aic94xx_task.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. /*
  2. * Aic94xx SAS/SATA Tasks
  3. *
  4. * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
  5. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
  6. *
  7. * This file is licensed under GPLv2.
  8. *
  9. * This file is part of the aic94xx driver.
  10. *
  11. * The aic94xx driver is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation; version 2 of the
  14. * License.
  15. *
  16. * The aic94xx driver is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with the aic94xx driver; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  24. *
  25. */
  26. #include <linux/spinlock.h>
  27. #include "aic94xx.h"
  28. #include "aic94xx_sas.h"
  29. #include "aic94xx_hwi.h"
  30. static void asd_unbuild_ata_ascb(struct asd_ascb *a);
  31. static void asd_unbuild_smp_ascb(struct asd_ascb *a);
  32. static void asd_unbuild_ssp_ascb(struct asd_ascb *a);
  33. static inline void asd_can_dequeue(struct asd_ha_struct *asd_ha, int num)
  34. {
  35. unsigned long flags;
  36. spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
  37. asd_ha->seq.can_queue += num;
  38. spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
  39. }
  40. /* PCI_DMA_... to our direction translation.
  41. */
  42. static const u8 data_dir_flags[] = {
  43. [PCI_DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT, /* UNSPECIFIED */
  44. [PCI_DMA_TODEVICE] = DATA_DIR_OUT, /* OUTBOUND */
  45. [PCI_DMA_FROMDEVICE] = DATA_DIR_IN, /* INBOUND */
  46. [PCI_DMA_NONE] = DATA_DIR_NONE, /* NO TRANSFER */
  47. };
  48. static inline int asd_map_scatterlist(struct sas_task *task,
  49. struct sg_el *sg_arr,
  50. gfp_t gfp_flags)
  51. {
  52. struct asd_ascb *ascb = task->lldd_task;
  53. struct asd_ha_struct *asd_ha = ascb->ha;
  54. struct scatterlist *sc;
  55. int num_sg, res;
  56. if (task->data_dir == PCI_DMA_NONE)
  57. return 0;
  58. if (task->num_scatter == 0) {
  59. void *p = task->scatter;
  60. dma_addr_t dma = pci_map_single(asd_ha->pcidev, p,
  61. task->total_xfer_len,
  62. task->data_dir);
  63. sg_arr[0].bus_addr = cpu_to_le64((u64)dma);
  64. sg_arr[0].size = cpu_to_le32(task->total_xfer_len);
  65. sg_arr[0].flags |= ASD_SG_EL_LIST_EOL;
  66. return 0;
  67. }
  68. num_sg = pci_map_sg(asd_ha->pcidev, task->scatter, task->num_scatter,
  69. task->data_dir);
  70. if (num_sg == 0)
  71. return -ENOMEM;
  72. if (num_sg > 3) {
  73. int i;
  74. ascb->sg_arr = asd_alloc_coherent(asd_ha,
  75. num_sg*sizeof(struct sg_el),
  76. gfp_flags);
  77. if (!ascb->sg_arr) {
  78. res = -ENOMEM;
  79. goto err_unmap;
  80. }
  81. for (sc = task->scatter, i = 0; i < num_sg; i++, sc++) {
  82. struct sg_el *sg =
  83. &((struct sg_el *)ascb->sg_arr->vaddr)[i];
  84. sg->bus_addr = cpu_to_le64((u64)sg_dma_address(sc));
  85. sg->size = cpu_to_le32((u32)sg_dma_len(sc));
  86. if (i == num_sg-1)
  87. sg->flags |= ASD_SG_EL_LIST_EOL;
  88. }
  89. for (sc = task->scatter, i = 0; i < 2; i++, sc++) {
  90. sg_arr[i].bus_addr =
  91. cpu_to_le64((u64)sg_dma_address(sc));
  92. sg_arr[i].size = cpu_to_le32((u32)sg_dma_len(sc));
  93. }
  94. sg_arr[1].next_sg_offs = 2 * sizeof(*sg_arr);
  95. sg_arr[1].flags |= ASD_SG_EL_LIST_EOS;
