sungem_phy.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950
  1. /*
  2. * PHY drivers for the sungem ethernet driver.
  3. *
  4. * This file could be shared with other drivers.
  5. *
  6. * (c) 2002, Benjamin Herrenscmidt (benh@kernel.crashing.org)
  7. *
  8. * TODO:
  9. * - Implement WOL
  10. * - Add support for PHYs that provide an IRQ line
  11. * - Eventually moved the entire polling state machine in
  12. * there (out of the eth driver), so that it can easily be
  13. * skipped on PHYs that implement it in hardware.
  14. * - On LXT971 & BCM5201, Apple uses some chip specific regs
  15. * to read the link status. Figure out why and if it makes
  16. * sense to do the same (magic aneg ?)
  17. * - Apple has some additional power management code for some
  18. * Broadcom PHYs that they "hide" from the OpenSource version
  19. * of darwin, still need to reverse engineer that
  20. */
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/sched.h>
  24. #include <linux/types.h>
  25. #include <linux/netdevice.h>
  26. #include <linux/etherdevice.h>
  27. #include <linux/mii.h>
  28. #include <linux/ethtool.h>
  29. #include <linux/delay.h>
  30. #ifdef CONFIG_PPC_PMAC
  31. #include <asm/prom.h>
  32. #endif
  33. #include "sungem_phy.h"
  34. /* Link modes of the BCM5400 PHY */
  35. static const int phy_BCM5400_link_table[8][3] = {
  36. { 0, 0, 0 }, /* No link */
  37. { 0, 0, 0 }, /* 10BT Half Duplex */
  38. { 1, 0, 0 }, /* 10BT Full Duplex */
  39. { 0, 1, 0 }, /* 100BT Half Duplex */
  40. { 0, 1, 0 }, /* 100BT Half Duplex */
  41. { 1, 1, 0 }, /* 100BT Full Duplex*/
  42. { 1, 0, 1 }, /* 1000BT */
  43. { 1, 0, 1 }, /* 1000BT */
  44. };
  45. static inline int __phy_read(struct mii_phy* phy, int id, int reg)
  46. {
  47. return phy->mdio_read(phy->dev, id, reg);
  48. }
  49. static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val)
  50. {
  51. phy->mdio_write(phy->dev, id, reg, val);
  52. }
  53. static inline int phy_read(struct mii_phy* phy, int reg)
  54. {
  55. return phy->mdio_read(phy->dev, phy->mii_id, reg);
  56. }
  57. static inline void phy_write(struct mii_phy* phy, int reg, int val)
  58. {
  59. phy->mdio_write(phy->dev, phy->mii_id, reg, val);
  60. }
  61. static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
  62. {
  63. u16 val;
  64. int limit = 10000;
  65. val = __phy_read(phy, phy_id, MII_BMCR);
  66. val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
  67. val |= BMCR_RESET;
  68. __phy_write(phy, phy_id, MII_BMCR, val);
  69. udelay(100);
  70. while (limit--) {
  71. val = __phy_read(phy, phy_id, MII_BMCR);
  72. if ((val & BMCR_RESET) == 0)
  73. break;
  74. udelay(10);
  75. }
  76. if ((val & BMCR_ISOLATE) && limit > 0)
  77. __phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
  78. return (limit <= 0);
  79. }
  80. static int bcm5201_init(struct mii_phy* phy)
  81. {
  82. u16 data;
  83. data = phy_read(phy, MII_BCM5201_MULTIPHY);
  84. data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
  85. phy_write(phy, MII_BCM5201_MULTIPHY, data);
  86. phy_write(phy, MII_BCM5201_INTERRUPT, 0);
  87. return 0;
  88. }
  89. static int bcm5201_suspend(struct mii_phy* phy)
  90. {
  91. phy_write(phy, MII_BCM5201_INTERRUPT, 0);
  92. phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
  93. return 0;
  94. }
  95. static int bcm5221_init(struct mii_phy* phy)
  96. {
  97. u16 data;
  98. data = phy_read(phy, MII_BCM5221_TEST);
  99. phy_write(phy, MII_BCM5221_TEST,
  100. data | MII_BCM5221_TEST_ENABLE_SHADOWS);
  101. data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
  102. phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
  103. data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
  104. data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
