE;
  247. }
  248. static int map_dma_buffers(struct driver_data *drv_data)
  249. {
  250. struct spi_message *msg = drv_data->cur_msg;
  251. struct device *dev = &msg->spi->dev;
  252. if (!drv_data->cur_chip->enable_dma)
  253. return 0;
  254. if (msg->is_dma_mapped)
  255. return drv_data->rx_dma && drv_data->tx_dma;
  256. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  257. return 0;
  258. /* Modify setup if rx buffer is null */
  259. if (drv_data->rx == NULL) {
  260. *drv_data->null_dma_buf = 0;
  261. drv_data->rx = drv_data->null_dma_buf;
  262. drv_data->rx_map_len = 4;
  263. } else
  264. drv_data->rx_map_len = drv_data->len;
  265. /* Modify setup if tx buffer is null */
  266. if (drv_data->tx == NULL) {
  267. *drv_data->null_dma_buf = 0;
  268. drv_data->tx = drv_data->null_dma_buf;
  269. drv_data->tx_map_len = 4;
  270. } else
  271. drv_data->tx_map_len = drv_data->len;
  272. /* Stream map the rx buffer */
  273. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  274. drv_data->rx_map_len,
  275. DMA_FROM_DEVICE);
  276. if (dma_mapping_error(drv_data->rx_dma))
  277. return 0;
  278. /* Stream map the tx buffer */
  279. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  280. drv_data->tx_map_len,
  281. DMA_TO_DEVICE);
  282. if (dma_mapping_error(drv_data->tx_dma)) {
  283. dma_unmap_single(dev, drv_data->rx_dma,
  284. drv_data->rx_map_len, DMA_FROM_DEVICE);
  285. return 0;
  286. }
  287. return 1;
  288. }
  289. static void unmap_dma_buffers(struct driver_data *drv_data)
  290. {
  291. struct device *dev;
  292. if (!drv_data->dma_mapped)
  293. return;
  294. if (!drv_data->cur_msg->is_dma_mapped) {
  295. dev = &drv_data->cur_msg->spi->dev;
  296. dma_unmap_single(dev, drv_data->rx_dma,
  297. drv_data->rx_map_len, DMA_FROM_DEVICE);
  298. dma_unmap_single(dev, drv_data->tx_dma,
  299. drv_data->tx_map_len, DMA_TO_DEVICE);
  300. }
  301. drv_data->dma_mapped = 0;
  302. }
  303. /* caller already set message->status; dma and pio irqs are blocked */
  304. static void giveback(struct driver_data *drv_data)
  305. {
  306. struct spi_transfer* last_transfer;
  307. unsigned long flags;
  308. struct spi_message *msg;
  309. spin_lock_irqsave(&drv_data->lock, flags);
  310. msg = drv_data->cur_msg;
  311. drv_data->cur_msg = NULL;
  312. drv_data->cur_transfer = NULL;
  313. drv_data->cur_chip = NULL;
  314. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  315. spin_unlock_irqrestore(&drv_data->lock, flags);
  316. last_transfer = list_entry(msg->transfers.prev,
  317. struct spi_transfer,
  318. transfer_list);
  319. if (!last_transfer->cs_change)
  320. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  321. msg->state = NULL;
  322. if (msg->complete)
  323. msg->complete(msg->context);
  324. }
  325. static int wait_ssp_rx_stall(void *ioaddr)
  326. {
  327. unsigned long limit = loops_per_jiffy << 1;
  328. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  329. cpu_relax();
  330. return limit;
  331. }
  332. static int wait_dma_channel_stop(int channel)
  333. {
  334. unsigned long limit = loops_per_jiffy << 1;
  335. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  336. cpu_relax();
  337. return limit;
  338. }
  339. static void dma_handler(int channel, void *data)
  340. {
  341. struct driver_data *drv_data = data;
  342. struct spi_message *msg = drv_data->cur_msg;
  343. void *reg = drv_data->ioaddr;
  344. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  345. u32 trailing_sssr = 0;
  346. if (irq_status & DCSR_BUSERR) {
  347. /* Disable interrupts, clear status and reset DMA */
  348. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  349. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  350. if (drv_data->ssp_type != PXA25x_SSP)
  351. write_SSTO(0, reg);
  352. write_SSSR(drv_data->clear_sr, reg);
  353. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  354. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  355. if (flush(drv_data) == 0)
  356. dev_err(&drv_data->pdev->dev,
  357. "dma_handler: flush fail\n");
  358. unmap_dma_buffers(drv_data);
  359. if (channel == drv_data->tx_channel)
  360. dev_err(&drv_data->pdev->dev,
  361. "dma_handler: bad bus address on "
  362. "tx channel %d, source %x target = %x\n",
  363. channel, DSADR(channel), DTADR(channel));
  364. else
  365. dev_err(&drv_data->pdev->dev,
  366. "dma_handler: bad bus address on "
  367. "rx channel %d, source %x target = %x\n",
  368. channel, DSADR(channel), DTADR(channel));
  369. msg->state = ERROR_STATE;
  370. tasklet_schedule(&drv_data->pump_transfers);
  371. }
  372. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  373. if ((drv_data->ssp_type == PXA25x_SSP)
  374. && (channel == drv_data->tx_channel)
  375. && (irq_status & DCSR_ENDINTR)) {
  376. /* Wait for rx to stall */
  377. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  378. dev_err(&drv_data->pdev->dev,
  379. "dma_handler: ssp rx stall failed\n");
  380. /* Clear and disable interrupts on SSP and DMA channels*/