  96. memset(&sg_arr[2], 0, sizeof(*sg_arr));
  97. sg_arr[2].bus_addr=cpu_to_le64((u64)ascb->sg_arr->dma_handle);
  98. } else {
  99. int i;
  100. for (sc = task->scatter, i = 0; i < num_sg; i++, sc++) {
  101. sg_arr[i].bus_addr =
  102. cpu_to_le64((u64)sg_dma_address(sc));
  103. sg_arr[i].size = cpu_to_le32((u32)sg_dma_len(sc));
  104. }
  105. sg_arr[i-1].flags |= ASD_SG_EL_LIST_EOL;
  106. }
  107. return 0;
  108. err_unmap:
  109. pci_unmap_sg(asd_ha->pcidev, task->scatter, task->num_scatter,
  110. task->data_dir);
  111. return res;
  112. }
  113. static inline void asd_unmap_scatterlist(struct asd_ascb *ascb)
  114. {
  115. struct asd_ha_struct *asd_ha = ascb->ha;
  116. struct sas_task *task = ascb->uldd_task;
  117. if (task->data_dir == PCI_DMA_NONE)
  118. return;
  119. if (task->num_scatter == 0) {
  120. dma_addr_t dma = (dma_addr_t)
  121. le64_to_cpu(ascb->scb->ssp_task.sg_element[0].bus_addr);
  122. pci_unmap_single(ascb->ha->pcidev, dma, task->total_xfer_len,
  123. task->data_dir);
  124. return;
  125. }
  126. asd_free_coherent(asd_ha, ascb->sg_arr);
  127. pci_unmap_sg(asd_ha->pcidev, task->scatter, task->num_scatter,
  128. task->data_dir);
  129. }
  130. /* ---------- Task complete tasklet ---------- */
  131. static void asd_get_response_tasklet(struct asd_ascb *ascb,
  132. struct done_list_struct *dl)
  133. {
  134. struct asd_ha_struct *asd_ha = ascb->ha;
  135. struct sas_task *task = ascb->uldd_task;
  136. struct task_status_struct *ts = &task->task_status;
  137. unsigned long flags;
  138. struct tc_resp_sb_struct {
  139. __le16 index_escb;
  140. u8 len_lsb;
  141. u8 flags;
  142. } __attribute__ ((packed)) *resp_sb = (void *) dl->status_block;
  143. /* int size = ((resp_sb->flags & 7) << 8) | resp_sb->len_lsb; */
  144. int edb_id = ((resp_sb->flags & 0x70) >> 4)-1;
  145. struct asd_ascb *escb;
  146. struct asd_dma_tok *edb;
  147. void *r;
  148. spin_lock_irqsave(&asd_ha->seq.tc_index_lock, flags);
  149. escb = asd_tc_index_find(&asd_ha->seq,
  150. (int)le16_to_cpu(resp_sb->index_escb));
  151. spin_unlock_irqrestore(&asd_ha->seq.tc_index_lock, flags);
  152. if (!escb) {
  153. ASD_DPRINTK("Uh-oh! No escb for this dl?!\n");
  154. return;
  155. }
  156. ts->buf_valid_size = 0;
  157. edb = asd_ha->seq.edb_arr[edb_id + escb->edb_index];
  158. r = edb->vaddr;
  159. if (task->task_proto == SAS_PROTO_SSP) {
  160. struct ssp_response_iu *iu =
  161. r + 16 + sizeof(struct ssp_frame_hdr);
  162. ts->residual = le32_to_cpu(*(__le32 *)r);
  163. ts->resp = SAS_TASK_COMPLETE;
  164. if (iu->datapres == 0)
  165. ts->stat = iu->status;
  166. else if (iu->datapres == 1)
  167. ts->stat = iu->resp_data[3];
  168. else if (iu->datapres == 2) {
  169. ts->stat = SAM_CHECK_COND;
  170. ts->buf_valid_size = min((u32) SAS_STATUS_BUF_SIZE,
  171. be32_to_cpu(iu->sense_data_len));
  172. memcpy(ts->buf, iu->sense_data, ts->buf_valid_size);
  173. if (iu->status != SAM_CHECK_COND) {
  174. ASD_DPRINTK("device %llx sent sense data, but "
  175. "stat(0x%x) is not CHECK_CONDITION"
  176. "\n",
  177. SAS_ADDR(task->dev->sas_addr),
  178. ts->stat);
  179. }
  180. }
  181. } else {
  182. struct ata_task_resp *resp = (void *) &ts->buf[0];
  183. ts->residual = le32_to_cpu(*(__le32 *)r);