  105. phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
  106. data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
  107. data = phy_read(phy, MII_BCM5221_TEST);
  108. phy_write(phy, MII_BCM5221_TEST,
  109. data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
  110. return 0;
  111. }
  112. static int bcm5221_suspend(struct mii_phy* phy)
  113. {
  114. u16 data;
  115. data = phy_read(phy, MII_BCM5221_TEST);
  116. phy_write(phy, MII_BCM5221_TEST,
  117. data | MII_BCM5221_TEST_ENABLE_SHADOWS);
  118. data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
  119. phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
  120. data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
  121. return 0;
  122. }
  123. static int bcm5400_init(struct mii_phy* phy)
  124. {
  125. u16 data;
  126. /* Configure for gigabit full duplex */
  127. data = phy_read(phy, MII_BCM5400_AUXCONTROL);
  128. data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
  129. phy_write(phy, MII_BCM5400_AUXCONTROL, data);
  130. data = phy_read(phy, MII_BCM5400_GB_CONTROL);
  131. data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
  132. phy_write(phy, MII_BCM5400_GB_CONTROL, data);
  133. udelay(100);
  134. /* Reset and configure cascaded 10/100 PHY */
  135. (void)reset_one_mii_phy(phy, 0x1f);
  136. data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
  137. data |= MII_BCM5201_MULTIPHY_SERIALMODE;
  138. __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
  139. data = phy_read(phy, MII_BCM5400_AUXCONTROL);
  140. data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
  141. phy_write(phy, MII_BCM5400_AUXCONTROL, data);
  142. return 0;
  143. }
  144. static int bcm5400_suspend(struct mii_phy* phy)
  145. {
  146. #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
  147. phy_write(phy, MII_BMCR, BMCR_PDOWN);
  148. #endif
  149. return 0;
  150. }
  151. static int bcm5401_init(struct mii_phy* phy)
  152. {
  153. u16 data;
  154. int rev;
  155. rev = phy_read(phy, MII_PHYSID2) & 0x000f;
  156. if (rev == 0 || rev == 3) {
  157. /* Some revisions of 5401 appear to need this
  158. * initialisation sequence to disable, according
  159. * to OF, "tap power management"
  160. *
  161. * WARNING ! OF and Darwin don't agree on the
  162. * register addresses. OF seem to interpret the
  163. * register numbers below as decimal
  164. *
  165. * Note: This should (and does) match tg3_init_5401phy_dsp
  166. * in the tg3.c driver. -DaveM
  167. */
  168. phy_write(phy, 0x18, 0x0c20);
  169. phy_write(phy, 0x17, 0x0012);
  170. phy_write(phy, 0x15, 0x1804);
  171. phy_write(phy, 0x17, 0x0013);
  172. phy_write(phy, 0x15, 0x1204);
  173. phy_write(phy, 0x17, 0x8006);
  174. phy_write(phy, 0x15, 0x0132);
  175. phy_write(phy, 0x17, 0x8006);
  176. phy_write(phy, 0x15, 0x0232);
  177. phy_write(phy, 0x17, 0x201f);
  178. phy_write(phy, 0x15, 0x0a20);
  179. }
  180. /* Configure for gigabit full duplex */
  181. data = phy_read(phy, MII_BCM5400_GB_CONTROL);
  182. data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
  183. phy_write(phy, MII_BCM5400_GB_CONTROL, data);
  184. udelay(10);
  185. /* Reset and configure cascaded 10/100 PHY */
  186. (void)reset_one_mii_phy(phy, 0x1f);
  187. data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
  188. data |= MII_BCM5201_MULTIPHY_SERIALMODE;
  189. __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
  190. return 0;
  191. }
  192. static int bcm5401_suspend(struct mii_phy* phy)
  193. {
  194. #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
  195. phy_write(phy, MII_BMCR, BMCR_PDOWN);
  196. #endif
  197. return 0;
  198. }
  199. static int bcm5411_init(struct mii_phy* phy)
  200. {
  201. u16 data;
  202. /* Here's some more Apple black magic to setup
  203. * some voltage stuffs.
