skge.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/in.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/mii.h>
  40. #include <asm/irq.h>
  41. #include "skge.h"
  42. #define DRV_NAME "skge"
  43. #define DRV_VERSION "1.9"
  44. #define PFX DRV_NAME " "
  45. #define DEFAULT_TX_RING_SIZE 128
  46. #define DEFAULT_RX_RING_SIZE 512
  47. #define MAX_TX_RING_SIZE 1024
  48. #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
  49. #define MAX_RX_RING_SIZE 4096
  50. #define RX_COPY_THRESHOLD 128
  51. #define RX_BUF_SIZE 1536
  52. #define PHY_RETRIES 1000
  53. #define ETH_JUMBO_MTU 9000
  54. #define TX_WATCHDOG (5 * HZ)
  55. #define NAPI_WEIGHT 64
  56. #define BLINK_MS 250
  57. #define LINK_HZ (HZ/2)
  58. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  59. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  60. MODULE_LICENSE("GPL");
  61. MODULE_VERSION(DRV_VERSION);
  62. static const u32 default_msg
  63. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  64. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  65. static int debug = -1; /* defaults above */
  66. module_param(debug, int, 0);
  67. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  68. static const struct pci_device_id skge_id_table[] = {
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  73. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  74. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
  75. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  77. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  78. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  79. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  80. { 0 }
  81. };
  82. MODULE_DEVICE_TABLE(pci, skge_id_table);
  83. static int skge_up(struct net_device *dev);
  84. static int skge_down(struct net_device *dev);
  85. static void skge_phy_reset(struct skge_port *skge);
  86. static void skge_tx_clean(struct net_device *dev);
  87. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  88. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  89. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  90. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  91. static void yukon_init(struct skge_hw *hw, int port);
  92. static void genesis_mac_init(struct skge_hw *hw, int port);
  93. static void genesis_link_up(struct skge_port *skge);
  94. /* Avoid conditionals by using array */
  95. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  96. static const int rxqaddr[] = { Q_R1, Q_R2 };
  97. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  98. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  99. static const u32 irqmask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
  100. static int skge_get_regs_len(struct net_device *dev)
  101. {
  102. return 0x4000;
  103. }
  104. /*
  105. * Returns copy of whole control register region
  106. * Note: skip RAM address register because accessing it will
  107. * cause bus hangs!
  108. */
  109. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  110. void *p)
  111. {
  112. const struct skge_port *skge = netdev_priv(dev);
  113. const void __iomem *io = skge->hw->regs;
  114. regs->version = 1;
  115. memset(p, 0, regs->len);
  116. memcpy_fromio(p, io, B3_RAM_ADDR);
  117. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  118. regs->len - B3_RI_WTO_R1);
  119. }
  120. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  121. static int wol_supported(const struct skge_hw *hw)
  122. {
  123. return !((hw->chip_id == CHIP_ID_GENESIS ||
  124. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  125. }
  126. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  127. {
  128. struct skge_port *skge = netdev_priv(dev);
  129. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  130. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  131. }
  132. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  133. {
  134. struct skge_port *skge = netdev_priv(dev);
  135. struct skge_hw *hw = skge->hw;
  136. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  137. return -EOPNOTSUPP;
  138. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  139. return -EOPNOTSUPP;
  140. skge->wol = wol->wolopts == WAKE_MAGIC;
  141. if (skge->wol) {
  142. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  143. skge_write16(hw, WOL_CTRL_STAT,
  144. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  145. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  146. } else
  147. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  148. return 0;
  149. }
  150. /* Determine supported/advertised modes based on hardware.
  151. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  152. */
  153. static u32 skge_supported_modes(const struct skge_hw *hw)
  154. {
  155. u32 supported;
  156. if (hw->copper) {
  157. supported = SUPPORTED_10baseT_Half
  158. | SUPPORTED_10baseT_Full
  159. | SUPPORTED_100baseT_Half
  160. | SUPPORTED_100baseT_Full
  161. | SUPPORTED_1000baseT_Half
  162. | SUPPORTED_1000baseT_Full
  163. | SUPPORTED_Autoneg| SUPPORTED_TP;
  164. if (hw->chip_id == CHIP_ID_GENESIS)
  165. supported &= ~(SUPPORTED_10baseT_Half
  166. | SUPPORTED_10baseT_Full
  167. | SUPPORTED_100baseT_Half
  168. | SUPPORTED_100baseT_Full);
  169. else if (hw->chip_id == CHIP_ID_YUKON)
  170. supported &= ~SUPPORTED_1000baseT_Half;
  171. } else
  172. supported = SUPPORTED_1000baseT_Full | SUPPORTED_1000baseT_Half
  173. | SUPPORTED_FIBRE | SUPPORTED_Autoneg;
  174. return supported;
  175. }
  176. static int skge_get_settings(struct net_device *dev,
  177. struct ethtool_cmd *ecmd)
  178. {
  179. struct skge_port *skge = netdev_priv(dev);
  180. struct skge_hw *hw = skge->hw;
  181. ecmd->transceiver = XCVR_INTERNAL;
  182. ecmd->supported = skge_supported_modes(hw);
  183. if (hw->copper) {
  184. ecmd->port = PORT_TP;
  185. ecmd->phy_address = hw->phy_addr;
  186. } else
  187. ecmd->port = PORT_FIBRE;
  188. ecmd->advertising = skge->advertising;
  189. ecmd->autoneg = skge->autoneg;
  190. ecmd->speed = skge->speed;
  191. ecmd->duplex = skge->duplex;
  192. return 0;
  193. }
  194. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  195. {
  196. struct skge_port *skge = netdev_priv(dev);
  197. const struct skge_hw *hw = skge->hw;
  198. u32 supported = skge_supported_modes(hw);
  199. if (ecmd->autoneg == AUTONEG_ENABLE) {
  200. ecmd->advertising = supported;
  201. skge->duplex = -1;
  202. skge->speed = -1;
  203. } else {
  204. u32 setting;
  205. switch (ecmd->speed) {
  206. case SPEED_1000:
  207. if (ecmd->duplex == DUPLEX_FULL)
  208. setting = SUPPORTED_1000baseT_Full;
  209. else if (ecmd->duplex == DUPLEX_HALF)
  210. setting = SUPPORTED_1000baseT_Half;
  211. else
  212. return -EINVAL;
  213. break;
  214. case SPEED_100:
  215. if (ecmd->duplex == DUPLEX_FULL)
  216. setting = SUPPORTED_100baseT_Full;
  217. else if (ecmd->duplex == DUPLEX_HALF)
  218. setting = SUPPORTED_100baseT_Half;
  219. else
  220. return -EINVAL;
  221. break;
  222. case SPEED_10:
  223. if (ecmd->duplex == DUPLEX_FULL)
  224. setting = SUPPORTED_10baseT_Full;
  225. else if (ecmd->duplex == DUPLEX_HALF)
  226. setting = SUPPORTED_10baseT_Half;
  227. else
  228. return -EINVAL;
  229. break;
  230. default:
  231. return -EINVAL;
  232. }
  233. if ((setting & supported) == 0)
  234. return -EINVAL;
  235. skge->speed = ecmd->speed;
  236. skge->duplex = ecmd->duplex;
  237. }
  238. skge->autoneg = ecmd->autoneg;
  239. skge->advertising = ecmd->advertising;
  240. if (netif_running(dev))
  241. skge_phy_reset(skge);
  242. return (0);
  243. }
  244. static void skge_get_drvinfo(struct net_device *dev,
  245. struct ethtool_drvinfo *info)
  246. {
  247. struct skge_port *skge = netdev_priv(dev);
  248. strcpy(info->driver, DRV_NAME);
  249. strcpy(info->version, DRV_VERSION);
  250. strcpy(info->fw_version, "N/A");
  251. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  252. }
  253. static const struct skge_stat {
  254. char name[ETH_GSTRING_LEN];
  255. u16 xmac_offset;
  256. u16 gma_offset;
  257. } skge_stats[] = {
  258. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  259. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  260. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  261. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  262. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  263. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  264. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  265. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  266. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  267. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  268. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  269. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  270. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  271. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  272. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  273. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  274. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  275. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  276. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  277. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  278. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  279. };
  280. static int skge_get_stats_count(struct net_device *dev)
  281. {
  282. return ARRAY_SIZE(skge_stats);
  283. }
  284. static void skge_get_ethtool_stats(struct net_device *dev,
  285. struct ethtool_stats *stats, u64 *data)
  286. {
  287. struct skge_port *skge = netdev_priv(dev);
  288. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  289. genesis_get_stats(skge, data);
  290. else
  291. yukon_get_stats(skge, data);
  292. }
  293. /* Use hardware MIB variables for critical path statistics and
  294. * transmit feedback not reported at interrupt.
  295. * Other errors are accounted for in interrupt handler.