  184. if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) {
  185. resp->frame_len = le16_to_cpu(*(__le16 *)(r+6));
  186. memcpy(&resp->ending_fis[0], r+16, 24);
  187. ts->buf_valid_size = sizeof(*resp);
  188. }
  189. }
  190. asd_invalidate_edb(escb, edb_id);
  191. }
  192. static void asd_task_tasklet_complete(struct asd_ascb *ascb,
  193. struct done_list_struct *dl)
  194. {
  195. struct sas_task *task = ascb->uldd_task;
  196. struct task_status_struct *ts = &task->task_status;
  197. unsigned long flags;
  198. u8 opcode = dl->opcode;
  199. asd_can_dequeue(ascb->ha, 1);
  200. Again:
  201. switch (opcode) {
  202. case TC_NO_ERROR:
  203. ts->resp = SAS_TASK_COMPLETE;
  204. ts->stat = SAM_GOOD;
  205. break;
  206. case TC_UNDERRUN:
  207. ts->resp = SAS_TASK_COMPLETE;
  208. ts->stat = SAS_DATA_UNDERRUN;
  209. ts->residual = le32_to_cpu(*(__le32 *)dl->status_block);
  210. break;
  211. case TC_OVERRUN:
  212. ts->resp = SAS_TASK_COMPLETE;
  213. ts->stat = SAS_DATA_OVERRUN;
  214. ts->residual = 0;
  215. break;
  216. case TC_SSP_RESP:
  217. case TC_ATA_RESP:
  218. ts->resp = SAS_TASK_COMPLETE;
  219. ts->stat = SAS_PROTO_RESPONSE;
  220. asd_get_response_tasklet(ascb, dl);
  221. break;
  222. case TF_OPEN_REJECT:
  223. ts->resp = SAS_TASK_UNDELIVERED;
  224. ts->stat = SAS_OPEN_REJECT;
  225. if (dl->status_block[1] & 2)
  226. ts->open_rej_reason = 1 + dl->status_block[2];
  227. else if (dl->status_block[1] & 1)
  228. ts->open_rej_reason = (dl->status_block[2] >> 4)+10;
  229. else
  230. ts->open_rej_reason = SAS_OREJ_UNKNOWN;
  231. break;
  232. case TF_OPEN_TO:
  233. ts->resp = SAS_TASK_UNDELIVERED;
  234. ts->stat = SAS_OPEN_TO;
  235. break;
  236. case TF_PHY_DOWN:
  237. case TU_PHY_DOWN:
  238. ts->resp = SAS_TASK_UNDELIVERED;
  239. ts->stat = SAS_PHY_DOWN;
  240. break;
  241. case TI_PHY_DOWN:
  242. ts->resp = SAS_TASK_COMPLETE;
  243. ts->stat = SAS_PHY_DOWN;
  244. break;
  245. case TI_BREAK:
  246. case TI_PROTO_ERR:
  247. case TI_NAK:
  248. case TI_ACK_NAK_TO:
  249. case TF_SMP_XMIT_RCV_ERR:
  250. case TC_ATA_R_ERR_RECV:
  251. ts->resp = SAS_TASK_COMPLETE;
  252. ts->stat = SAS_INTERRUPTED;
  253. break;
  254. case TF_BREAK:
  255. case TU_BREAK:
  256. case TU_ACK_NAK_TO:
  257. case TF_SMPRSP_TO:
  258. ts->resp = SAS_TASK_UNDELIVERED;
  259. ts->stat = SAS_DEV_NO_RESPONSE;
  260. break;
  261. case TF_NAK_RECV:
  262. ts->resp = SAS_TASK_COMPLETE;
  263. ts->stat = SAS_NAK_R_ERR;
  264. break;
  265. case TA_I_T_NEXUS_LOSS:
  266. opcode = dl->status_block[0];
  267. goto Again;
  268. break;
  269. case TF_INV_CONN_HANDLE:
  270. ts->resp = SAS_TASK_UNDELIVERED;
  271. ts->stat = SAS_DEVICE_UNKNOWN;
  272. break;
  273. case TF_REQUESTED_N_PENDING:
  274. ts->resp = SAS_TASK_UNDELIVERED;
  275. ts->stat = SAS_PENDING;
  276. break;
  277. case TC_TASK_CLEARED:
  278. case TA_ON_REQ:
  279. ts->resp = SAS_TASK_COMPLETE;
  280. ts->stat = SAS_ABORTED_TASK;
  281. break;
  282. case TF_NO_SMP_CONN:
  283. case TF_TMF_NO_CTX:
  284. case TF_TMF_NO_TAG:
  285. case TF_TMF_TAG_FREE:
  286. case TF_TMF_TASK_DONE:
  287. case TF_TMF_NO_CONN_HANDLE:
  288. case TF_IRTT_TO:
  289. case TF_IU_SHORT:
  290. case TF_DATA_OFFS_ERR:
  291. ts->resp = SAS_TASK_UNDELIVERED;