  204. */
  205. phy_write(phy, 0x1c, 0x8c23);
  206. phy_write(phy, 0x1c, 0x8ca3);
  207. phy_write(phy, 0x1c, 0x8c23);
  208. /* Here, Apple seems to want to reset it, do
  209. * it as well
  210. */
  211. phy_write(phy, MII_BMCR, BMCR_RESET);
  212. phy_write(phy, MII_BMCR, 0x1340);
  213. data = phy_read(phy, MII_BCM5400_GB_CONTROL);
  214. data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
  215. phy_write(phy, MII_BCM5400_GB_CONTROL, data);
  216. udelay(10);
  217. /* Reset and configure cascaded 10/100 PHY */
  218. (void)reset_one_mii_phy(phy, 0x1f);
  219. return 0;
  220. }
  221. static int generic_suspend(struct mii_phy* phy)
  222. {
  223. phy_write(phy, MII_BMCR, BMCR_PDOWN);
  224. return 0;
  225. }
  226. static int bcm5421_init(struct mii_phy* phy)
  227. {
  228. u16 data;
  229. unsigned int id;
  230. id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
  231. /* Revision 0 of 5421 needs some fixups */
  232. if (id == 0x002060e0) {
  233. /* This is borrowed from MacOS
  234. */
  235. phy_write(phy, 0x18, 0x1007);
  236. data = phy_read(phy, 0x18);
  237. phy_write(phy, 0x18, data | 0x0400);
  238. phy_write(phy, 0x18, 0x0007);
  239. data = phy_read(phy, 0x18);
  240. phy_write(phy, 0x18, data | 0x0800);
  241. phy_write(phy, 0x17, 0x000a);
  242. data = phy_read(phy, 0x15);
  243. phy_write(phy, 0x15, data | 0x0200);
  244. }
  245. /* Pick up some init code from OF for K2 version */
  246. if ((id & 0xfffffff0) == 0x002062e0) {
  247. phy_write(phy, 4, 0x01e1);
  248. phy_write(phy, 9, 0x0300);
  249. }
  250. /* Check if we can enable automatic low power */
  251. #ifdef CONFIG_PPC_PMAC
  252. if (phy->platform_data) {
  253. struct device_node *np = of_get_parent(phy->platform_data);
  254. int can_low_power = 1;
  255. if (np == NULL || get_property(np, "no-autolowpower", NULL))
  256. can_low_power = 0;
  257. if (can_low_power) {
  258. /* Enable automatic low-power */
  259. phy_write(phy, 0x1c, 0x9002);
  260. phy_write(phy, 0x1c, 0xa821);
  261. phy_write(phy, 0x1c, 0x941d);
  262. }
  263. }
  264. #endif /* CONFIG_PPC_PMAC */
  265. return 0;
  266. }
  267. static int bcm5421_enable_fiber(struct mii_phy* phy)
  268. {
  269. /* enable fiber mode */
  270. phy_write(phy, MII_NCONFIG, 0x9020);
  271. /* LEDs active in both modes, autosense prio = fiber */
  272. phy_write(phy, MII_NCONFIG, 0x945f);
  273. /* switch off fibre autoneg */
  274. phy_write(phy, MII_NCONFIG, 0xfc01);
  275. phy_write(phy, 0x0b, 0x0004);
  276. return 0;
  277. }
  278. static int bcm5461_enable_fiber(struct mii_phy* phy)
  279. {
  280. phy_write(phy, MII_NCONFIG, 0xfc0c);
  281. phy_write(phy, MII_BMCR, 0x4140);
  282. phy_write(phy, MII_NCONFIG, 0xfc0b);
  283. phy_write(phy, MII_BMCR, 0x0140);
  284. return 0;
  285. }
  286. static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
  287. {
  288. u16 ctl, adv;
  289. phy->autoneg = 1;
  290. phy->speed = SPEED_10;
  291. phy->duplex = DUPLEX_HALF;
  292. phy->pause = 0;
  293. phy->advertising = advertise;
  294. /* Setup standard advertise */
  295. adv = phy_read(phy, MII_ADVERTISE);
  296. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  297. if (advertise & ADVERTISED_10baseT_Half)
  298. adv |= ADVERTISE_10HALF;
  299. if (advertise & ADVERTISED_10baseT_Full)
  300. adv |= ADVERTISE_10FULL;
  301. if (advertise & ADVERTISED_100baseT_Half)