  296. */
  297. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  298. {
  299. struct skge_port *skge = netdev_priv(dev);
  300. u64 data[ARRAY_SIZE(skge_stats)];
  301. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  302. genesis_get_stats(skge, data);
  303. else
  304. yukon_get_stats(skge, data);
  305. skge->net_stats.tx_bytes = data[0];
  306. skge->net_stats.rx_bytes = data[1];
  307. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  308. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  309. skge->net_stats.multicast = data[3] + data[5];
  310. skge->net_stats.collisions = data[10];
  311. skge->net_stats.tx_aborted_errors = data[12];
  312. return &skge->net_stats;
  313. }
  314. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  315. {
  316. int i;
  317. switch (stringset) {
  318. case ETH_SS_STATS:
  319. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  320. memcpy(data + i * ETH_GSTRING_LEN,
  321. skge_stats[i].name, ETH_GSTRING_LEN);
  322. break;
  323. }
  324. }
  325. static void skge_get_ring_param(struct net_device *dev,
  326. struct ethtool_ringparam *p)
  327. {
  328. struct skge_port *skge = netdev_priv(dev);
  329. p->rx_max_pending = MAX_RX_RING_SIZE;
  330. p->tx_max_pending = MAX_TX_RING_SIZE;
  331. p->rx_mini_max_pending = 0;
  332. p->rx_jumbo_max_pending = 0;
  333. p->rx_pending = skge->rx_ring.count;
  334. p->tx_pending = skge->tx_ring.count;
  335. p->rx_mini_pending = 0;
  336. p->rx_jumbo_pending = 0;
  337. }
  338. static int skge_set_ring_param(struct net_device *dev,
  339. struct ethtool_ringparam *p)
  340. {
  341. struct skge_port *skge = netdev_priv(dev);
  342. int err;
  343. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  344. p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
  345. return -EINVAL;
  346. skge->rx_ring.count = p->rx_pending;
  347. skge->tx_ring.count = p->tx_pending;
  348. if (netif_running(dev)) {
  349. skge_down(dev);
  350. err = skge_up(dev);
  351. if (err)
  352. dev_close(dev);
  353. }
  354. return 0;
  355. }
  356. static u32 skge_get_msglevel(struct net_device *netdev)
  357. {
  358. struct skge_port *skge = netdev_priv(netdev);
  359. return skge->msg_enable;
  360. }
  361. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  362. {
  363. struct skge_port *skge = netdev_priv(netdev);
  364. skge->msg_enable = value;
  365. }
  366. static int skge_nway_reset(struct net_device *dev)
  367. {
  368. struct skge_port *skge = netdev_priv(dev);
  369. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  370. return -EINVAL;
  371. skge_phy_reset(skge);
  372. return 0;
  373. }
  374. static int skge_set_sg(struct net_device *dev, u32 data)
  375. {
  376. struct skge_port *skge = netdev_priv(dev);
  377. struct skge_hw *hw = skge->hw;
  378. if (hw->chip_id == CHIP_ID_GENESIS && data)
  379. return -EOPNOTSUPP;
  380. return ethtool_op_set_sg(dev, data);
  381. }
  382. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  383. {
  384. struct skge_port *skge = netdev_priv(dev);
  385. struct skge_hw *hw = skge->hw;
  386. if (hw->chip_id == CHIP_ID_GENESIS && data)
  387. return -EOPNOTSUPP;
  388. return ethtool_op_set_tx_csum(dev, data);
  389. }
  390. static u32 skge_get_rx_csum(struct net_device *dev)
  391. {
  392. struct skge_port *skge = netdev_priv(dev);
  393. return skge->rx_csum;
  394. }
  395. /* Only Yukon supports checksum offload. */
  396. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  397. {
  398. struct skge_port *skge = netdev_priv(dev);
  399. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  400. return -EOPNOTSUPP;
  401. skge->rx_csum = data;
  402. return 0;
  403. }
  404. static void skge_get_pauseparam(struct net_device *dev,
  405. struct ethtool_pauseparam *ecmd)
  406. {
  407. struct skge_port *skge = netdev_priv(dev);
  408. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_SYMMETRIC)
  409. || (skge->flow_control == FLOW_MODE_SYM_OR_REM);
  410. ecmd->tx_pause = ecmd->rx_pause || (skge->flow_control == FLOW_MODE_LOC_SEND);
  411. ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
  412. }
  413. static int skge_set_pauseparam(struct net_device *dev,
  414. struct ethtool_pauseparam *ecmd)
  415. {
  416. struct skge_port *skge = netdev_priv(dev);
  417. struct ethtool_pauseparam old;
  418. skge_get_pauseparam(dev, &old);
  419. if (ecmd->autoneg != old.autoneg)
  420. skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
  421. else {
  422. if (ecmd->rx_pause && ecmd->tx_pause)
  423. skge->flow_control = FLOW_MODE_SYMMETRIC;
  424. else if (ecmd->rx_pause && !ecmd->tx_pause)
  425. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  426. else if (!ecmd->rx_pause && ecmd->tx_pause)
  427. skge->flow_control = FLOW_MODE_LOC_SEND;
  428. else
  429. skge->flow_control = FLOW_MODE_NONE;
  430. }
  431. if (netif_running(dev))
  432. skge_phy_reset(skge);
  433. return 0;
  434. }
  435. /* Chip internal frequency for clock calculations */
  436. static inline u32 hwkhz(const struct skge_hw *hw)
  437. {
  438. return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
  439. }
  440. /* Chip HZ to microseconds */
  441. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  442. {
  443. return (ticks * 1000) / hwkhz(hw);
  444. }
  445. /* Microseconds to chip HZ */
  446. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  447. {
  448. return hwkhz(hw) * usec / 1000;
  449. }
  450. static int skge_get_coalesce(struct net_device *dev,
  451. struct ethtool_coalesce *ecmd)
  452. {
  453. struct skge_port *skge = netdev_priv(dev);
  454. struct skge_hw *hw = skge->hw;
  455. int port = skge->port;
  456. ecmd->rx_coalesce_usecs = 0;
  457. ecmd->tx_coalesce_usecs = 0;
  458. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  459. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  460. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  461. if (msk & rxirqmask[port])
  462. ecmd->rx_coalesce_usecs = delay;
  463. if (msk & txirqmask[port])
  464. ecmd->tx_coalesce_usecs = delay;
  465. }
  466. return 0;
  467. }
  468. /* Note: interrupt timer is per board, but can turn on/off per port */
  469. static int skge_set_coalesce(struct net_device *dev,
  470. struct ethtool_coalesce *ecmd)
  471. {
  472. struct skge_port *skge = netdev_priv(dev);
  473. struct skge_hw *hw = skge->hw;
  474. int port = skge->port;
  475. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  476. u32 delay = 25;
  477. if (ecmd->rx_coalesce_usecs == 0)
  478. msk &= ~rxirqmask[port];
  479. else if (ecmd->rx_coalesce_usecs < 25 ||
  480. ecmd->rx_coalesce_usecs > 33333)
  481. return -EINVAL;
  482. else {
  483. msk |= rxirqmask[port];
  484. delay = ecmd->rx_coalesce_usecs;
  485. }
  486. if (ecmd->tx_coalesce_usecs == 0)
  487. msk &= ~txirqmask[port];
  488. else if (ecmd->tx_coalesce_usecs < 25 ||
  489. ecmd->tx_coalesce_usecs > 33333)
  490. return -EINVAL;
  491. else {
  492. msk |= txirqmask[port];
  493. delay = min(delay, ecmd->rx_coalesce_usecs);
  494. }
  495. skge_write32(hw, B2_IRQM_MSK, msk);
  496. if (msk == 0)
  497. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  498. else {
  499. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  500. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  501. }
  502. return 0;
  503. }
  504. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  505. static void skge_led(struct skge_port *skge, enum led_mode mode)
  506. {
  507. struct skge_hw *hw = skge->hw;
  508. int port = skge->port;
  509. mutex_lock(&hw->phy_mutex);
  510. if (hw->chip_id == CHIP_ID_GENESIS) {
  511. switch (mode) {
  512. case LED_MODE_OFF:
  513. if (hw->phy_type == SK_PHY_BCOM)
  514. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  515. else {
  516. skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
  517. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
  518. }
  519. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  520. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  521. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  522. break;
  523. case LED_MODE_ON:
  524. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  525. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  526. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  527. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  528. break;
  529. case LED_MODE_TST:
  530. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  531. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  532. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  533. if (hw->phy_type == SK_PHY_BCOM)
  534. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  535. else {
  536. skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
  537. skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
  538. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  539. }
  540. }
  541. } else {
  542. switch (mode) {
  543. case LED_MODE_OFF:
  544. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  545. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  546. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  547. PHY_M_LED_MO_10(MO_LED_OFF) |
  548. PHY_M_LED_MO_100(MO_LED_OFF) |
  549. PHY_M_LED_MO_1000(MO_LED_OFF) |
  550. PHY_M_LED_MO_RX(MO_LED_OFF));
  551. break;
  552. case LED_MODE_ON:
  553. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  554. PHY_M_LED_PULS_DUR(PULS_170MS) |
  555. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  556. PHY_M_LEDC_TX_CTRL |
  557. PHY_M_LEDC_DP_CTRL);
  558. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  559. PHY_M_LED_MO_RX(MO_LED_OFF) |
  560. (skge->speed == SPEED_100 ?