  292. ts->stat = SAS_DEV_NO_RESPONSE;
  293. break;
  294. case TC_LINK_ADM_RESP:
  295. case TC_CONTROL_PHY:
  296. case TC_RESUME:
  297. case TC_PARTIAL_SG_LIST:
  298. default:
  299. ASD_DPRINTK("%s: dl opcode: 0x%x?\n", __FUNCTION__, opcode);
  300. break;
  301. }
  302. switch (task->task_proto) {
  303. case SATA_PROTO:
  304. case SAS_PROTO_STP:
  305. asd_unbuild_ata_ascb(ascb);
  306. break;
  307. case SAS_PROTO_SMP:
  308. asd_unbuild_smp_ascb(ascb);
  309. break;
  310. case SAS_PROTO_SSP:
  311. asd_unbuild_ssp_ascb(ascb);
  312. default:
  313. break;
  314. }
  315. spin_lock_irqsave(&task->task_state_lock, flags);
  316. task->task_state_flags &= ~SAS_TASK_STATE_PENDING;
  317. task->task_state_flags |= SAS_TASK_STATE_DONE;
  318. if (unlikely((task->task_state_flags & SAS_TASK_STATE_ABORTED))) {
  319. spin_unlock_irqrestore(&task->task_state_lock, flags);
  320. ASD_DPRINTK("task 0x%p done with opcode 0x%x resp 0x%x "
  321. "stat 0x%x but aborted by upper layer!\n",
  322. task, opcode, ts->resp, ts->stat);
  323. complete(&ascb->completion);
  324. } else {
  325. spin_unlock_irqrestore(&task->task_state_lock, flags);
  326. task->lldd_task = NULL;
  327. asd_ascb_free(ascb);
  328. mb();
  329. task->task_done(task);
  330. }
  331. }
  332. /* ---------- ATA ---------- */
  333. static int asd_build_ata_ascb(struct asd_ascb *ascb, struct sas_task *task,
  334. gfp_t gfp_flags)
  335. {
  336. struct domain_device *dev = task->dev;
  337. struct scb *scb;
  338. u8 flags;
  339. int res = 0;
  340. scb = ascb->scb;
  341. if (unlikely(task->ata_task.device_control_reg_update))
  342. scb->header.opcode = CONTROL_ATA_DEV;
  343. else if (dev->sata_dev.command_set == ATA_COMMAND_SET)
  344. scb->header.opcode = INITIATE_ATA_TASK;
  345. else
  346. scb->header.opcode = INITIATE_ATAPI_TASK;
  347. scb->ata_task.proto_conn_rate = (1 << 5); /* STP */
  348. if (dev->port->oob_mode == SAS_OOB_MODE)
  349. scb->ata_task.proto_conn_rate |= dev->linkrate;
  350. scb->ata_task.total_xfer_len = cpu_to_le32(task->total_xfer_len);
  351. scb->ata_task.fis = task->ata_task.fis;
  352. scb->ata_task.fis.fis_type = 0x27;
  353. if (likely(!task->ata_task.device_control_reg_update))
  354. scb->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
  355. scb->ata_task.fis.flags &= 0xF0; /* PM_PORT field shall be 0 */
  356. if (dev->sata_dev.command_set == ATAPI_COMMAND_SET)
  357. memcpy(scb->ata_task.atapi_packet, task->ata_task.atapi_packet,
  358. 16);
  359. scb->ata_task.sister_scb = cpu_to_le16(0xFFFF);
  360. scb->ata_task.conn_handle = cpu_to_le16(
  361. (u16)(unsigned long)dev->lldd_dev);
  362. if (likely(!task->ata_task.device_control_reg_update)) {
  363. flags = 0;
  364. if (task->ata_task.dma_xfer)
  365. flags |= DATA_XFER_MODE_DMA;
  366. if (task->ata_task.use_ncq &&
  367. dev->sata_dev.command_set != ATAPI_COMMAND_SET)
  368. flags |= ATA_Q_TYPE_NCQ;
  369. flags |= data_dir_flags[task->data_dir];
  370. scb->ata_task.ata_flags = flags;
  371. scb->ata_task.retry_count = task->ata_task.retry_count;
  372. flags = 0;
  373. if (task->ata_task.set_affil_pol)
  374. flags |= SET_AFFIL_POLICY;
  375. if (task->ata_task.stp_affil_pol)
  376. flags |= STP_AFFIL_POLICY;