  381. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  382. write_SSSR(drv_data->clear_sr, reg);
  383. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  384. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  385. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  386. dev_err(&drv_data->pdev->dev,
  387. "dma_handler: dma rx channel stop failed\n");
  388. unmap_dma_buffers(drv_data);
  389. /* Read trailing bytes */
  390. /* Calculate number of trailing bytes, read them */
  391. trailing_sssr = read_SSSR(reg);
  392. if ((trailing_sssr & 0xf008) != 0xf000) {
  393. drv_data->rx = drv_data->rx_end -
  394. (((trailing_sssr >> 12) & 0x0f) + 1);
  395. drv_data->read(drv_data);
  396. }
  397. msg->actual_length += drv_data->len;
  398. /* Release chip select if requested, transfer delays are
  399. * handled in pump_transfers */
  400. if (drv_data->cs_change)
  401. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  402. /* Move to next transfer */
  403. msg->state = next_transfer(drv_data);
  404. /* Schedule transfer tasklet */
  405. tasklet_schedule(&drv_data->pump_transfers);
  406. }
  407. }
  408. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  409. {
  410. u32 irq_status;
  411. u32 trailing_sssr = 0;
  412. struct spi_message *msg = drv_data->cur_msg;
  413. void *reg = drv_data->ioaddr;
  414. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  415. if (irq_status & SSSR_ROR) {
  416. /* Clear and disable interrupts on SSP and DMA channels*/
  417. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  418. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  419. if (drv_data->ssp_type != PXA25x_SSP)
  420. write_SSTO(0, reg);
  421. write_SSSR(drv_data->clear_sr, reg);
  422. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  423. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  424. unmap_dma_buffers(drv_data);
  425. if (flush(drv_data) == 0)
  426. dev_err(&drv_data->pdev->dev,
  427. "dma_transfer: flush fail\n");
  428. dev_warn(&drv_data->pdev->dev, "dma_transfer: fifo overun\n");
  429. drv_data->cur_msg->state = ERROR_STATE;
  430. tasklet_schedule(&drv_data->pump_transfers);
  431. return IRQ_HANDLED;
  432. }
  433. /* Check for false positive timeout */
  434. if ((irq_status & SSSR_TINT) && DCSR(drv_data->tx_channel) & DCSR_RUN) {
  435. write_SSSR(SSSR_TINT, reg);
  436. return IRQ_HANDLED;
  437. }
  438. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  439. /* Clear and disable interrupts on SSP and DMA channels*/
  440. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  441. if (drv_data->ssp_type != PXA25x_SSP)
  442. write_SSTO(0, reg);
  443. write_SSSR(drv_data->clear_sr, reg);
  444. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  445. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  446. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  447. dev_err(&drv_data->pdev->dev,
  448. "dma_transfer: dma rx channel stop failed\n");
  449. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  450. dev_err(&drv_data->pdev->dev,
  451. "dma_transfer: ssp rx stall failed\n");
  452. unmap_dma_buffers(drv_data);
  453. /* Calculate number of trailing bytes, read them */
  454. trailing_sssr = read_SSSR(reg);
  455. if ((trailing_sssr & 0xf008) != 0xf000) {
  456. drv_data->rx = drv_data->rx_end -
  457. (((trailing_sssr >> 12) & 0x0f) + 1);
  458. drv_data->read(drv_data);
  459. }
  460. msg->actual_length += drv_data->len;
  461. /* Release chip select if requested, transfer delays are
  462. * handled in pump_transfers */
  463. if (drv_data->cs_change)
  464. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  465. /* Move to next transfer */
  466. msg->state = next_transfer(drv_data);
  467. /* Schedule transfer tasklet */
  468. tasklet_schedule(&drv_data->pump_transfers);
  469. return IRQ_HANDLED;
  470. }
  471. /* Opps problem detected */
  472. return IRQ_NONE;
  473. }
  474. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  475. {
  476. struct spi_message *msg = drv_data->cur_msg;
  477. void *reg = drv_data->ioaddr;
  478. unsigned long limit = loops_per_jiffy << 1;
  479. u32 irq_status;
  480. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  481. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  482. while ((irq_status = read_SSSR(reg) & irq_mask)) {
  483. if (irq_status & SSSR_ROR) {
  484. /* Clear and disable interrupts */
  485. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  486. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  487. if (drv_data->ssp_type != PXA25x_SSP)
  488. write_SSTO(0, reg);
  489. write_SSSR(drv_data->clear_sr, reg);
  490. if (flush(drv_data) == 0)
  491. dev_err(&drv_data->pdev->dev,
  492. "interrupt_transfer: flush fail\n");
  493. /* Stop the SSP */
  494. dev_warn(&drv_data->pdev->dev,
  495. "interrupt_transfer: fifo overun\n");
  496. msg->state = ERROR_STATE;
  497. tasklet_schedule(&drv_data->pump_transfers);
  498. return IRQ_HANDLED;
  499. }
  500. /* Look for false positive timeout */