  561. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  562. break;
  563. case LED_MODE_TST:
  564. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  565. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  566. PHY_M_LED_MO_DUP(MO_LED_ON) |
  567. PHY_M_LED_MO_10(MO_LED_ON) |
  568. PHY_M_LED_MO_100(MO_LED_ON) |
  569. PHY_M_LED_MO_1000(MO_LED_ON) |
  570. PHY_M_LED_MO_RX(MO_LED_ON));
  571. }
  572. }
  573. mutex_unlock(&hw->phy_mutex);
  574. }
  575. /* blink LED's for finding board */
  576. static int skge_phys_id(struct net_device *dev, u32 data)
  577. {
  578. struct skge_port *skge = netdev_priv(dev);
  579. unsigned long ms;
  580. enum led_mode mode = LED_MODE_TST;
  581. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  582. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  583. else
  584. ms = data * 1000;
  585. while (ms > 0) {
  586. skge_led(skge, mode);
  587. mode ^= LED_MODE_TST;
  588. if (msleep_interruptible(BLINK_MS))
  589. break;
  590. ms -= BLINK_MS;
  591. }
  592. /* back to regular LED state */
  593. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  594. return 0;
  595. }
  596. static const struct ethtool_ops skge_ethtool_ops = {
  597. .get_settings = skge_get_settings,
  598. .set_settings = skge_set_settings,
  599. .get_drvinfo = skge_get_drvinfo,
  600. .get_regs_len = skge_get_regs_len,
  601. .get_regs = skge_get_regs,
  602. .get_wol = skge_get_wol,
  603. .set_wol = skge_set_wol,
  604. .get_msglevel = skge_get_msglevel,
  605. .set_msglevel = skge_set_msglevel,
  606. .nway_reset = skge_nway_reset,
  607. .get_link = ethtool_op_get_link,
  608. .get_ringparam = skge_get_ring_param,
  609. .set_ringparam = skge_set_ring_param,
  610. .get_pauseparam = skge_get_pauseparam,
  611. .set_pauseparam = skge_set_pauseparam,
  612. .get_coalesce = skge_get_coalesce,
  613. .set_coalesce = skge_set_coalesce,
  614. .get_sg = ethtool_op_get_sg,
  615. .set_sg = skge_set_sg,
  616. .get_tx_csum = ethtool_op_get_tx_csum,
  617. .set_tx_csum = skge_set_tx_csum,
  618. .get_rx_csum = skge_get_rx_csum,
  619. .set_rx_csum = skge_set_rx_csum,
  620. .get_strings = skge_get_strings,
  621. .phys_id = skge_phys_id,
  622. .get_stats_count = skge_get_stats_count,
  623. .get_ethtool_stats = skge_get_ethtool_stats,
  624. .get_perm_addr = ethtool_op_get_perm_addr,
  625. };
  626. /*
  627. * Allocate ring elements and chain them together
  628. * One-to-one association of board descriptors with ring elements
  629. */
  630. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
  631. {
  632. struct skge_tx_desc *d;
  633. struct skge_element *e;
  634. int i;
  635. ring->start = kcalloc(sizeof(*e), ring->count, GFP_KERNEL);
  636. if (!ring->start)
  637. return -ENOMEM;
  638. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  639. e->desc = d;
  640. if (i == ring->count - 1) {
  641. e->next = ring->start;
  642. d->next_offset = base;
  643. } else {
  644. e->next = e + 1;
  645. d->next_offset = base + (i+1) * sizeof(*d);
  646. }
  647. }
  648. ring->to_use = ring->to_clean = ring->start;
  649. return 0;
  650. }
  651. /* Allocate and setup a new buffer for receiving */
  652. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  653. struct sk_buff *skb, unsigned int bufsize)
  654. {
  655. struct skge_rx_desc *rd = e->desc;
  656. u64 map;
  657. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  658. PCI_DMA_FROMDEVICE);
  659. rd->dma_lo = map;
  660. rd->dma_hi = map >> 32;
  661. e->skb = skb;
  662. rd->csum1_start = ETH_HLEN;
  663. rd->csum2_start = ETH_HLEN;
  664. rd->csum1 = 0;
  665. rd->csum2 = 0;
  666. wmb();
  667. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  668. pci_unmap_addr_set(e, mapaddr, map);
  669. pci_unmap_len_set(e, maplen, bufsize);
  670. }
  671. /* Resume receiving using existing skb,
  672. * Note: DMA address is not changed by chip.
  673. * MTU not changed while receiver active.
  674. */
  675. static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
  676. {
  677. struct skge_rx_desc *rd = e->desc;
  678. rd->csum2 = 0;
  679. rd->csum2_start = ETH_HLEN;
  680. wmb();
  681. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  682. }
  683. /* Free all buffers in receive ring, assumes receiver stopped */
  684. static void skge_rx_clean(struct skge_port *skge)
  685. {
  686. struct skge_hw *hw = skge->hw;
  687. struct skge_ring *ring = &skge->rx_ring;
  688. struct skge_element *e;
  689. e = ring->start;
  690. do {
  691. struct skge_rx_desc *rd = e->desc;
  692. rd->control = 0;
  693. if (e->skb) {
  694. pci_unmap_single(hw->pdev,
  695. pci_unmap_addr(e, mapaddr),
  696. pci_unmap_len(e, maplen),
  697. PCI_DMA_FROMDEVICE);
  698. dev_kfree_skb(e->skb);
  699. e->skb = NULL;
  700. }
  701. } while ((e = e->next) != ring->start);
  702. }
  703. /* Allocate buffers for receive ring
  704. * For receive: to_clean is next received frame.
  705. */
  706. static int skge_rx_fill(struct net_device *dev)
  707. {
  708. struct skge_port *skge = netdev_priv(dev);
  709. struct skge_ring *ring = &skge->rx_ring;
  710. struct skge_element *e;
  711. e = ring->start;
  712. do {
  713. struct sk_buff *skb;
  714. skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
  715. GFP_KERNEL);
  716. if (!skb)
  717. return -ENOMEM;
  718. skb_reserve(skb, NET_IP_ALIGN);
  719. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  720. } while ( (e = e->next) != ring->start);
  721. ring->to_clean = ring->start;
  722. return 0;
  723. }
  724. static const char *skge_pause(enum pause_status status)
  725. {
  726. switch(status) {
  727. case FLOW_STAT_NONE:
  728. return "none";
  729. case FLOW_STAT_REM_SEND:
  730. return "rx only";
  731. case FLOW_STAT_LOC_SEND:
  732. return "tx_only";
  733. case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
  734. return "both";
  735. default:
  736. return "indeterminated";
  737. }
  738. }
  739. static void skge_link_up(struct skge_port *skge)
  740. {
  741. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  742. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  743. netif_carrier_on(skge->netdev);
  744. netif_wake_queue(skge->netdev);
  745. if (netif_msg_link(skge)) {
  746. printk(KERN_INFO PFX
  747. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  748. skge->netdev->name, skge->speed,
  749. skge->duplex == DUPLEX_FULL ? "full" : "half",
  750. skge_pause(skge->flow_status));
  751. }
  752. }
  753. static void skge_link_down(struct skge_port *skge)
  754. {
  755. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  756. netif_carrier_off(skge->netdev);
  757. netif_stop_queue(skge->netdev);
  758. if (netif_msg_link(skge))
  759. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  760. }
  761. static void xm_link_down(struct skge_hw *hw, int port)
  762. {
  763. struct net_device *dev = hw->dev[port];
  764. struct skge_port *skge = netdev_priv(dev);
  765. u16 cmd, msk;
  766. if (hw->phy_type == SK_PHY_XMAC) {
  767. msk = xm_read16(hw, port, XM_IMSK);
  768. msk |= XM_IS_INP_ASS | XM_IS_LIPA_RC | XM_IS_RX_PAGE | XM_IS_AND;
  769. xm_write16(hw, port, XM_IMSK, msk);
  770. }
  771. cmd = xm_read16(hw, port, XM_MMU_CMD);
  772. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  773. xm_write16(hw, port, XM_MMU_CMD, cmd);
  774. /* dummy read to ensure writing */
  775. (void) xm_read16(hw, port, XM_MMU_CMD);
  776. if (netif_carrier_ok(dev))
  777. skge_link_down(skge);
  778. }
  779. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  780. {
  781. int i;
  782. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  783. *val = xm_read16(hw, port, XM_PHY_DATA);
  784. if (hw->phy_type == SK_PHY_XMAC)
  785. goto ready;
  786. for (i = 0; i < PHY_RETRIES; i++) {
  787. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  788. goto ready;
  789. udelay(1);
  790. }
  791. return -ETIMEDOUT;
  792. ready:
  793. *val = xm_read16(hw, port, XM_PHY_DATA);
  794. return 0;
  795. }
  796. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  797. {
  798. u16 v = 0;
  799. if (__xm_phy_read(hw, port, reg, &v))
  800. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  801. hw->dev[port]->name);
  802. return v;
  803. }
  804. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  805. {
  806. int i;
  807. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  808. for (i = 0; i < PHY_RETRIES; i++) {
  809. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  810. goto ready;
  811. udelay(1);
  812. }
  813. return -EIO;
  814. ready:
  815. xm_write16(hw, port, XM_PHY_DATA, val);
  816. for (i = 0; i < PHY_RETRIES; i++) {
  817. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  818. return 0;
  819. udelay(1);
  820. }
  821. return -ETIMEDOUT;
  822. }
  823. static void genesis_init(struct skge_hw *hw)
  824. {
  825. /* set blink source counter */
  826. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  827. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  828. /* configure mac arbiter */
  829. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  830. /* configure mac arbiter timeout values */
  831. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  832. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  833. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  834. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  835. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  836. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  837. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  838. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  839. /* configure packet arbiter timeout */
  840. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  841. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  842. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  843. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  844. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  845. }
  846. static void genesis_reset(struct skge_hw *hw, int port)
  847. {
  848. const u8 zero[8] = { 0 };
  849. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  850. /* reset the statistics module */
  851. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  852. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  853. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  854. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  855. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  856. /* disable Broadcom PHY IRQ */
  857. if (hw->phy_type == SK_PHY_BCOM)
  858. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  859. xm_outhash(hw, port, XM_HSM, zero);
  860. }
  861. /* Convert mode to MII values */
  862. static const u16 phy_pause_map[] = {
  863. [FLOW_MODE_NONE] = 0,
  864. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  865. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  866. [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  867. };
  868. /* special defines for FIBER (88E1011S only) */
  869. static const u16 fiber_pause_map[] = {
  870. [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
  871. [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
  872. [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
  873. [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
  874. };
  875. /* Check status of Broadcom phy link */
  876. static void bcom_check_link(struct skge_hw *hw, int port)
  877. {
  878. struct net_device *dev = hw->dev[port];
  879. struct skge_port *skge = netdev_priv(dev);
  880. u16 status;
  881. /* read twice because of latch */
  882. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  883. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  884. if ((status & PHY_ST_LSYNC) == 0) {
  885. xm_link_down(hw, port);
  886. return;
  887. }
  888. if (skge->autoneg == AUTONEG_ENABLE) {
  889. u16 lpa, aux;
  890. if (!(status & PHY_ST_AN_OVER))
  891. return;
  892. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  893. if (lpa & PHY_B_AN_RF) {
  894. printk(KERN_NOTICE PFX "%s: remote fault\n",
  895. dev->name);
  896. return;
  897. }
  898. aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  899. /* Check Duplex mismatch */
  900. switch (aux & PHY_B_AS_AN_RES_MSK) {
  901. case PHY_B_RES_1000FD:
  902. skge->duplex = DUPLEX_FULL;
  903. break;
  904. case PHY_B_RES_1000HD:
  905. skge->duplex = DUPLEX_HALF;
  906. break;
  907. default:
  908. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  909. dev->name);
  910. return;
  911. }
  912. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  913. switch (aux & PHY_B_AS_PAUSE_MSK) {
  914. case PHY_B_AS_PAUSE_MSK:
  915. skge->flow_status = FLOW_STAT_SYMMETRIC;
  916. break;
  917. case PHY_B_AS_PRR:
  918. skge->flow_status = FLOW_STAT_REM_SEND;
  919. break;
  920. case PHY_B_AS_PRT:
  921. skge->flow_status = FLOW_STAT_LOC_SEND;
  922. break;
  923. default:
  924. skge->flow_status = FLOW_STAT_NONE;
  925. }
  926. skge->speed = SPEED_1000;
  927. }
  928. if (!netif_carrier_ok(dev))
  929. genesis_link_up(skge);
  930. }
  931. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  932. * Phy on for 100 or 10Mbit operation
  933. */
  934. static void bcom_phy_init(struct skge_port *skge)
  935. {
  936. struct skge_hw *hw = skge->hw;
  937. int port = skge->port;
  938. int i;
  939. u16 id1, r, ext, ctl;
  940. /* magic workaround patterns for Broadcom */
  941. static const struct {
  942. u16 reg;
  943. u16 val;
  944. } A1hack[] = {
  945. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  946. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  947. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  948. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  949. }, C0hack[] = {
  950. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  951. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  952. };
  953. /* read Id from external PHY (all have the same address) */
  954. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  955. /* Optimize MDIO transfer by suppressing preamble. */
  956. r = xm_read16(hw, port, XM_MMU_CMD);
  957. r |= XM_MMU_NO_PRE;
  958. xm_write16(hw, port, XM_MMU_CMD,r);
  959. switch (id1) {
  960. case PHY_BCOM_ID1_C0:
  961. /*
  962. * Workaround BCOM Errata for the C0 type.