  377. scb->ata_task.flags = flags;
  378. }
  379. ascb->tasklet_complete = asd_task_tasklet_complete;
  380. if (likely(!task->ata_task.device_control_reg_update))
  381. res = asd_map_scatterlist(task, scb->ata_task.sg_element,
  382. gfp_flags);
  383. return res;
  384. }
  385. static void asd_unbuild_ata_ascb(struct asd_ascb *a)
  386. {
  387. asd_unmap_scatterlist(a);
  388. }
  389. /* ---------- SMP ---------- */
  390. static int asd_build_smp_ascb(struct asd_ascb *ascb, struct sas_task *task,
  391. gfp_t gfp_flags)
  392. {
  393. struct asd_ha_struct *asd_ha = ascb->ha;
  394. struct domain_device *dev = task->dev;
  395. struct scb *scb;
  396. pci_map_sg(asd_ha->pcidev, &task->smp_task.smp_req, 1,
  397. PCI_DMA_FROMDEVICE);
  398. pci_map_sg(asd_ha->pcidev, &task->smp_task.smp_resp, 1,
  399. PCI_DMA_FROMDEVICE);
  400. scb = ascb->scb;
  401. scb->header.opcode = INITIATE_SMP_TASK;
  402. scb->smp_task.proto_conn_rate = dev->linkrate;
  403. scb->smp_task.smp_req.bus_addr =
  404. cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req));
  405. scb->smp_task.smp_req.size =
  406. cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4);
  407. scb->smp_task.smp_resp.bus_addr =
  408. cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_resp));
  409. scb->smp_task.smp_resp.size =
  410. cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_resp)-4);
  411. scb->smp_task.sister_scb = cpu_to_le16(0xFFFF);
  412. scb->smp_task.conn_handle = cpu_to_le16((u16)
  413. (unsigned long)dev->lldd_dev);
  414. ascb->tasklet_complete = asd_task_tasklet_complete;
  415. return 0;
  416. }
  417. static void asd_unbuild_smp_ascb(struct asd_ascb *a)
  418. {
  419. struct sas_task *task = a->uldd_task;
  420. BUG_ON(!task);
  421. pci_unmap_sg(a->ha->pcidev, &task->smp_task.smp_req, 1,
  422. PCI_DMA_FROMDEVICE);
  423. pci_unmap_sg(a->ha->pcidev, &task->smp_task.smp_resp, 1,
  424. PCI_DMA_FROMDEVICE);
  425. }
  426. /* ---------- SSP ---------- */
  427. static int asd_build_ssp_ascb(struct asd_ascb *ascb, struct sas_task *task,
  428. gfp_t gfp_flags)
  429. {
  430. struct domain_device *dev = task->dev;
  431. struct scb *scb;
  432. int res = 0;
  433. scb = ascb->scb;
  434. scb->header.opcode = INITIATE_SSP_TASK;
  435. scb->ssp_task.proto_conn_rate = (1 << 4); /* SSP */
  436. scb->ssp_task.proto_conn_rate |= dev->linkrate;
  437. scb->ssp_task.total_xfer_len = cpu_to_le32(task->total_xfer_len);
  438. scb->ssp_task.ssp_frame.frame_type = SSP_DATA;
  439. memcpy(scb->ssp_task.ssp_frame.hashed_dest_addr, dev->hashed_sas_addr,
  440. HASHED_SAS_ADDR_SIZE);
  441. memcpy(scb->ssp_task.ssp_frame.hashed_src_addr,
  442. dev->port->ha->hashed_sas_addr, HASHED_SAS_ADDR_SIZE);
  443. scb->ssp_task.ssp_frame.tptt = cpu_to_be16(0xFFFF);
  444. memcpy(scb->ssp_task.ssp_cmd.lun, task->ssp_task.LUN, 8);
  445. if (task->ssp_task.enable_first_burst)
  446. scb->ssp_task.ssp_cmd.efb_prio_attr |= EFB_MASK;
  447. scb->ssp_task.ssp_cmd.efb_prio_attr |= (task->ssp_task.task_prio << 3);
  448. scb->ssp_task.ssp_cmd.efb_prio_attr |= (task->ssp_task.task_attr & 7);
  449. memcpy(scb->ssp_task.ssp_cmd.cdb, task->ssp_task.cdb, 16);
  450. scb->ssp_task.sister_scb = cpu_to_le16(0xFFFF);