  501. if ((irq_status & SSSR_TINT)
  502. && (drv_data->rx < drv_data->rx_end))
  503. write_SSSR(SSSR_TINT, reg);
  504. /* Pump data */
  505. drv_data->read(drv_data);
  506. drv_data->write(drv_data);
  507. if (drv_data->tx == drv_data->tx_end) {
  508. /* Disable tx interrupt */
  509. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  510. irq_mask = drv_data->mask_sr & ~SSSR_TFS;
  511. /* PXA25x_SSP has no timeout, read trailing bytes */
  512. if (drv_data->ssp_type == PXA25x_SSP) {
  513. while ((read_SSSR(reg) & SSSR_BSY) && limit--)
  514. drv_data->read(drv_data);
  515. if (limit == 0)
  516. dev_err(&drv_data->pdev->dev,
  517. "interrupt_transfer: "
  518. "trailing byte read failed\n");
  519. }
  520. }
  521. if ((irq_status & SSSR_TINT)
  522. || (drv_data->rx == drv_data->rx_end)) {
  523. /* Clear timeout */
  524. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  525. if (drv_data->ssp_type != PXA25x_SSP)
  526. write_SSTO(0, reg);
  527. write_SSSR(drv_data->clear_sr, reg);
  528. /* Update total byte transfered */
  529. msg->actual_length += drv_data->len;
  530. /* Release chip select if requested, transfer delays are
  531. * handled in pump_transfers */
  532. if (drv_data->cs_change)
  533. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  534. /* Move to next transfer */
  535. msg->state = next_transfer(drv_data);
  536. /* Schedule transfer tasklet */
  537. tasklet_schedule(&drv_data->pump_transfers);
  538. }
  539. }
  540. /* We did something */
  541. return IRQ_HANDLED;
  542. }
  543. static irqreturn_t ssp_int(int irq, void *dev_id)
  544. {
  545. struct driver_data *drv_data = dev_id;
  546. void *reg = drv_data->ioaddr;
  547. if (!drv_data->cur_msg) {
  548. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  549. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  550. if (drv_data->ssp_type != PXA25x_SSP)
  551. write_SSTO(0, reg);
  552. write_SSSR(drv_data->clear_sr, reg);
  553. dev_err(&drv_data->pdev->dev, "bad message state "
  554. "in interrupt handler");
  555. /* Never fail */
  556. return IRQ_HANDLED;
  557. }
  558. return drv_data->transfer_handler(drv_data);
  559. }
  560. static void pump_transfers(unsigned long data)
  561. {
  562. struct driver_data *drv_data = (struct driver_data *)data;
  563. struct spi_message *message = NULL;
  564. struct spi_transfer *transfer = NULL;
  565. struct spi_transfer *previous = NULL;
  566. struct chip_data *chip = NULL;
  567. void *reg = drv_data->ioaddr;
  568. u32 clk_div = 0;
  569. u8 bits = 0;
  570. u32 speed = 0;
  571. u32 cr0;
  572. /* Get current state information */
  573. message = drv_data->cur_msg;
  574. transfer = drv_data->cur_transfer;
  575. chip = drv_data->cur_chip;
  576. /* Handle for abort */
  577. if (message->state == ERROR_STATE) {
  578. message->status = -EIO;
  579. giveback(drv_data);
  580. return;
  581. }
  582. /* Handle end of message */
  583. if (message->state == DONE_STATE) {
  584. message->status = 0;
  585. giveback(drv_data);
  586. return;
  587. }
  588. /* Delay if requested at end of transfer*/
  589. if (message->state == RUNNING_STATE) {
  590. previous = list_entry(transfer->transfer_list.prev,
  591. struct spi_transfer,
  592. transfer_list);
  593. if (previous->delay_usecs)
  594. udelay(previous->delay_usecs);
  595. }
  596. /* Setup the transfer state based on the type of transfer */
  597. if (flush(drv_data) == 0) {
  598. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  599. message->status = -EIO;
  600. giveback(drv_data);
  601. return;
  602. }
  603. drv_data->n_bytes = chip->n_bytes;
  604. drv_data->dma_width = chip->dma_width;
  605. drv_data->cs_control = chip->cs_control;
  606. drv_data->tx = (void *)transfer->tx_buf;
  607. drv_data->tx_end = drv_data->tx + transfer->len;
  608. drv_data->rx = transfer->rx_buf;
  609. drv_data->rx_end = drv_data->rx + transfer->len;
  610. drv_data->rx_dma = transfer->rx_dma;
  611. drv_data->tx_dma = transfer->tx_dma;
  612. drv_data->len = transfer->len;
  613. drv_data->write = drv_data->tx ? chip->write : null_writer;
  614. drv_data->read = drv_data->rx ? chip->read : null_reader;
  615. drv_data->cs_change = transfer->cs_change;
  616. /* Change speed and bit per word on a per transfer */
  617. if (transfer->speed_hz || transfer->bits_per_word) {
  618. /* Disable clock */
  619. write_SSCR0(chip->cr0 & ~SSCR0_SSE, reg);
  620. cr0 = chip->cr0;
  621. bits = chip->bits_per_word;
  622. speed = chip->speed_hz;
  623. if (transfer->speed_hz)
  624. speed = transfer->speed_hz;
  625. if (transfer->bits_per_word)
  626. bits = transfer->bits_per_word;
  627. if (reg == SSP1_VIRT)
  628. clk_div = SSP1_SerClkDiv(speed);
  629. else if (reg == SSP2_VIRT)
  630. clk_div = SSP2_SerClkDiv(speed);
  631. else if (reg == SSP3_VIRT)
  632. clk_div = SSP3_SerClkDiv(speed);
  633. if (bits <= 8) {
  634. drv_data->n_bytes = 1;
  635. drv_data->dma_width = DCMD_WIDTH1;
  636. drv_data->read = drv_data->read != null_reader ?