  963. * Write magic patterns to reserved registers.
  964. */
  965. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  966. xm_phy_write(hw, port,
  967. C0hack[i].reg, C0hack[i].val);
  968. break;
  969. case PHY_BCOM_ID1_A1:
  970. /*
  971. * Workaround BCOM Errata for the A1 type.
  972. * Write magic patterns to reserved registers.
  973. */
  974. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  975. xm_phy_write(hw, port,
  976. A1hack[i].reg, A1hack[i].val);
  977. break;
  978. }
  979. /*
  980. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  981. * Disable Power Management after reset.
  982. */
  983. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  984. r |= PHY_B_AC_DIS_PM;
  985. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  986. /* Dummy read */
  987. xm_read16(hw, port, XM_ISRC);
  988. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  989. ctl = PHY_CT_SP1000; /* always 1000mbit */
  990. if (skge->autoneg == AUTONEG_ENABLE) {
  991. /*
  992. * Workaround BCOM Errata #1 for the C5 type.
  993. * 1000Base-T Link Acquisition Failure in Slave Mode
  994. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  995. */
  996. u16 adv = PHY_B_1000C_RD;
  997. if (skge->advertising & ADVERTISED_1000baseT_Half)
  998. adv |= PHY_B_1000C_AHD;
  999. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1000. adv |= PHY_B_1000C_AFD;
  1001. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  1002. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1003. } else {
  1004. if (skge->duplex == DUPLEX_FULL)
  1005. ctl |= PHY_CT_DUP_MD;
  1006. /* Force to slave */
  1007. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  1008. }
  1009. /* Set autonegotiation pause parameters */
  1010. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  1011. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  1012. /* Handle Jumbo frames */
  1013. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  1014. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1015. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  1016. ext |= PHY_B_PEC_HIGH_LA;
  1017. }
  1018. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  1019. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  1020. /* Use link status change interrupt */
  1021. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1022. }
  1023. static void xm_phy_init(struct skge_port *skge)
  1024. {
  1025. struct skge_hw *hw = skge->hw;
  1026. int port = skge->port;
  1027. u16 ctrl = 0;
  1028. if (skge->autoneg == AUTONEG_ENABLE) {
  1029. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1030. ctrl |= PHY_X_AN_HD;
  1031. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1032. ctrl |= PHY_X_AN_FD;
  1033. ctrl |= fiber_pause_map[skge->flow_control];
  1034. xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
  1035. /* Restart Auto-negotiation */
  1036. ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
  1037. } else {
  1038. /* Set DuplexMode in Config register */
  1039. if (skge->duplex == DUPLEX_FULL)
  1040. ctrl |= PHY_CT_DUP_MD;
  1041. /*
  1042. * Do NOT enable Auto-negotiation here. This would hold
  1043. * the link down because no IDLEs are transmitted
  1044. */
  1045. }
  1046. xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
  1047. /* Poll PHY for status changes */
  1048. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1049. }
  1050. static void xm_check_link(struct net_device *dev)
  1051. {
  1052. struct skge_port *skge = netdev_priv(dev);
  1053. struct skge_hw *hw = skge->hw;
  1054. int port = skge->port;
  1055. u16 status;
  1056. /* read twice because of latch */
  1057. (void) xm_phy_read(hw, port, PHY_XMAC_STAT);
  1058. status = xm_phy_read(hw, port, PHY_XMAC_STAT);
  1059. if ((status & PHY_ST_LSYNC) == 0) {
  1060. xm_link_down(hw, port);
  1061. return;
  1062. }
  1063. if (skge->autoneg == AUTONEG_ENABLE) {
  1064. u16 lpa, res;
  1065. if (!(status & PHY_ST_AN_OVER))
  1066. return;
  1067. lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
  1068. if (lpa & PHY_B_AN_RF) {
  1069. printk(KERN_NOTICE PFX "%s: remote fault\n",
  1070. dev->name);
  1071. return;
  1072. }
  1073. res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
  1074. /* Check Duplex mismatch */
  1075. switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
  1076. case PHY_X_RS_FD:
  1077. skge->duplex = DUPLEX_FULL;
  1078. break;
  1079. case PHY_X_RS_HD:
  1080. skge->duplex = DUPLEX_HALF;
  1081. break;
  1082. default:
  1083. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  1084. dev->name);
  1085. return;
  1086. }
  1087. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1088. if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1089. skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
  1090. (lpa & PHY_X_P_SYM_MD))
  1091. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1092. else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
  1093. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
  1094. /* Enable PAUSE receive, disable PAUSE transmit */
  1095. skge->flow_status = FLOW_STAT_REM_SEND;
  1096. else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
  1097. (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
  1098. /* Disable PAUSE receive, enable PAUSE transmit */
  1099. skge->flow_status = FLOW_STAT_LOC_SEND;
  1100. else
  1101. skge->flow_status = FLOW_STAT_NONE;
  1102. skge->speed = SPEED_1000;
  1103. }
  1104. if (!netif_carrier_ok(dev))
  1105. genesis_link_up(skge);
  1106. }
  1107. /* Poll to check for link coming up.
  1108. * Since internal PHY is wired to a level triggered pin, can't
  1109. * get an interrupt when carrier is detected.
  1110. */
  1111. static void xm_link_timer(void *arg)
  1112. {
  1113. struct net_device *dev = arg;
  1114. struct skge_port *skge = netdev_priv(arg);
  1115. struct skge_hw *hw = skge->hw;
  1116. int port = skge->port;
  1117. if (!netif_running(dev))
  1118. return;
  1119. if (netif_carrier_ok(dev)) {
  1120. xm_read16(hw, port, XM_ISRC);
  1121. if (!(xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS))
  1122. goto nochange;
  1123. } else {
  1124. if (xm_read32(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
  1125. goto nochange;
  1126. xm_read16(hw, port, XM_ISRC);
  1127. if (xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1128. goto nochange;
  1129. }
  1130. mutex_lock(&hw->phy_mutex);
  1131. xm_check_link(dev);
  1132. mutex_unlock(&hw->phy_mutex);
  1133. nochange:
  1134. schedule_delayed_work(&skge->link_thread, LINK_HZ);
  1135. }
  1136. static void genesis_mac_init(struct skge_hw *hw, int port)
  1137. {
  1138. struct net_device *dev = hw->dev[port];
  1139. struct skge_port *skge = netdev_priv(dev);
  1140. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  1141. int i;
  1142. u32 r;
  1143. const u8 zero[6] = { 0 };
  1144. for (i = 0; i < 10; i++) {
  1145. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  1146. MFF_SET_MAC_RST);
  1147. if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
  1148. goto reset_ok;
  1149. udelay(1);
  1150. }
  1151. printk(KERN_WARNING PFX "%s: genesis reset failed\n", dev->name);
  1152. reset_ok:
  1153. /* Unreset the XMAC. */
  1154. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  1155. /*
  1156. * Perform additional initialization for external PHYs,
  1157. * namely for the 1000baseTX cards that use the XMAC's
  1158. * GMII mode.
  1159. */
  1160. if (hw->phy_type != SK_PHY_XMAC) {
  1161. /* Take external Phy out of reset */
  1162. r = skge_read32(hw, B2_GP_IO);
  1163. if (port == 0)
  1164. r |= GP_DIR_0|GP_IO_0;
  1165. else
  1166. r |= GP_DIR_2|GP_IO_2;
  1167. skge_write32(hw, B2_GP_IO, r);
  1168. /* Enable GMII interface */
  1169. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1170. }
  1171. switch(hw->phy_type) {
  1172. case SK_PHY_XMAC:
  1173. xm_phy_init(skge);
  1174. break;
  1175. case SK_PHY_BCOM:
  1176. bcom_phy_init(skge);
  1177. bcom_check_link(hw, port);
  1178. }
  1179. /* Set Station Address */
  1180. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1181. /* We don't use match addresses so clear */
  1182. for (i = 1; i < 16; i++)
  1183. xm_outaddr(hw, port, XM_EXM(i), zero);
  1184. /* Clear MIB counters */
  1185. xm_write16(hw, port, XM_STAT_CMD,
  1186. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1187. /* Clear two times according to Errata #3 */
  1188. xm_write16(hw, port, XM_STAT_CMD,
  1189. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1190. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1191. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1192. /* We don't need the FCS appended to the packet. */
  1193. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1194. if (jumbo)
  1195. r |= XM_RX_BIG_PK_OK;
  1196. if (skge->duplex == DUPLEX_HALF) {
  1197. /*
  1198. * If in manual half duplex mode the other side might be in
  1199. * full duplex mode, so ignore if a carrier extension is not seen
  1200. * on frames received
  1201. */
  1202. r |= XM_RX_DIS_CEXT;
  1203. }
  1204. xm_write16(hw, port, XM_RX_CMD, r);
  1205. /* We want short frames padded to 60 bytes. */
  1206. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1207. /*
  1208. * Bump up the transmit threshold. This helps hold off transmit
  1209. * underruns when we're blasting traffic from both ports at once.