  451. scb->ssp_task.conn_handle = cpu_to_le16(
  452. (u16)(unsigned long)dev->lldd_dev);
  453. scb->ssp_task.data_dir = data_dir_flags[task->data_dir];
  454. scb->ssp_task.retry_count = scb->ssp_task.retry_count;
  455. ascb->tasklet_complete = asd_task_tasklet_complete;
  456. res = asd_map_scatterlist(task, scb->ssp_task.sg_element, gfp_flags);
  457. return res;
  458. }
  459. static void asd_unbuild_ssp_ascb(struct asd_ascb *a)
  460. {
  461. asd_unmap_scatterlist(a);
  462. }
  463. /* ---------- Execute Task ---------- */
  464. static inline int asd_can_queue(struct asd_ha_struct *asd_ha, int num)
  465. {
  466. int res = 0;
  467. unsigned long flags;
  468. spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
  469. if ((asd_ha->seq.can_queue - num) < 0)
  470. res = -SAS_QUEUE_FULL;
  471. else
  472. asd_ha->seq.can_queue -= num;
  473. spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
  474. return res;
  475. }
  476. int asd_execute_task(struct sas_task *task, const int num,
  477. gfp_t gfp_flags)
  478. {
  479. int res = 0;
  480. LIST_HEAD(alist);
  481. struct sas_task *t = task;
  482. struct asd_ascb *ascb = NULL, *a;
  483. struct asd_ha_struct *asd_ha = task->dev->port->ha->lldd_ha;
  484. res = asd_can_queue(asd_ha, num);
  485. if (res)
  486. return res;
  487. res = num;
  488. ascb = asd_ascb_alloc_list(asd_ha, &res, gfp_flags);
  489. if (res) {
  490. res = -ENOMEM;
  491. goto out_err;
  492. }
  493. __list_add(&alist, ascb->list.prev, &ascb->list);
  494. list_for_each_entry(a, &alist, list) {
  495. a->uldd_task = t;
  496. t->lldd_task = a;
  497. t = list_entry(t->list.next, struct sas_task, list);
  498. }
  499. list_for_each_entry(a, &alist, list) {
  500. t = a->uldd_task;
  501. a->uldd_timer = 1;
  502. if (t->task_proto & SAS_PROTO_STP)
  503. t->task_proto = SAS_PROTO_STP;
  504. switch (t->task_proto) {
  505. case SATA_PROTO:
  506. case SAS_PROTO_STP:
  507. res = asd_build_ata_ascb(a, t, gfp_flags);
  508. break;
  509. case SAS_PROTO_SMP:
  510. res = asd_build_smp_ascb(a, t, gfp_flags);
  511. break;
  512. case SAS_PROTO_SSP:
  513. res = asd_build_ssp_ascb(a, t, gfp_flags);
  514. break;
  515. default:
  516. asd_printk("unknown sas_task proto: 0x%x\n",
  517. t->task_proto);
  518. res = -ENOMEM;
  519. break;
  520. }
  521. if (res)
  522. goto out_err_unmap;
  523. }
  524. list_del_init(&alist);
  525. res = asd_post_ascb_list(asd_ha, ascb, num);
  526. if (unlikely(res)) {
  527. a = NULL;
  528. __list_add(&alist, ascb->list.prev, &ascb->list);
  529. goto out_err_unmap;
  530. }
  531. return 0;
  532. out_err_unmap:
  533. {
  534. struct asd_ascb *b = a;
  535. list_for_each_entry(a, &alist, list) {
  536. if (a == b)
  537. break;
  538. t = a->uldd_task;
  539. switch (t->task_proto) {
  540. case SATA_PROTO:
  541. case SAS_PROTO_STP:
  542. asd_unbuild_ata_ascb(a);
  543. break;
  544. case SAS_PROTO_SMP:
  545. asd_unbuild_smp_ascb(a);
  546. break;
  547. case SAS_PROTO_SSP:
  548. asd_unbuild_ssp_ascb(a);
  549. default:
  550. break;
  551. }
  552. t->lldd_task = NULL;
  553. }
  554. }
  555. list_del_init(&alist);
  556. out_err:
  557. if (ascb)
  558. asd_ascb_free_list(ascb);
  559. asd_can_dequeue(asd_ha, num);
  560. return res;
  561. }