  302. adv |= ADVERTISE_100HALF;
  303. if (advertise & ADVERTISED_100baseT_Full)
  304. adv |= ADVERTISE_100FULL;
  305. phy_write(phy, MII_ADVERTISE, adv);
  306. /* Setup 1000BT advertise */
  307. adv = phy_read(phy, MII_1000BASETCONTROL);
  308. adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
  309. if (advertise & SUPPORTED_1000baseT_Half)
  310. adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
  311. if (advertise & SUPPORTED_1000baseT_Full)
  312. adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
  313. phy_write(phy, MII_1000BASETCONTROL, adv);
  314. /* Start/Restart aneg */
  315. ctl = phy_read(phy, MII_BMCR);
  316. ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
  317. phy_write(phy, MII_BMCR, ctl);
  318. return 0;
  319. }
  320. static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
  321. {
  322. u16 ctl;
  323. phy->autoneg = 0;
  324. phy->speed = speed;
  325. phy->duplex = fd;
  326. phy->pause = 0;
  327. ctl = phy_read(phy, MII_BMCR);
  328. ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
  329. /* First reset the PHY */
  330. phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
  331. /* Select speed & duplex */
  332. switch(speed) {
  333. case SPEED_10:
  334. break;
  335. case SPEED_100:
  336. ctl |= BMCR_SPEED100;
  337. break;
  338. case SPEED_1000:
  339. ctl |= BMCR_SPD2;
  340. }
  341. if (fd == DUPLEX_FULL)
  342. ctl |= BMCR_FULLDPLX;
  343. // XXX Should we set the sungem to GII now on 1000BT ?
  344. phy_write(phy, MII_BMCR, ctl);
  345. return 0;
  346. }
  347. static int bcm54xx_read_link(struct mii_phy *phy)
  348. {
  349. int link_mode;
  350. u16 val;
  351. if (phy->autoneg) {
  352. val = phy_read(phy, MII_BCM5400_AUXSTATUS);
  353. link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
  354. MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
  355. phy->duplex = phy_BCM5400_link_table[link_mode][0] ? DUPLEX_FULL : DUPLEX_HALF;
  356. phy->speed = phy_BCM5400_link_table[link_mode][2] ?
  357. SPEED_1000 :
  358. (phy_BCM5400_link_table[link_mode][1] ? SPEED_100 : SPEED_10);
  359. val = phy_read(phy, MII_LPA);
  360. phy->pause = ((val & LPA_PAUSE) != 0);
  361. }
  362. /* On non-aneg, we assume what we put in BMCR is the speed,
  363. * though magic-aneg shouldn't prevent this case from occurring
  364. */
  365. return 0;
  366. }
  367. static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
  368. {
  369. u16 ctl, adv;
  370. phy->autoneg = 1;
  371. phy->speed = SPEED_10;
  372. phy->duplex = DUPLEX_HALF;
  373. phy->pause = 0;
  374. phy->advertising = advertise;
  375. /* Setup standard advertise */
  376. adv = phy_read(phy, MII_ADVERTISE);
  377. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  378. if (advertise & ADVERTISED_10baseT_Half)
  379. adv |= ADVERTISE_10HALF;
  380. if (advertise & ADVERTISED_10baseT_Full)
  381. adv |= ADVERTISE_10FULL;
  382. if (advertise & ADVERTISED_100baseT_Half)
  383. adv |= ADVERTISE_100HALF;
  384. if (advertise & ADVERTISED_100baseT_Full)
  385. adv |= ADVERTISE_100FULL;
  386. phy_write(phy, MII_ADVERTISE, adv);
  387. /* Setup 1000BT advertise & enable crossover detect
  388. * XXX How do we advertise 1000BT ? Darwin source is
  389. * confusing here, they read from specific control and
  390. * write to control... Someone has specs for those
  391. * beasts ?