  1210. */
  1211. xm_write16(hw, port, XM_TX_THR, 512);
  1212. /*
  1213. * Enable the reception of all error frames. This is is
  1214. * a necessary evil due to the design of the XMAC. The
  1215. * XMAC's receive FIFO is only 8K in size, however jumbo
  1216. * frames can be up to 9000 bytes in length. When bad
  1217. * frame filtering is enabled, the XMAC's RX FIFO operates
  1218. * in 'store and forward' mode. For this to work, the
  1219. * entire frame has to fit into the FIFO, but that means
  1220. * that jumbo frames larger than 8192 bytes will be
  1221. * truncated. Disabling all bad frame filtering causes
  1222. * the RX FIFO to operate in streaming mode, in which
  1223. * case the XMAC will start transferring frames out of the
  1224. * RX FIFO as soon as the FIFO threshold is reached.
  1225. */
  1226. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1227. /*
  1228. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1229. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1230. * and 'Octets Rx OK Hi Cnt Ov'.
  1231. */
  1232. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1233. /*
  1234. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1235. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1236. * and 'Octets Tx OK Hi Cnt Ov'.
  1237. */
  1238. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1239. /* Configure MAC arbiter */
  1240. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1241. /* configure timeout values */
  1242. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1243. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1244. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1245. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1246. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1247. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1248. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1249. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1250. /* Configure Rx MAC FIFO */
  1251. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1252. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1253. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1254. /* Configure Tx MAC FIFO */
  1255. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1256. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1257. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1258. if (jumbo) {
  1259. /* Enable frame flushing if jumbo frames used */
  1260. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1261. } else {
  1262. /* enable timeout timers if normal frames */
  1263. skge_write16(hw, B3_PA_CTRL,
  1264. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1265. }
  1266. }
  1267. static void genesis_stop(struct skge_port *skge)
  1268. {
  1269. struct skge_hw *hw = skge->hw;
  1270. int port = skge->port;
  1271. u32 reg;
  1272. genesis_reset(hw, port);
  1273. /* Clear Tx packet arbiter timeout IRQ */
  1274. skge_write16(hw, B3_PA_CTRL,
  1275. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1276. /*
  1277. * If the transfer sticks at the MAC the STOP command will not
  1278. * terminate if we don't flush the XMAC's transmit FIFO !
  1279. */
  1280. xm_write32(hw, port, XM_MODE,
  1281. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1282. /* Reset the MAC */
  1283. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1284. /* For external PHYs there must be special handling */
  1285. if (hw->phy_type != SK_PHY_XMAC) {
  1286. reg = skge_read32(hw, B2_GP_IO);
  1287. if (port == 0) {
  1288. reg |= GP_DIR_0;
  1289. reg &= ~GP_IO_0;
  1290. } else {
  1291. reg |= GP_DIR_2;
  1292. reg &= ~GP_IO_2;
  1293. }
  1294. skge_write32(hw, B2_GP_IO, reg);
  1295. skge_read32(hw, B2_GP_IO);
  1296. }
  1297. xm_write16(hw, port, XM_MMU_CMD,
  1298. xm_read16(hw, port, XM_MMU_CMD)
  1299. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1300. xm_read16(hw, port, XM_MMU_CMD);
  1301. }
  1302. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1303. {
  1304. struct skge_hw *hw = skge->hw;
  1305. int port = skge->port;
  1306. int i;
  1307. unsigned long timeout = jiffies + HZ;
  1308. xm_write16(hw, port,
  1309. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1310. /* wait for update to complete */
  1311. while (xm_read16(hw, port, XM_STAT_CMD)
  1312. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1313. if (time_after(jiffies, timeout))
  1314. break;
  1315. udelay(10);
  1316. }
  1317. /* special case for 64 bit octet counter */
  1318. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1319. | xm_read32(hw, port, XM_TXO_OK_LO);
  1320. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1321. | xm_read32(hw, port, XM_RXO_OK_LO);
  1322. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1323. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1324. }
  1325. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1326. {
  1327. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1328. u16 status = xm_read16(hw, port, XM_ISRC);
  1329. if (netif_msg_intr(skge))
  1330. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1331. skge->netdev->name, status);
  1332. if (hw->phy_type == SK_PHY_XMAC &&
  1333. (status & (XM_IS_INP_ASS | XM_IS_LIPA_RC)))
  1334. xm_link_down(hw, port);
  1335. if (status & XM_IS_TXF_UR) {
  1336. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1337. ++skge->net_stats.tx_fifo_errors;
  1338. }
  1339. if (status & XM_IS_RXF_OV) {
  1340. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1341. ++skge->net_stats.rx_fifo_errors;
  1342. }
  1343. }
  1344. static void genesis_link_up(struct skge_port *skge)
  1345. {
  1346. struct skge_hw *hw = skge->hw;
  1347. int port = skge->port;
  1348. u16 cmd, msk;
  1349. u32 mode;
  1350. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1351. /*
  1352. * enabling pause frame reception is required for 1000BT
  1353. * because the XMAC is not reset if the link is going down
  1354. */
  1355. if (skge->flow_status == FLOW_STAT_NONE ||
  1356. skge->flow_status == FLOW_STAT_LOC_SEND)
  1357. /* Disable Pause Frame Reception */
  1358. cmd |= XM_MMU_IGN_PF;
  1359. else
  1360. /* Enable Pause Frame Reception */
  1361. cmd &= ~XM_MMU_IGN_PF;
  1362. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1363. mode = xm_read32(hw, port, XM_MODE);
  1364. if (skge->flow_status== FLOW_STAT_SYMMETRIC ||
  1365. skge->flow_status == FLOW_STAT_LOC_SEND) {
  1366. /*
  1367. * Configure Pause Frame Generation
  1368. * Use internal and external Pause Frame Generation.
  1369. * Sending pause frames is edge triggered.
  1370. * Send a Pause frame with the maximum pause time if
  1371. * internal oder external FIFO full condition occurs.
  1372. * Send a zero pause time frame to re-start transmission.
  1373. */
  1374. /* XM_PAUSE_DA = '010000C28001' (default) */
  1375. /* XM_MAC_PTIME = 0xffff (maximum) */
  1376. /* remember this value is defined in big endian (!) */
  1377. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1378. mode |= XM_PAUSE_MODE;
  1379. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1380. } else {
  1381. /*
  1382. * disable pause frame generation is required for 1000BT
  1383. * because the XMAC is not reset if the link is going down
  1384. */
  1385. /* Disable Pause Mode in Mode Register */
  1386. mode &= ~XM_PAUSE_MODE;
  1387. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1388. }
  1389. xm_write32(hw, port, XM_MODE, mode);
  1390. msk = XM_DEF_MSK;
  1391. if (hw->phy_type != SK_PHY_XMAC)
  1392. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1393. xm_write16(hw, port, XM_IMSK, msk);
  1394. xm_read16(hw, port, XM_ISRC);
  1395. /* get MMU Command Reg. */
  1396. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1397. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1398. cmd |= XM_MMU_GMII_FD;
  1399. /*
  1400. * Workaround BCOM Errata (#10523) for all BCom Phys
  1401. * Enable Power Management after link up
  1402. */
  1403. if (hw->phy_type == SK_PHY_BCOM) {
  1404. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1405. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1406. & ~PHY_B_AC_DIS_PM);
  1407. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1408. }
  1409. /* enable Rx/Tx */
  1410. xm_write16(hw, port, XM_MMU_CMD,
  1411. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1412. skge_link_up(skge);
  1413. }
  1414. static inline void bcom_phy_intr(struct skge_port *skge)
  1415. {
  1416. struct skge_hw *hw = skge->hw;
  1417. int port = skge->port;
  1418. u16 isrc;
  1419. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1420. if (netif_msg_intr(skge))
  1421. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1422. skge->netdev->name, isrc);
  1423. if (isrc & PHY_B_IS_PSE)
  1424. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1425. hw->dev[port]->name);
  1426. /* Workaround BCom Errata:
  1427. * enable and disable loopback mode if "NO HCD" occurs.