  637. u8_reader : null_reader;
  638. drv_data->write = drv_data->write != null_writer ?
  639. u8_writer : null_writer;
  640. } else if (bits <= 16) {
  641. drv_data->n_bytes = 2;
  642. drv_data->dma_width = DCMD_WIDTH2;
  643. drv_data->read = drv_data->read != null_reader ?
  644. u16_reader : null_reader;
  645. drv_data->write = drv_data->write != null_writer ?
  646. u16_writer : null_writer;
  647. } else if (bits <= 32) {
  648. drv_data->n_bytes = 4;
  649. drv_data->dma_width = DCMD_WIDTH4;
  650. drv_data->read = drv_data->read != null_reader ?
  651. u32_reader : null_reader;
  652. drv_data->write = drv_data->write != null_writer ?
  653. u32_writer : null_writer;
  654. }
  655. cr0 = clk_div
  656. | SSCR0_Motorola
  657. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  658. | SSCR0_SSE
  659. | (bits > 16 ? SSCR0_EDSS : 0);
  660. /* Start it back up */
  661. write_SSCR0(cr0, reg);
  662. }
  663. message->state = RUNNING_STATE;
  664. /* Try to map dma buffer and do a dma transfer if successful */
  665. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  666. /* Ensure we have the correct interrupt handler */
  667. drv_data->transfer_handler = dma_transfer;
  668. /* Setup rx DMA Channel */
  669. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  670. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  671. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  672. if (drv_data->rx == drv_data->null_dma_buf)
  673. /* No target address increment */
  674. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  675. | drv_data->dma_width
  676. | chip->dma_burst_size
  677. | drv_data->len;
  678. else
  679. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  680. | DCMD_FLOWSRC
  681. | drv_data->dma_width
  682. | chip->dma_burst_size
  683. | drv_data->len;
  684. /* Setup tx DMA Channel */
  685. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  686. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  687. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  688. if (drv_data->tx == drv_data->null_dma_buf)
  689. /* No source address increment */
  690. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  691. | drv_data->dma_width
  692. | chip->dma_burst_size
  693. | drv_data->len;
  694. else
  695. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  696. | DCMD_FLOWTRG
  697. | drv_data->dma_width
  698. | chip->dma_burst_size
  699. | drv_data->len;
  700. /* Enable dma end irqs on SSP to detect end of transfer */
  701. if (drv_data->ssp_type == PXA25x_SSP)
  702. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  703. /* Fix me, need to handle cs polarity */
  704. drv_data->cs_control(PXA2XX_CS_ASSERT);
  705. /* Go baby, go */
  706. write_SSSR(drv_data->clear_sr, reg);
  707. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  708. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  709. if (drv_data->ssp_type != PXA25x_SSP)
  710. write_SSTO(chip->timeout, reg);
  711. write_SSCR1(chip->cr1
  712. | chip->dma_threshold
  713. | drv_data->dma_cr1,
  714. reg);
  715. } else {
  716. /* Ensure we have the correct interrupt handler */
  717. drv_data->transfer_handler = interrupt_transfer;
  718. /* Fix me, need to handle cs polarity */
  719. drv_data->cs_control(PXA2XX_CS_ASSERT);
  720. /* Go baby, go */
  721. write_SSSR(drv_data->clear_sr, reg);
  722. if (drv_data->ssp_type != PXA25x_SSP)
  723. write_SSTO(chip->timeout, reg);
  724. write_SSCR1(chip->cr1
  725. | chip->threshold
  726. | drv_data->int_cr1,
  727. reg);
  728. }
  729. }
  730. static void pump_messages(void *data)
  731. {
  732. struct driver_data *drv_data = data;
  733. unsigned long flags;
  734. /* Lock queue and check for queue work */
  735. spin_lock_irqsave(&drv_data->lock, flags);
  736. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  737. drv_data->busy = 0;
  738. spin_unlock_irqrestore(&drv_data->lock, flags);
  739. return;
  740. }
  741. /* Make sure we are not already running a message */
  742. if (drv_data->cur_msg) {
  743. spin_unlock_irqrestore(&drv_data->lock, flags);
  744. return;
  745. }
  746. /* Extract head of queue */
  747. drv_data->cur_msg = list_entry(drv_data->queue.next,
  748. struct spi_message, queue);
  749. list_del_init(&drv_data->cur_msg->queue);