  392. */
  393. adv = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
  394. adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
  395. adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
  396. MII_1000BASETCONTROL_HALFDUPLEXCAP);
  397. if (advertise & SUPPORTED_1000baseT_Half)
  398. adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
  399. if (advertise & SUPPORTED_1000baseT_Full)
  400. adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
  401. phy_write(phy, MII_1000BASETCONTROL, adv);
  402. /* Start/Restart aneg */
  403. ctl = phy_read(phy, MII_BMCR);
  404. ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
  405. phy_write(phy, MII_BMCR, ctl);
  406. return 0;
  407. }
  408. static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
  409. {
  410. u16 ctl, ctl2;
  411. phy->autoneg = 0;
  412. phy->speed = speed;
  413. phy->duplex = fd;
  414. phy->pause = 0;
  415. ctl = phy_read(phy, MII_BMCR);
  416. ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
  417. ctl |= BMCR_RESET;
  418. /* Select speed & duplex */
  419. switch(speed) {
  420. case SPEED_10:
  421. break;
  422. case SPEED_100:
  423. ctl |= BMCR_SPEED100;
  424. break;
  425. /* I'm not sure about the one below, again, Darwin source is
  426. * quite confusing and I lack chip specs
  427. */
  428. case SPEED_1000:
  429. ctl |= BMCR_SPD2;
  430. }
  431. if (fd == DUPLEX_FULL)
  432. ctl |= BMCR_FULLDPLX;
  433. /* Disable crossover. Again, the way Apple does it is strange,
  434. * though I don't assume they are wrong ;)
  435. */
  436. ctl2 = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
  437. ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
  438. MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
  439. MII_1000BASETCONTROL_FULLDUPLEXCAP |
  440. MII_1000BASETCONTROL_HALFDUPLEXCAP);
  441. if (speed == SPEED_1000)
  442. ctl2 |= (fd == DUPLEX_FULL) ?
  443. MII_1000BASETCONTROL_FULLDUPLEXCAP :
  444. MII_1000BASETCONTROL_HALFDUPLEXCAP;
  445. phy_write(phy, MII_1000BASETCONTROL, ctl2);
  446. // XXX Should we set the sungem to GII now on 1000BT ?
  447. phy_write(phy, MII_BMCR, ctl);
  448. return 0;
  449. }
  450. static int marvell_read_link(struct mii_phy *phy)
  451. {
  452. u16 status;
  453. if (phy->autoneg) {
  454. status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
  455. if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
  456. return -EAGAIN;
  457. if (status & MII_M1011_PHY_SPEC_STATUS_1000)
  458. phy->speed = SPEED_1000;
  459. else if (status & MII_M1011_PHY_SPEC_STATUS_100)
  460. phy->speed = SPEED_100;
  461. else
  462. phy->speed = SPEED_10;
  463. if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
  464. phy->duplex = DUPLEX_FULL;
  465. else
  466. phy->duplex = DUPLEX_HALF;
  467. phy->pause = 0; /* XXX Check against spec ! */
  468. }
  469. /* On non-aneg, we assume what we put in BMCR is the speed,
  470. * though magic-aneg shouldn't prevent this case from occurring
  471. */
  472. return 0;
  473. }
  474. static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
  475. {
  476. u16 ctl, adv;
  477. phy->autoneg = 1;
  478. phy->speed = SPEED_10;
  479. phy->duplex = DUPLEX_HALF;
  480. phy->pause = 0;
  481. phy->advertising = advertise;
  482. /* Setup standard advertise */
  483. adv = phy_read(phy, MII_ADVERTISE);
  484. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
  485. if (advertise & ADVERTISED_10baseT_Half)
  486. adv |= ADVERTISE_10HALF;
  487. if (advertise & ADVERTISED_10baseT_Full)
  488. adv |= ADVERTISE_10FULL;
  489. if (advertise & ADVERTISED_100baseT_Half)
  490. adv |= ADVERTISE_100HALF;
  491. if (advertise & ADVERTISED_100baseT_Full)
  492. adv |= ADVERTISE_100FULL;
  493. phy_write(phy, MII_ADVERTISE, adv);