  1428. */
  1429. if (isrc & PHY_B_IS_NO_HDCL) {
  1430. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1431. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1432. ctrl | PHY_CT_LOOP);
  1433. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1434. ctrl & ~PHY_CT_LOOP);
  1435. }
  1436. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1437. bcom_check_link(hw, port);
  1438. }
  1439. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1440. {
  1441. int i;
  1442. gma_write16(hw, port, GM_SMI_DATA, val);
  1443. gma_write16(hw, port, GM_SMI_CTRL,
  1444. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1445. for (i = 0; i < PHY_RETRIES; i++) {
  1446. udelay(1);
  1447. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1448. return 0;
  1449. }
  1450. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1451. hw->dev[port]->name);
  1452. return -EIO;
  1453. }
  1454. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1455. {
  1456. int i;
  1457. gma_write16(hw, port, GM_SMI_CTRL,
  1458. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1459. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1460. for (i = 0; i < PHY_RETRIES; i++) {
  1461. udelay(1);
  1462. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1463. goto ready;
  1464. }
  1465. return -ETIMEDOUT;
  1466. ready:
  1467. *val = gma_read16(hw, port, GM_SMI_DATA);
  1468. return 0;
  1469. }
  1470. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1471. {
  1472. u16 v = 0;
  1473. if (__gm_phy_read(hw, port, reg, &v))
  1474. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1475. hw->dev[port]->name);
  1476. return v;
  1477. }
  1478. /* Marvell Phy Initialization */
  1479. static void yukon_init(struct skge_hw *hw, int port)
  1480. {
  1481. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1482. u16 ctrl, ct1000, adv;
  1483. if (skge->autoneg == AUTONEG_ENABLE) {
  1484. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1485. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1486. PHY_M_EC_MAC_S_MSK);
  1487. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1488. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1489. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1490. }
  1491. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1492. if (skge->autoneg == AUTONEG_DISABLE)
  1493. ctrl &= ~PHY_CT_ANE;
  1494. ctrl |= PHY_CT_RESET;
  1495. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1496. ctrl = 0;
  1497. ct1000 = 0;
  1498. adv = PHY_AN_CSMA;
  1499. if (skge->autoneg == AUTONEG_ENABLE) {
  1500. if (hw->copper) {
  1501. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1502. ct1000 |= PHY_M_1000C_AFD;
  1503. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1504. ct1000 |= PHY_M_1000C_AHD;
  1505. if (skge->advertising & ADVERTISED_100baseT_Full)
  1506. adv |= PHY_M_AN_100_FD;
  1507. if (skge->advertising & ADVERTISED_100baseT_Half)
  1508. adv |= PHY_M_AN_100_HD;
  1509. if (skge->advertising & ADVERTISED_10baseT_Full)
  1510. adv |= PHY_M_AN_10_FD;
  1511. if (skge->advertising & ADVERTISED_10baseT_Half)
  1512. adv |= PHY_M_AN_10_HD;
  1513. /* Set Flow-control capabilities */
  1514. adv |= phy_pause_map[skge->flow_control];
  1515. } else {
  1516. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1517. adv |= PHY_M_AN_1000X_AFD;
  1518. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1519. adv |= PHY_M_AN_1000X_AHD;
  1520. adv |= fiber_pause_map[skge->flow_control];
  1521. }
  1522. /* Restart Auto-negotiation */
  1523. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1524. } else {
  1525. /* forced speed/duplex settings */
  1526. ct1000 = PHY_M_1000C_MSE;
  1527. if (skge->duplex == DUPLEX_FULL)
  1528. ctrl |= PHY_CT_DUP_MD;
  1529. switch (skge->speed) {
  1530. case SPEED_1000:
  1531. ctrl |= PHY_CT_SP1000;
  1532. break;
  1533. case SPEED_100:
  1534. ctrl |= PHY_CT_SP100;
  1535. break;
  1536. }
  1537. ctrl |= PHY_CT_RESET;
  1538. }
  1539. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1540. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1541. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1542. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1543. if (skge->autoneg == AUTONEG_ENABLE)
  1544. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1545. else
  1546. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1547. }
  1548. static void yukon_reset(struct skge_hw *hw, int port)
  1549. {
  1550. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1551. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1552. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1553. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1554. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1555. gma_write16(hw, port, GM_RX_CTRL,
  1556. gma_read16(hw, port, GM_RX_CTRL)
  1557. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1558. }
  1559. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1560. static int is_yukon_lite_a0(struct skge_hw *hw)
  1561. {
  1562. u32 reg;
  1563. int ret;
  1564. if (hw->chip_id != CHIP_ID_YUKON)
  1565. return 0;
  1566. reg = skge_read32(hw, B2_FAR);
  1567. skge_write8(hw, B2_FAR + 3, 0xff);
  1568. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1569. skge_write32(hw, B2_FAR, reg);
  1570. return ret;
  1571. }
  1572. static void yukon_mac_init(struct skge_hw *hw, int port)
  1573. {
  1574. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1575. int i;
  1576. u32 reg;
  1577. const u8 *addr = hw->dev[port]->dev_addr;
  1578. /* WA code for COMA mode -- set PHY reset */
  1579. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1580. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1581. reg = skge_read32(hw, B2_GP_IO);
  1582. reg |= GP_DIR_9 | GP_IO_9;
  1583. skge_write32(hw, B2_GP_IO, reg);
  1584. }
  1585. /* hard reset */
  1586. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1587. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1588. /* WA code for COMA mode -- clear PHY reset */
  1589. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1590. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1591. reg = skge_read32(hw, B2_GP_IO);
  1592. reg |= GP_DIR_9;
  1593. reg &= ~GP_IO_9;
  1594. skge_write32(hw, B2_GP_IO, reg);
  1595. }
  1596. /* Set hardware config mode */
  1597. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1598. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1599. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1600. /* Clear GMC reset */
  1601. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1602. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1603. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1604. if (skge->autoneg == AUTONEG_DISABLE) {
  1605. reg = GM_GPCR_AU_ALL_DIS;
  1606. gma_write16(hw, port, GM_GP_CTRL,
  1607. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1608. switch (skge->speed) {
  1609. case SPEED_1000:
  1610. reg &= ~GM_GPCR_SPEED_100;
  1611. reg |= GM_GPCR_SPEED_1000;
  1612. break;
  1613. case SPEED_100:
  1614. reg &= ~GM_GPCR_SPEED_1000;
  1615. reg |= GM_GPCR_SPEED_100;
  1616. break;
  1617. case SPEED_10:
  1618. reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
  1619. break;
  1620. }
  1621. if (skge->duplex == DUPLEX_FULL)
  1622. reg |= GM_GPCR_DUP_FULL;
  1623. } else
  1624. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1625. switch (skge->flow_control) {
  1626. case FLOW_MODE_NONE:
  1627. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1628. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1629. break;
  1630. case FLOW_MODE_LOC_SEND:
  1631. /* disable Rx flow-control */
  1632. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1633. break;
  1634. case FLOW_MODE_SYMMETRIC:
  1635. case FLOW_MODE_SYM_OR_REM:
  1636. /* enable Tx & Rx flow-control */
  1637. break;
  1638. }
  1639. gma_write16(hw, port, GM_GP_CTRL, reg);
  1640. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1641. yukon_init(hw, port);
  1642. /* MIB clear */
  1643. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1644. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1645. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1646. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1647. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1648. /* transmit control */
  1649. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1650. /* receive control reg: unicast + multicast + no FCS */
  1651. gma_write16(hw, port, GM_RX_CTRL,
  1652. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1653. /* transmit flow control */
  1654. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1655. /* transmit parameter */
  1656. gma_write16(hw, port, GM_TX_PARAM,
  1657. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1658. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1659. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1660. /* serial mode register */
  1661. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1662. if (hw->dev[port]->mtu > 1500)
  1663. reg |= GM_SMOD_JUMBO_ENA;
  1664. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1665. /* physical address: used for pause frames */
  1666. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1667. /* virtual address for data */
  1668. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1669. /* enable interrupt mask for counter overflows */
  1670. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1671. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1672. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1673. /* Initialize Mac Fifo */
  1674. /* Configure Rx MAC FIFO */
  1675. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1676. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1677. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1678. if (is_yukon_lite_a0(hw))
  1679. reg &= ~GMF_RX_F_FL_ON;
  1680. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1681. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1682. /*
  1683. * because Pause Packet Truncation in GMAC is not working
  1684. * we have to increase the Flush Threshold to 64 bytes
  1685. * in order to flush pause packets in Rx FIFO on Yukon-1
  1686. */
  1687. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1688. /* Configure Tx MAC FIFO */
  1689. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1690. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1691. }
  1692. /* Go into power down mode */
  1693. static void yukon_suspend(struct skge_hw *hw, int port)
  1694. {
  1695. u16 ctrl;
  1696. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1697. ctrl |= PHY_M_PC_POL_R_DIS;
  1698. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1699. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1700. ctrl |= PHY_CT_RESET;
  1701. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1702. /* switch IEEE compatible power down mode on */
  1703. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1704. ctrl |= PHY_CT_PDOWN;
  1705. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1706. }
  1707. static void yukon_stop(struct skge_port *skge)
  1708. {
  1709. struct skge_hw *hw = skge->hw;
  1710. int port = skge->port;
  1711. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1712. yukon_reset(hw, port);
  1713. gma_write16(hw, port, GM_GP_CTRL,
  1714. gma_read16(hw, port, GM_GP_CTRL)
  1715. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1716. gma_read16(hw, port, GM_GP_CTRL);
  1717. yukon_suspend(hw, port);
  1718. /* set GPHY Control reset */
  1719. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1720. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1721. }
  1722. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1723. {
  1724. struct skge_hw *hw = skge->hw;
  1725. int port = skge->port;
  1726. int i;
  1727. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1728. | gma_read32(hw, port, GM_TXO_OK_LO);
  1729. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1730. | gma_read32(hw, port, GM_RXO_OK_LO);
  1731. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1732. data[i] = gma_read32(hw, port,
  1733. skge_stats[i].gma_offset);
  1734. }
  1735. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1736. {
  1737. struct net_device *dev = hw->dev[port];
  1738. struct skge_port *skge = netdev_priv(dev);
  1739. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1740. if (netif_msg_intr(skge))
  1741. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1742. dev->name, status);
  1743. if (status & GM_IS_RX_FF_OR) {
  1744. ++skge->net_stats.rx_fifo_errors;
  1745. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1746. }
  1747. if (status & GM_IS_TX_FF_UR) {
  1748. ++skge->net_stats.tx_fifo_errors;
  1749. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1750. }
  1751. }
  1752. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1753. {
  1754. switch (aux & PHY_M_PS_SPEED_MSK) {
  1755. case PHY_M_PS_SPEED_1000:
  1756. return SPEED_1000;
  1757. case PHY_M_PS_SPEED_100:
  1758. return SPEED_100;
  1759. default:
  1760. return SPEED_10;