  750. /* Initial message state*/
  751. drv_data->cur_msg->state = START_STATE;
  752. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  753. struct spi_transfer,
  754. transfer_list);
  755. /* Setup the SSP using the per chip configuration */
  756. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  757. restore_state(drv_data);
  758. /* Mark as busy and launch transfers */
  759. tasklet_schedule(&drv_data->pump_transfers);
  760. drv_data->busy = 1;
  761. spin_unlock_irqrestore(&drv_data->lock, flags);
  762. }
  763. static int transfer(struct spi_device *spi, struct spi_message *msg)
  764. {
  765. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  766. unsigned long flags;
  767. spin_lock_irqsave(&drv_data->lock, flags);
  768. if (drv_data->run == QUEUE_STOPPED) {
  769. spin_unlock_irqrestore(&drv_data->lock, flags);
  770. return -ESHUTDOWN;
  771. }
  772. msg->actual_length = 0;
  773. msg->status = -EINPROGRESS;
  774. msg->state = START_STATE;
  775. list_add_tail(&msg->queue, &drv_data->queue);
  776. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  777. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  778. spin_unlock_irqrestore(&drv_data->lock, flags);
  779. return 0;
  780. }
  781. static int setup(struct spi_device *spi)
  782. {
  783. struct pxa2xx_spi_chip *chip_info = NULL;
  784. struct chip_data *chip;
  785. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  786. unsigned int clk_div;
  787. if (!spi->bits_per_word)
  788. spi->bits_per_word = 8;
  789. if (drv_data->ssp_type != PXA25x_SSP
  790. && (spi->bits_per_word < 4 || spi->bits_per_word > 32))
  791. return -EINVAL;
  792. else if (spi->bits_per_word < 4 || spi->bits_per_word > 16)
  793. return -EINVAL;
  794. /* Only alloc (or use chip_info) on first setup */
  795. chip = spi_get_ctldata(spi);
  796. if (chip == NULL) {
  797. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  798. if (!chip)
  799. return -ENOMEM;
  800. chip->cs_control = null_cs_control;
  801. chip->enable_dma = 0;
  802. chip->timeout = SSP_TIMEOUT(1000);
  803. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  804. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  805. DCMD_BURST8 : 0;
  806. chip_info = spi->controller_data;
  807. }
  808. /* chip_info isn't always needed */
  809. if (chip_info) {
  810. if (chip_info->cs_control)
  811. chip->cs_control = chip_info->cs_control;
  812. chip->timeout = SSP_TIMEOUT(chip_info->timeout_microsecs);
  813. chip->threshold = SSCR1_RxTresh(chip_info->rx_threshold)
  814. | SSCR1_TxTresh(chip_info->tx_threshold);
  815. chip->enable_dma = chip_info->dma_burst_size != 0
  816. && drv_data->master_info->enable_dma;
  817. chip->dma_threshold = 0;
  818. if (chip->enable_dma) {
  819. if (chip_info->dma_burst_size <= 8) {
  820. chip->dma_threshold = SSCR1_RxTresh(8)
  821. | SSCR1_TxTresh(8);
  822. chip->dma_burst_size = DCMD_BURST8;
  823. } else if (chip_info->dma_burst_size <= 16) {
  824. chip->dma_threshold = SSCR1_RxTresh(16)
  825. | SSCR1_TxTresh(16);
  826. chip->dma_burst_size = DCMD_BURST16;
  827. } else {
  828. chip->dma_threshold = SSCR1_RxTresh(32)
  829. | SSCR1_TxTresh(32);
  830. chip->dma_burst_size = DCMD_BURST32;
  831. }
  832. }
  833. if (chip_info->enable_loopback)
  834. chip->cr1 = SSCR1_LBM;
  835. }
  836. if (drv_data->ioaddr == SSP1_VIRT)
  837. clk_div = SSP1_SerClkDiv(spi->max_speed_hz);
  838. else if (drv_data->ioaddr == SSP2_VIRT)
  839. clk_div = SSP2_SerClkDiv(spi->max_speed_hz);
  840. else if (drv_data->ioaddr == SSP3_VIRT)
  841. clk_div = SSP3_SerClkDiv(spi->max_speed_hz);
  842. else
  843. return -ENODEV;
  844. chip->speed_hz = spi->max_speed_hz;
  845. chip->cr0 = clk_div
  846. | SSCR0_Motorola
  847. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  848. spi->bits_per_word - 16 : spi->bits_per_word)
  849. | SSCR0_SSE
  850. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  851. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) << 4)
  852. | (((spi->mode & SPI_CPOL) != 0) << 3);
  853. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  854. if (drv_data->ssp_type != PXA25x_SSP)
  855. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  856. spi->bits_per_word,
  857. (CLOCK_SPEED_HZ)
  858. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  859. spi->mode & 0x3);