  494. /* Start/Restart aneg */
  495. ctl = phy_read(phy, MII_BMCR);
  496. ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
  497. phy_write(phy, MII_BMCR, ctl);
  498. return 0;
  499. }
  500. static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
  501. {
  502. u16 ctl;
  503. phy->autoneg = 0;
  504. phy->speed = speed;
  505. phy->duplex = fd;
  506. phy->pause = 0;
  507. ctl = phy_read(phy, MII_BMCR);
  508. ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
  509. /* First reset the PHY */
  510. phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
  511. /* Select speed & duplex */
  512. switch(speed) {
  513. case SPEED_10:
  514. break;
  515. case SPEED_100:
  516. ctl |= BMCR_SPEED100;
  517. break;
  518. case SPEED_1000:
  519. default:
  520. return -EINVAL;
  521. }
  522. if (fd == DUPLEX_FULL)
  523. ctl |= BMCR_FULLDPLX;
  524. phy_write(phy, MII_BMCR, ctl);
  525. return 0;
  526. }
  527. static int genmii_poll_link(struct mii_phy *phy)
  528. {
  529. u16 status;
  530. (void)phy_read(phy, MII_BMSR);
  531. status = phy_read(phy, MII_BMSR);
  532. if ((status & BMSR_LSTATUS) == 0)
  533. return 0;
  534. if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
  535. return 0;
  536. return 1;
  537. }
  538. static int genmii_read_link(struct mii_phy *phy)
  539. {
  540. u16 lpa;
  541. if (phy->autoneg) {
  542. lpa = phy_read(phy, MII_LPA);
  543. if (lpa & (LPA_10FULL | LPA_100FULL))
  544. phy->duplex = DUPLEX_FULL;
  545. else
  546. phy->duplex = DUPLEX_HALF;
  547. if (lpa & (LPA_100FULL | LPA_100HALF))
  548. phy->speed = SPEED_100;
  549. else
  550. phy->speed = SPEED_10;
  551. phy->pause = 0;
  552. }
  553. /* On non-aneg, we assume what we put in BMCR is the speed,
  554. * though magic-aneg shouldn't prevent this case from occurring
  555. */
  556. return 0;
  557. }
  558. #define MII_BASIC_FEATURES (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  559. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  560. SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII)
  561. #define MII_GBIT_FEATURES (MII_BASIC_FEATURES | \
  562. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
  563. /* Broadcom BCM 5201 */
  564. static struct mii_phy_ops bcm5201_phy_ops = {
  565. .init = bcm5201_init,
  566. .suspend = bcm5201_suspend,
  567. .setup_aneg = genmii_setup_aneg,
  568. .setup_forced = genmii_setup_forced,
  569. .poll_link = genmii_poll_link,
  570. .read_link = genmii_read_link,
  571. };
  572. static struct mii_phy_def bcm5201_phy_def = {
  573. .phy_id = 0x00406210,
  574. .phy_id_mask = 0xfffffff0,
  575. .name = "BCM5201",
  576. .features = MII_BASIC_FEATURES,
  577. .magic_aneg = 1,
  578. .ops = &bcm5201_phy_ops
  579. };
  580. /* Broadcom BCM 5221 */
  581. static struct mii_phy_ops bcm5221_phy_ops = {
  582. .suspend = bcm5221_suspend,
  583. .init = bcm5221_init,
  584. .setup_aneg = genmii_setup_aneg,
  585. .setup_forced = genmii_setup_forced,
  586. .poll_link = genmii_poll_link,
  587. .read_link = genmii_read_link,
  588. };
  589. static struct mii_phy_def bcm5221_phy_def = {
  590. .phy_id = 0x004061e0,
  591. .phy_id_mask = 0xfffffff0,
  592. .name = "BCM5221",
  593. .features = MII_BASIC_FEATURES,
  594. .magic_aneg = 1,
  595. .ops = &bcm5221_phy_ops
  596. };
  597. /* Broadcom BCM 5400 */
  598. static struct mii_phy_ops bcm5400_phy_ops = {
  599. .init = bcm5400_init,
  600. .suspend = bcm5400_suspend,
  601. .setup_aneg = bcm54xx_setup_aneg,
  602. .setup_forced = bcm54xx_setup_forced,
  603. .poll_link = genmii_poll_link,
  604. .read_link = bcm54xx_read_link,
  605. };
  606. static struct mii_phy_def bcm5400_phy_def = {
  607. .phy_id = 0x00206040,
  608. .phy_id_mask = 0xfffffff0,
  609. .name = "BCM5400",