  1761. }
  1762. }
  1763. static void yukon_link_up(struct skge_port *skge)
  1764. {
  1765. struct skge_hw *hw = skge->hw;
  1766. int port = skge->port;
  1767. u16 reg;
  1768. /* Enable Transmit FIFO Underrun */
  1769. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1770. reg = gma_read16(hw, port, GM_GP_CTRL);
  1771. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1772. reg |= GM_GPCR_DUP_FULL;
  1773. /* enable Rx/Tx */
  1774. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1775. gma_write16(hw, port, GM_GP_CTRL, reg);
  1776. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1777. skge_link_up(skge);
  1778. }
  1779. static void yukon_link_down(struct skge_port *skge)
  1780. {
  1781. struct skge_hw *hw = skge->hw;
  1782. int port = skge->port;
  1783. u16 ctrl;
  1784. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1785. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1786. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1787. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1788. if (skge->flow_status == FLOW_STAT_REM_SEND) {
  1789. ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
  1790. ctrl |= PHY_M_AN_ASP;
  1791. /* restore Asymmetric Pause bit */
  1792. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
  1793. }
  1794. yukon_reset(hw, port);
  1795. skge_link_down(skge);
  1796. yukon_init(hw, port);
  1797. }
  1798. static void yukon_phy_intr(struct skge_port *skge)
  1799. {
  1800. struct skge_hw *hw = skge->hw;
  1801. int port = skge->port;
  1802. const char *reason = NULL;
  1803. u16 istatus, phystat;
  1804. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1805. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1806. if (netif_msg_intr(skge))
  1807. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1808. skge->netdev->name, istatus, phystat);
  1809. if (istatus & PHY_M_IS_AN_COMPL) {
  1810. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1811. & PHY_M_AN_RF) {
  1812. reason = "remote fault";
  1813. goto failed;
  1814. }
  1815. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1816. reason = "master/slave fault";
  1817. goto failed;
  1818. }
  1819. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1820. reason = "speed/duplex";
  1821. goto failed;
  1822. }
  1823. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1824. ? DUPLEX_FULL : DUPLEX_HALF;
  1825. skge->speed = yukon_speed(hw, phystat);
  1826. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1827. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1828. case PHY_M_PS_PAUSE_MSK:
  1829. skge->flow_status = FLOW_STAT_SYMMETRIC;
  1830. break;
  1831. case PHY_M_PS_RX_P_EN:
  1832. skge->flow_status = FLOW_STAT_REM_SEND;
  1833. break;
  1834. case PHY_M_PS_TX_P_EN:
  1835. skge->flow_status = FLOW_STAT_LOC_SEND;
  1836. break;
  1837. default:
  1838. skge->flow_status = FLOW_STAT_NONE;
  1839. }
  1840. if (skge->flow_status == FLOW_STAT_NONE ||
  1841. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1842. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1843. else
  1844. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1845. yukon_link_up(skge);
  1846. return;
  1847. }
  1848. if (istatus & PHY_M_IS_LSP_CHANGE)
  1849. skge->speed = yukon_speed(hw, phystat);
  1850. if (istatus & PHY_M_IS_DUP_CHANGE)
  1851. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1852. if (istatus & PHY_M_IS_LST_CHANGE) {
  1853. if (phystat & PHY_M_PS_LINK_UP)
  1854. yukon_link_up(skge);
  1855. else
  1856. yukon_link_down(skge);
  1857. }
  1858. return;
  1859. failed:
  1860. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1861. skge->netdev->name, reason);
  1862. /* XXX restart autonegotiation? */
  1863. }
  1864. static void skge_phy_reset(struct skge_port *skge)
  1865. {
  1866. struct skge_hw *hw = skge->hw;
  1867. int port = skge->port;
  1868. netif_stop_queue(skge->netdev);
  1869. netif_carrier_off(skge->netdev);
  1870. mutex_lock(&hw->phy_mutex);
  1871. if (hw->chip_id == CHIP_ID_GENESIS) {
  1872. genesis_reset(hw, port);
  1873. genesis_mac_init(hw, port);
  1874. } else {
  1875. yukon_reset(hw, port);
  1876. yukon_init(hw, port);
  1877. }
  1878. mutex_unlock(&hw->phy_mutex);
  1879. }
  1880. /* Basic MII support */
  1881. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1882. {
  1883. struct mii_ioctl_data *data = if_mii(ifr);
  1884. struct skge_port *skge = netdev_priv(dev);
  1885. struct skge_hw *hw = skge->hw;
  1886. int err = -EOPNOTSUPP;
  1887. if (!netif_running(dev))
  1888. return -ENODEV; /* Phy still in reset */
  1889. switch(cmd) {
  1890. case SIOCGMIIPHY:
  1891. data->phy_id = hw->phy_addr;
  1892. /* fallthru */
  1893. case SIOCGMIIREG: {
  1894. u16 val = 0;
  1895. mutex_lock(&hw->phy_mutex);
  1896. if (hw->chip_id == CHIP_ID_GENESIS)
  1897. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1898. else
  1899. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1900. mutex_unlock(&hw->phy_mutex);
  1901. data->val_out = val;
  1902. break;
  1903. }
  1904. case SIOCSMIIREG:
  1905. if (!capable(CAP_NET_ADMIN))
  1906. return -EPERM;
  1907. mutex_lock(&hw->phy_mutex);
  1908. if (hw->chip_id == CHIP_ID_GENESIS)
  1909. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1910. data->val_in);
  1911. else
  1912. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1913. data->val_in);
  1914. mutex_unlock(&hw->phy_mutex);
  1915. break;
  1916. }
  1917. return err;
  1918. }
  1919. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1920. {
  1921. u32 end;
  1922. start /= 8;
  1923. len /= 8;
  1924. end = start + len - 1;
  1925. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1926. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1927. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1928. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1929. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1930. if (q == Q_R1 || q == Q_R2) {
  1931. /* Set thresholds on receive queue's */
  1932. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1933. start + (2*len)/3);
  1934. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1935. start + (len/3));
  1936. } else {
  1937. /* Enable store & forward on Tx queue's because
  1938. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1939. */
  1940. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1941. }
  1942. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1943. }
  1944. /* Setup Bus Memory Interface */
  1945. static void skge_qset(struct skge_port *skge, u16 q,
  1946. const struct skge_element *e)
  1947. {
  1948. struct skge_hw *hw = skge->hw;
  1949. u32 watermark = 0x600;
  1950. u64 base = skge->dma + (e->desc - skge->mem);
  1951. /* optimization to reduce window on 32bit/33mhz */
  1952. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1953. watermark /= 2;
  1954. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1955. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1956. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1957. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1958. }
  1959. static int skge_up(struct net_device *dev)
  1960. {
  1961. struct skge_port *skge = netdev_priv(dev);
  1962. struct skge_hw *hw = skge->hw;
  1963. int port = skge->port;
  1964. u32 chunk, ram_addr;
  1965. size_t rx_size, tx_size;
  1966. int err;
  1967. if (netif_msg_ifup(skge))
  1968. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1969. if (dev->mtu > RX_BUF_SIZE)
  1970. skge->rx_buf_size = dev->mtu + ETH_HLEN;
  1971. else
  1972. skge->rx_buf_size = RX_BUF_SIZE;
  1973. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1974. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1975. skge->mem_size = tx_size + rx_size;
  1976. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1977. if (!skge->mem)
  1978. return -ENOMEM;
  1979. BUG_ON(skge->dma & 7);
  1980. if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
  1981. printk(KERN_ERR PFX "pci_alloc_consistent region crosses 4G boundary\n");
  1982. err = -EINVAL;
  1983. goto free_pci_mem;
  1984. }
  1985. memset(skge->mem, 0, skge->mem_size);
  1986. err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
  1987. if (err)
  1988. goto free_pci_mem;
  1989. err = skge_rx_fill(dev);
  1990. if (err)
  1991. goto free_rx_ring;
  1992. err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1993. skge->dma + rx_size);
  1994. if (err)
  1995. goto free_rx_ring;
  1996. /* Initialize MAC */
  1997. mutex_lock(&hw->phy_mutex);
  1998. if (hw->chip_id == CHIP_ID_GENESIS)
  1999. genesis_mac_init(hw, port);
  2000. else
  2001. yukon_mac_init(hw, port);
  2002. mutex_unlock(&hw->phy_mutex);
  2003. /* Configure RAMbuffers */
  2004. chunk = hw->ram_size / ((hw->ports + 1)*2);
  2005. ram_addr = hw->ram_offset + 2 * chunk * port;
  2006. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  2007. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  2008. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  2009. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  2010. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  2011. /* Start receiver BMU */
  2012. wmb();
  2013. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  2014. skge_led(skge, LED_MODE_ON);
  2015. netif_poll_enable(dev);
  2016. return 0;
  2017. free_rx_ring:
  2018. skge_rx_clean(skge);
  2019. kfree(skge->rx_ring.start);
  2020. free_pci_mem:
  2021. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2022. skge->mem = NULL;
  2023. return err;
  2024. }
  2025. static int skge_down(struct net_device *dev)
  2026. {
  2027. struct skge_port *skge = netdev_priv(dev);
  2028. struct skge_hw *hw = skge->hw;
  2029. int port = skge->port;
  2030. if (skge->mem == NULL)
  2031. return 0;
  2032. if (netif_msg_ifdown(skge))
  2033. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  2034. netif_stop_queue(dev);
  2035. if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
  2036. cancel_rearming_delayed_work(&skge->link_thread);
  2037. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  2038. if (hw->chip_id == CHIP_ID_GENESIS)
  2039. genesis_stop(skge);
  2040. else
  2041. yukon_stop(skge);
  2042. /* Stop transmitter */
  2043. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  2044. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  2045. RB_RST_SET|RB_DIS_OP_MD);
  2046. /* Disable Force Sync bit and Enable Alloc bit */
  2047. skge_write8(hw, SK_REG(port, TXA_CTRL),
  2048. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  2049. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  2050. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  2051. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  2052. /* Reset PCI FIFO */
  2053. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  2054. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  2055. /* Reset the RAM Buffer async Tx queue */
  2056. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  2057. /* stop receiver */
  2058. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  2059. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  2060. RB_RST_SET|RB_DIS_OP_MD);
  2061. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  2062. if (hw->chip_id == CHIP_ID_GENESIS) {
  2063. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  2064. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  2065. } else {
  2066. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  2067. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  2068. }
  2069. skge_led(skge, LED_MODE_OFF);
  2070. netif_poll_disable(dev);
  2071. skge_tx_clean(dev);
  2072. skge_rx_clean(skge);
  2073. kfree(skge->rx_ring.start);
  2074. kfree(skge->tx_ring.start);
  2075. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  2076. skge->mem = NULL;
  2077. return 0;
  2078. }
  2079. static inline int skge_avail(const struct skge_ring *ring)
  2080. {
  2081. return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
  2082. + (ring->to_clean - ring->to_use) - 1;
  2083. }
  2084. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  2085. {
  2086. struct skge_port *skge = netdev_priv(dev);
  2087. struct skge_hw *hw = skge->hw;
  2088. struct skge_element *e;
  2089. struct skge_tx_desc *td;
  2090. int i;
  2091. u32 control, len;
  2092. u64 map;
  2093. if (skb_padto(skb, ETH_ZLEN))
  2094. return NETDEV_TX_OK;
  2095. if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
  2096. return NETDEV_TX_BUSY;
  2097. e = skge->tx_ring.to_use;
  2098. td = e->desc;
  2099. BUG_ON(td->control & BMU_OWN);
  2100. e->skb = skb;
  2101. len = skb_headlen(skb);
  2102. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  2103. pci_unmap_addr_set(e, mapaddr, map);
  2104. pci_unmap_len_set(e, maplen, len);
  2105. td->dma_lo = map;
  2106. td->dma_hi = map >> 32;
  2107. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  2108. int offset = skb->h.raw - skb->data;
  2109. /* This seems backwards, but it is what the sk98lin
  2110. * does. Looks like hardware is wrong?