  860. else
  861. dev_dbg(&spi->dev, "%d bits/word, %d Hz, mode %d\n",
  862. spi->bits_per_word,
  863. (CLOCK_SPEED_HZ/2)
  864. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  865. spi->mode & 0x3);
  866. if (spi->bits_per_word <= 8) {
  867. chip->n_bytes = 1;
  868. chip->dma_width = DCMD_WIDTH1;
  869. chip->read = u8_reader;
  870. chip->write = u8_writer;
  871. } else if (spi->bits_per_word <= 16) {
  872. chip->n_bytes = 2;
  873. chip->dma_width = DCMD_WIDTH2;
  874. chip->read = u16_reader;
  875. chip->write = u16_writer;
  876. } else if (spi->bits_per_word <= 32) {
  877. chip->cr0 |= SSCR0_EDSS;
  878. chip->n_bytes = 4;
  879. chip->dma_width = DCMD_WIDTH4;
  880. chip->read = u32_reader;
  881. chip->write = u32_writer;
  882. } else {
  883. dev_err(&spi->dev, "invalid wordsize\n");
  884. kfree(chip);
  885. return -ENODEV;
  886. }
  887. chip->bits_per_word = spi->bits_per_word;
  888. spi_set_ctldata(spi, chip);
  889. return 0;
  890. }
  891. static void cleanup(const struct spi_device *spi)
  892. {
  893. struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
  894. kfree(chip);
  895. }
  896. static int init_queue(struct driver_data *drv_data)
  897. {
  898. INIT_LIST_HEAD(&drv_data->queue);
  899. spin_lock_init(&drv_data->lock);
  900. drv_data->run = QUEUE_STOPPED;
  901. drv_data->busy = 0;
  902. tasklet_init(&drv_data->pump_transfers,
  903. pump_transfers, (unsigned long)drv_data);
  904. INIT_WORK(&drv_data->pump_messages, pump_messages, drv_data);
  905. drv_data->workqueue = create_singlethread_workqueue(
  906. drv_data->master->cdev.dev->bus_id);
  907. if (drv_data->workqueue == NULL)
  908. return -EBUSY;
  909. return 0;
  910. }
  911. static int start_queue(struct driver_data *drv_data)
  912. {
  913. unsigned long flags;
  914. spin_lock_irqsave(&drv_data->lock, flags);
  915. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  916. spin_unlock_irqrestore(&drv_data->lock, flags);
  917. return -EBUSY;
  918. }
  919. drv_data->run = QUEUE_RUNNING;
  920. drv_data->cur_msg = NULL;
  921. drv_data->cur_transfer = NULL;
  922. drv_data->cur_chip = NULL;
  923. spin_unlock_irqrestore(&drv_data->lock, flags);
  924. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  925. return 0;
  926. }
  927. static int stop_queue(struct driver_data *drv_data)
  928. {
  929. unsigned long flags;
  930. unsigned limit = 500;
  931. int status = 0;
  932. spin_lock_irqsave(&drv_data->lock, flags);
  933. /* This is a bit lame, but is optimized for the common execution path.
  934. * A wait_queue on the drv_data->busy could be used, but then the common
  935. * execution path (pump_messages) would be required to call wake_up or
  936. * friends on every SPI message. Do this instead */
  937. drv_data->run = QUEUE_STOPPED;
  938. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  939. spin_unlock_irqrestore(&drv_data->lock, flags);
  940. msleep(10);
  941. spin_lock_irqsave(&drv_data->lock, flags);
  942. }
  943. if (!list_empty(&drv_data->queue) || drv_data->busy)
  944. status = -EBUSY;
  945. spin_unlock_irqrestore(&drv_data->lock, flags);
  946. return status;
  947. }
  948. static int destroy_queue(struct driver_data *drv_data)
  949. {
  950. int status;
  951. status = stop_queue(drv_data);
  952. if (status != 0)
  953. return status;
  954. destroy_workqueue(drv_data->workqueue);
  955. return 0;
  956. }
  957. static int pxa2xx_spi_probe(struct platform_device *pdev)
  958. {
  959. struct device *dev = &pdev->dev;
  960. struct pxa2xx_spi_master *platform_info;
  961. struct spi_master *master;
  962. struct driver_data *drv_data = 0;
  963. struct resource *memory_resource;
  964. int irq;
  965. int status = 0;
  966. platform_info = dev->platform_data;
  967. if (platform_info->ssp_type == SSP_UNDEFINED) {
  968. dev_err(&pdev->dev, "undefined SSP\n");
  969. return -ENODEV;
  970. }
  971. /* Allocate master with space for drv_data and null dma buffer */
  972. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  973. if (!master) {
  974. dev_err(&pdev->dev, "can not alloc spi_master\n");
  975. return -ENOMEM;
  976. }
  977. drv_data = spi_master_get_devdata(master);
  978. drv_data->master = master;
  979. drv_data->master_info = platform_info;