  610. .features = MII_GBIT_FEATURES,
  611. .magic_aneg = 1,
  612. .ops = &bcm5400_phy_ops
  613. };
  614. /* Broadcom BCM 5401 */
  615. static struct mii_phy_ops bcm5401_phy_ops = {
  616. .init = bcm5401_init,
  617. .suspend = bcm5401_suspend,
  618. .setup_aneg = bcm54xx_setup_aneg,
  619. .setup_forced = bcm54xx_setup_forced,
  620. .poll_link = genmii_poll_link,
  621. .read_link = bcm54xx_read_link,
  622. };
  623. static struct mii_phy_def bcm5401_phy_def = {
  624. .phy_id = 0x00206050,
  625. .phy_id_mask = 0xfffffff0,
  626. .name = "BCM5401",
  627. .features = MII_GBIT_FEATURES,
  628. .magic_aneg = 1,
  629. .ops = &bcm5401_phy_ops
  630. };
  631. /* Broadcom BCM 5411 */
  632. static struct mii_phy_ops bcm5411_phy_ops = {
  633. .init = bcm5411_init,
  634. .suspend = generic_suspend,
  635. .setup_aneg = bcm54xx_setup_aneg,
  636. .setup_forced = bcm54xx_setup_forced,
  637. .poll_link = genmii_poll_link,
  638. .read_link = bcm54xx_read_link,
  639. };
  640. static struct mii_phy_def bcm5411_phy_def = {
  641. .phy_id = 0x00206070,
  642. .phy_id_mask = 0xfffffff0,
  643. .name = "BCM5411",
  644. .features = MII_GBIT_FEATURES,
  645. .magic_aneg = 1,
  646. .ops = &bcm5411_phy_ops
  647. };
  648. /* Broadcom BCM 5421 */
  649. static struct mii_phy_ops bcm5421_phy_ops = {
  650. .init = bcm5421_init,
  651. .suspend = generic_suspend,
  652. .setup_aneg = bcm54xx_setup_aneg,
  653. .setup_forced = bcm54xx_setup_forced,
  654. .poll_link = genmii_poll_link,
  655. .read_link = bcm54xx_read_link,
  656. .enable_fiber = bcm5421_enable_fiber,
  657. };
  658. static struct mii_phy_def bcm5421_phy_def = {
  659. .phy_id = 0x002060e0,
  660. .phy_id_mask = 0xfffffff0,
  661. .name = "BCM5421",
  662. .features = MII_GBIT_FEATURES,
  663. .magic_aneg = 1,
  664. .ops = &bcm5421_phy_ops
  665. };
  666. /* Broadcom BCM 5421 built-in K2 */
  667. static struct mii_phy_ops bcm5421k2_phy_ops = {
  668. .init = bcm5421_init,
  669. .suspend = generic_suspend,
  670. .setup_aneg = bcm54xx_setup_aneg,
  671. .setup_forced = bcm54xx_setup_forced,
  672. .poll_link = genmii_poll_link,
  673. .read_link = bcm54xx_read_link,
  674. };
  675. static struct mii_phy_def bcm5421k2_phy_def = {
  676. .phy_id = 0x002062e0,
  677. .phy_id_mask = 0xfffffff0,
  678. .name = "BCM5421-K2",
  679. .features = MII_GBIT_FEATURES,
  680. .magic_aneg = 1,
  681. .ops = &bcm5421k2_phy_ops
  682. };
  683. static struct mii_phy_ops bcm5461_phy_ops = {
  684. .init = bcm5421_init,
  685. .suspend = generic_suspend,
  686. .setup_aneg = bcm54xx_setup_aneg,
  687. .setup_forced = bcm54xx_setup_forced,
  688. .poll_link = genmii_poll_link,
  689. .read_link = bcm54xx_read_link,
  690. .enable_fiber = bcm5461_enable_fiber,
  691. };
  692. static struct mii_phy_def bcm5461_phy_def = {
  693. .phy_id = 0x002060c0,
  694. .phy_id_mask = 0xfffffff0,
  695. .name = "BCM5461",
  696. .features = MII_GBIT_FEATURES,
  697. .magic_aneg = 1,
  698. .ops = &bcm5461_phy_ops
  699. };
  700. /* Broadcom BCM 5462 built-in Vesta */
  701. static struct mii_phy_ops bcm5462V_phy_ops = {
  702. .init = bcm5421_init,
  703. .suspend = generic_suspend,
  704. .setup_aneg = bcm54xx_setup_aneg,
  705. .setup_forced = bcm54xx_setup_forced,
  706. .poll_link = genmii_poll_link,
  707. .read_link = bcm54xx_read_link,
  708. };
  709. static struct mii_phy_def bcm5462V_phy_def = {
  710. .phy_id = 0x002060d0,
  711. .phy_id_mask = 0xfffffff0,
  712. .name = "BCM5462-Vesta",
  713. .features = MII_GBIT_FEATURES,
  714. .magic_aneg = 1,
  715. .ops = &bcm5462V_phy_ops
  716. };
  717. /* Marvell 88E1101 (Apple seem to deal with 2 different revs,
  718. * I masked out the 8 last bits to get both, but some specs
  719. * would be useful here) --BenH.
  720. */
  721. static struct mii_phy_ops marvell_phy_ops = {
  722. .suspend = generic_suspend,
  723. .setup_aneg = marvell_setup_aneg,
  724. .setup_forced = marvell_setup_forced,
  725. .poll_link = genmii_poll_link,
  726. .read_link = marvell_read_link
  727. };
  728. static struct mii_phy_def marvell_phy_def = {
  729. .phy_id = 0x01410c00,
  730. .phy_id_mask = 0xffffff00,
  731. .name = "Marvell 88E1101",
  732. .features = MII_GBIT_FEATURES,
  733. .magic_aneg = 1,
  734. .ops = &marvell_phy_ops
  735. };
  736. /* Generic implementation for most 10/100 PHYs */
  737. static struct mii_phy_ops generic_phy_ops = {
  738. .setup_aneg = genmii_setup_aneg,
  739. .setup_forced = genmii_setup_forced,
  740. .poll_link = genmii_poll_link,
  741. .read_link = genmii_read_link
  742. };
  743. static struct mii_phy_def genmii_phy_def = {
  744. .phy_id = 0x00000000,
  745. .phy_id_mask = 0x00000000,
  746. .name = "Generic MII",
  747. .features = MII_BASIC_FEATURES,
  748. .magic_aneg = 0,
  749. .ops = &generic_phy_ops
  750. };
  751. static struct mii_phy_def* mii_phy_table[] = {
  752. &bcm5201_phy_def,
  753. &bcm5221_phy_def,
  754. &bcm5400_phy_def,
  755. &bcm5401_phy_def,
  756. &bcm5411_phy_def,
  757. &bcm5421_phy_def,
  758. &bcm5421k2_phy_def,
  759. &bcm5461_phy_def,
  760. &bcm5462V_phy_def,
  761. &marvell_phy_def,
  762. &genmii_phy_def,
  763. NULL
  764. };
  765. int mii_phy_probe(struct mii_phy *phy, int mii_id)
  766. {
  767. int rc;
  768. u32 id;
  769. struct mii_phy_def* def;
  770. int i;
  771. /* We do not reset the mii_phy structure as the driver
  772. * may re-probe the PHY regulary
  773. */
  774. phy->mii_id = mii_id;
  775. /* Take PHY out of isloate mode and reset it. */
  776. rc = reset_one_mii_phy(phy, mii_id);
  777. if (rc)
  778. goto fail;
  779. /* Read ID and find matching entry */
  780. id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
  781. printk(KERN_DEBUG "PHY ID: %x, addr: %x\n", id, mii_id);
  782. for (i=0; (def = mii_phy_table[i]) != NULL; i++)
  783. if ((id & def->phy_id_mask) == def->phy_id)
  784. break;
  785. /* Should never be NULL (we have a generic entry), but... */
  786. if (def == NULL)
  787. goto fail;
  788. phy->def = def;
  789. return 0;
  790. fail:
  791. phy->speed = 0;
  792. phy->duplex = 0;
  793. phy->pause = 0;
  794. phy->advertising = 0;
  795. return -ENODEV;
  796. }
  797. EXPORT_SYMBOL(mii_phy_probe);
  798. MODULE_LICENSE("GPL");