  980. drv_data->pdev = pdev;
  981. master->bus_num = pdev->id;
  982. master->num_chipselect = platform_info->num_chipselect;
  983. master->cleanup = cleanup;
  984. master->setup = setup;
  985. master->transfer = transfer;
  986. drv_data->ssp_type = platform_info->ssp_type;
  987. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  988. sizeof(struct driver_data)), 8);
  989. /* Setup register addresses */
  990. memory_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  991. if (!memory_resource) {
  992. dev_err(&pdev->dev, "memory resources not defined\n");
  993. status = -ENODEV;
  994. goto out_error_master_alloc;
  995. }
  996. drv_data->ioaddr = (void *)io_p2v((unsigned long)(memory_resource->start));
  997. drv_data->ssdr_physical = memory_resource->start + 0x00000010;
  998. if (platform_info->ssp_type == PXA25x_SSP) {
  999. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1000. drv_data->dma_cr1 = 0;
  1001. drv_data->clear_sr = SSSR_ROR;
  1002. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1003. } else {
  1004. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1005. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1006. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1007. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1008. }
  1009. /* Attach to IRQ */
  1010. irq = platform_get_irq(pdev, 0);
  1011. if (irq < 0) {
  1012. dev_err(&pdev->dev, "irq resource not defined\n");
  1013. status = -ENODEV;
  1014. goto out_error_master_alloc;
  1015. }
  1016. status = request_irq(irq, ssp_int, 0, dev->bus_id, drv_data);
  1017. if (status < 0) {
  1018. dev_err(&pdev->dev, "can not get IRQ\n");
  1019. goto out_error_master_alloc;
  1020. }
  1021. /* Setup DMA if requested */
  1022. drv_data->tx_channel = -1;
  1023. drv_data->rx_channel = -1;
  1024. if (platform_info->enable_dma) {
  1025. /* Get two DMA channels (rx and tx) */
  1026. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1027. DMA_PRIO_HIGH,
  1028. dma_handler,
  1029. drv_data);
  1030. if (drv_data->rx_channel < 0) {
  1031. dev_err(dev, "problem (%d) requesting rx channel\n",
  1032. drv_data->rx_channel);
  1033. status = -ENODEV;
  1034. goto out_error_irq_alloc;
  1035. }
  1036. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1037. DMA_PRIO_MEDIUM,
  1038. dma_handler,
  1039. drv_data);
  1040. if (drv_data->tx_channel < 0) {
  1041. dev_err(dev, "problem (%d) requesting tx channel\n",
  1042. drv_data->tx_channel);
  1043. status = -ENODEV;
  1044. goto out_error_dma_alloc;
  1045. }
  1046. if (drv_data->ioaddr == SSP1_VIRT) {
  1047. DRCMRRXSSDR = DRCMR_MAPVLD
  1048. | drv_data->rx_channel;
  1049. DRCMRTXSSDR = DRCMR_MAPVLD
  1050. | drv_data->tx_channel;
  1051. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1052. DRCMRRXSS2DR = DRCMR_MAPVLD
  1053. | drv_data->rx_channel;
  1054. DRCMRTXSS2DR = DRCMR_MAPVLD
  1055. | drv_data->tx_channel;
  1056. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1057. DRCMRRXSS3DR = DRCMR_MAPVLD
  1058. | drv_data->rx_channel;
  1059. DRCMRTXSS3DR = DRCMR_MAPVLD
  1060. | drv_data->tx_channel;
  1061. } else {
  1062. dev_err(dev, "bad SSP type\n");
  1063. goto out_error_dma_alloc;
  1064. }
  1065. }
  1066. /* Enable SOC clock */
  1067. pxa_set_cken(platform_info->clock_enable, 1);
  1068. /* Load default SSP configuration */
  1069. write_SSCR0(0, drv_data->ioaddr);
  1070. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1071. write_SSCR0(SSCR0_SerClkDiv(2)
  1072. | SSCR0_Motorola
  1073. | SSCR0_DataSize(8),
  1074. drv_data->ioaddr);
  1075. if (drv_data->ssp_type != PXA25x_SSP)
  1076. write_SSTO(0, drv_data->ioaddr);
  1077. write_SSPSP(0, drv_data->ioaddr);
  1078. /* Initial and start queue */
  1079. status = init_queue(drv_data);
  1080. if (status != 0) {
  1081. dev_err(&pdev->dev, "problem initializing queue\n");
  1082. goto out_error_clock_enabled;
  1083. }
  1084. status = start_queue(drv_data);
  1085. if (status != 0) {
  1086. dev_err(&pdev->dev, "problem starting queue\n");
  1087. goto out_error_clock_enabled;
  1088. }
  1089. /* Register with the SPI framework */
  1090. platform_set_drvdata(pdev, drv_data);
  1091. status = spi_register_master(master);
  1092. if (status != 0) {
  1093. dev_err(&pdev->dev, "problem registering spi master\n");
  1094. goto out_error_queue_alloc;
  1095. }
  1096. return status;
  1097. out_error_queue_alloc:
  1098. destroy_queue(drv_data);
  1099. out_error_clock_enabled:
  1100. pxa_set_cken(platform_info->clock_enable, 0);
  1101. out_error_dma_alloc:
  1102. if (drv_data->tx_channel != -1)
  1103. pxa_free_dma(drv_data->tx_channel);
  1104. if (drv_data->rx_channel != -1)
  1105. pxa_free_dma(drv_data->rx_channel);
  1106. out_error_irq_alloc:
  1107. free_irq(irq, drv_data);
  1108. out_error_master_alloc:
  1109. spi_master_put(master);
  1110. return status;
  1111. }
  1112. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1113. {
  1114. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1115. int irq;
  1116. int status = 0;
  1117. if (!drv_data)
  1118. return 0;
  1119. /* Remove the queue */
  1120. status = destroy_queue(drv_data);
  1121. if (status != 0)
  1122. return status;
  1123. /* Disable the SSP at the peripheral and SOC level */
  1124. write_SSCR0(0, drv_data->ioaddr);
  1125. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1126. /* Release DMA */
  1127. if (drv_data->master_info->enable_dma) {
  1128. if (drv_data->ioaddr == SSP1_VIRT) {
  1129. DRCMRRXSSDR = 0;
  1130. DRCMRTXSSDR = 0;
  1131. } else if (drv_data->ioaddr == SSP2_VIRT) {
  1132. DRCMRRXSS2DR = 0;
  1133. DRCMRTXSS2DR = 0;
  1134. } else if (drv_data->ioaddr == SSP3_VIRT) {
  1135. DRCMRRXSS3DR = 0;
  1136. DRCMRTXSS3DR = 0;
  1137. }
  1138. pxa_free_dma(drv_data->tx_channel);
  1139. pxa_free_dma(drv_data->rx_channel);
  1140. }
  1141. /* Release IRQ */
  1142. irq = platform_get_irq(pdev, 0);
  1143. if (irq >= 0)
  1144. free_irq(irq, drv_data);
  1145. /* Disconnect from the SPI framework */
  1146. spi_unregister_master(drv_data->master);
  1147. /* Prevent double remove */
  1148. platform_set_drvdata(pdev, NULL);
  1149. return 0;
  1150. }
  1151. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1152. {
  1153. int status = 0;
  1154. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1155. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1156. }
  1157. #ifdef CONFIG_PM
  1158. static int suspend_devices(struct device *dev, void *pm_message)
  1159. {
  1160. pm_message_t *state = pm_message;
  1161. if (dev->power.power_state.event != state->event) {
  1162. dev_warn(dev, "pm state does not match request\n");
  1163. return -1;
  1164. }
  1165. return 0;
  1166. }
  1167. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1168. {
  1169. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1170. int status = 0;
  1171. /* Check all childern for current power state */
  1172. if (device_for_each_child(&pdev->dev, &state, suspend_devices) != 0) {
  1173. dev_warn(&pdev->dev, "suspend aborted\n");
  1174. return -1;
  1175. }
  1176. status = stop_queue(drv_data);
  1177. if (status != 0)
  1178. return status;
  1179. write_SSCR0(0, drv_data->ioaddr);
  1180. pxa_set_cken(drv_data->master_info->clock_enable, 0);
  1181. return 0;
  1182. }
  1183. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1184. {
  1185. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1186. int status = 0;
  1187. /* Enable the SSP clock */
  1188. pxa_set_cken(drv_data->master_info->clock_enable, 1);
  1189. /* Start the queue running */
  1190. status = start_queue(drv_data);
  1191. if (status != 0) {
  1192. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1193. return status;
  1194. }
  1195. return 0;
  1196. }
  1197. #else
  1198. #define pxa2xx_spi_suspend NULL
  1199. #define pxa2xx_spi_resume NULL
  1200. #endif /* CONFIG_PM */
  1201. static struct platform_driver driver = {
  1202. .driver = {
  1203. .name = "pxa2xx-spi",
  1204. .bus = &platform_bus_type,
  1205. .owner = THIS_MODULE,
  1206. },
  1207. .probe = pxa2xx_spi_probe,
  1208. .remove = __devexit_p(pxa2xx_spi_remove),
  1209. .shutdown = pxa2xx_spi_shutdown,
  1210. .suspend = pxa2xx_spi_suspend,
  1211. .resume = pxa2xx_spi_resume,
  1212. };
  1213. static int __init pxa2xx_spi_init(void)
  1214. {
  1215. platform_driver_register(&driver);
  1216. return 0;
  1217. }
  1218. module_init(pxa2xx_spi_init);
  1219. static void __exit pxa2xx_spi_exit(void)
  1220. {
  1221. platform_driver_unregister(&driver);
  1222. }
  1223. module_exit(pxa2xx_spi_exit);