  2111. */
  2112. if (skb->h.ipiph->protocol == IPPROTO_UDP
  2113. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  2114. control = BMU_TCP_CHECK;
  2115. else
  2116. control = BMU_UDP_CHECK;
  2117. td->csum_offs = 0;
  2118. td->csum_start = offset;
  2119. td->csum_write = offset + skb->csum;
  2120. } else
  2121. control = BMU_CHECK;
  2122. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  2123. control |= BMU_EOF| BMU_IRQ_EOF;
  2124. else {
  2125. struct skge_tx_desc *tf = td;
  2126. control |= BMU_STFWD;
  2127. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2128. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2129. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  2130. frag->size, PCI_DMA_TODEVICE);
  2131. e = e->next;
  2132. e->skb = skb;
  2133. tf = e->desc;
  2134. BUG_ON(tf->control & BMU_OWN);
  2135. tf->dma_lo = map;
  2136. tf->dma_hi = (u64) map >> 32;
  2137. pci_unmap_addr_set(e, mapaddr, map);
  2138. pci_unmap_len_set(e, maplen, frag->size);
  2139. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  2140. }
  2141. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  2142. }
  2143. /* Make sure all the descriptors written */
  2144. wmb();
  2145. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  2146. wmb();
  2147. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  2148. if (unlikely(netif_msg_tx_queued(skge)))
  2149. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  2150. dev->name, e - skge->tx_ring.start, skb->len);
  2151. skge->tx_ring.to_use = e->next;
  2152. if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
  2153. pr_debug("%s: transmit queue full\n", dev->name);
  2154. netif_stop_queue(dev);
  2155. }
  2156. dev->trans_start = jiffies;
  2157. return NETDEV_TX_OK;
  2158. }
  2159. /* Free resources associated with this reing element */
  2160. static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
  2161. u32 control)
  2162. {
  2163. struct pci_dev *pdev = skge->hw->pdev;
  2164. BUG_ON(!e->skb);
  2165. /* skb header vs. fragment */
  2166. if (control & BMU_STF)
  2167. pci_unmap_single(pdev, pci_unmap_addr(e, mapaddr),
  2168. pci_unmap_len(e, maplen),
  2169. PCI_DMA_TODEVICE);
  2170. else
  2171. pci_unmap_page(pdev, pci_unmap_addr(e, mapaddr),
  2172. pci_unmap_len(e, maplen),
  2173. PCI_DMA_TODEVICE);
  2174. if (control & BMU_EOF) {
  2175. if (unlikely(netif_msg_tx_done(skge)))
  2176. printk(KERN_DEBUG PFX "%s: tx done slot %td\n",
  2177. skge->netdev->name, e - skge->tx_ring.start);
  2178. dev_kfree_skb(e->skb);
  2179. }
  2180. e->skb = NULL;
  2181. }
  2182. /* Free all buffers in transmit ring */
  2183. static void skge_tx_clean(struct net_device *dev)
  2184. {
  2185. struct skge_port *skge = netdev_priv(dev);
  2186. struct skge_element *e;
  2187. netif_tx_lock_bh(dev);
  2188. for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
  2189. struct skge_tx_desc *td = e->desc;
  2190. skge_tx_free(skge, e, td->control);
  2191. td->control = 0;
  2192. }
  2193. skge->tx_ring.to_clean = e;
  2194. netif_wake_queue(dev);
  2195. netif_tx_unlock_bh(dev);
  2196. }
  2197. static void skge_tx_timeout(struct net_device *dev)
  2198. {
  2199. struct skge_port *skge = netdev_priv(dev);
  2200. if (netif_msg_timer(skge))
  2201. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2202. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2203. skge_tx_clean(dev);
  2204. }
  2205. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2206. {
  2207. int err;
  2208. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2209. return -EINVAL;
  2210. if (!netif_running(dev)) {
  2211. dev->mtu = new_mtu;
  2212. return 0;
  2213. }
  2214. skge_down(dev);
  2215. dev->mtu = new_mtu;
  2216. err = skge_up(dev);
  2217. if (err)
  2218. dev_close(dev);
  2219. return err;
  2220. }
  2221. static void genesis_set_multicast(struct net_device *dev)
  2222. {
  2223. struct skge_port *skge = netdev_priv(dev);
  2224. struct skge_hw *hw = skge->hw;
  2225. int port = skge->port;
  2226. int i, count = dev->mc_count;
  2227. struct dev_mc_list *list = dev->mc_list;
  2228. u32 mode;
  2229. u8 filter[8];
  2230. mode = xm_read32(hw, port, XM_MODE);
  2231. mode |= XM_MD_ENA_HASH;
  2232. if (dev->flags & IFF_PROMISC)
  2233. mode |= XM_MD_ENA_PROM;
  2234. else
  2235. mode &= ~XM_MD_ENA_PROM;
  2236. if (dev->flags & IFF_ALLMULTI)
  2237. memset(filter, 0xff, sizeof(filter));
  2238. else {
  2239. memset(filter, 0, sizeof(filter));
  2240. for (i = 0; list && i < count; i++, list = list->next) {
  2241. u32 crc, bit;
  2242. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2243. bit = ~crc & 0x3f;
  2244. filter[bit/8] |= 1 << (bit%8);
  2245. }
  2246. }
  2247. xm_write32(hw, port, XM_MODE, mode);
  2248. xm_outhash(hw, port, XM_HSM, filter);
  2249. }
  2250. static void yukon_set_multicast(struct net_device *dev)
  2251. {
  2252. struct skge_port *skge = netdev_priv(dev);
  2253. struct skge_hw *hw = skge->hw;
  2254. int port = skge->port;
  2255. struct dev_mc_list *list = dev->mc_list;
  2256. u16 reg;
  2257. u8 filter[8];
  2258. memset(filter, 0, sizeof(filter));
  2259. reg = gma_read16(hw, port, GM_RX_CTRL);
  2260. reg |= GM_RXCR_UCF_ENA;
  2261. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2262. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2263. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2264. memset(filter, 0xff, sizeof(filter));
  2265. else if (dev->mc_count == 0) /* no multicast */
  2266. reg &= ~GM_RXCR_MCF_ENA;
  2267. else {
  2268. int i;
  2269. reg |= GM_RXCR_MCF_ENA;
  2270. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2271. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2272. filter[bit/8] |= 1 << (bit%8);
  2273. }
  2274. }
  2275. gma_write16(hw, port, GM_MC_ADDR_H1,
  2276. (u16)filter[0] | ((u16)filter[1] << 8));
  2277. gma_write16(hw, port, GM_MC_ADDR_H2,
  2278. (u16)filter[2] | ((u16)filter[3] << 8));
  2279. gma_write16(hw, port, GM_MC_ADDR_H3,
  2280. (u16)filter[4] | ((u16)filter[5] << 8));
  2281. gma_write16(hw, port, GM_MC_ADDR_H4,
  2282. (u16)filter[6] | ((u16)filter[7] << 8));
  2283. gma_write16(hw, port, GM_RX_CTRL, reg);
  2284. }
  2285. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2286. {
  2287. if (hw->chip_id == CHIP_ID_GENESIS)
  2288. return status >> XMR_FS_LEN_SHIFT;
  2289. else
  2290. return status >> GMR_FS_LEN_SHIFT;
  2291. }
  2292. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2293. {
  2294. if (hw->chip_id == CHIP_ID_GENESIS)
  2295. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2296. else
  2297. return (status & GMR_FS_ANY_ERR) ||
  2298. (status & GMR_FS_RX_OK) == 0;
  2299. }
  2300. /* Get receive buffer from descriptor.
  2301. * Handles copy of small buffers and reallocation failures
  2302. */
  2303. static struct sk_buff *skge_rx_get(struct net_device *dev,
  2304. struct skge_element *e,
  2305. u32 control, u32 status, u16 csum)
  2306. {
  2307. struct skge_port *skge = netdev_priv(dev);
  2308. struct sk_buff *skb;
  2309. u16 len = control & BMU_BBC;
  2310. if (unlikely(netif_msg_rx_status(skge)))
  2311. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2312. dev->name, e - skge->rx_ring.start,
  2313. status, len);
  2314. if (len > skge->rx_buf_size)
  2315. goto error;
  2316. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2317. goto error;
  2318. if (bad_phy_status(skge->hw, status))
  2319. goto error;
  2320. if (phy_length(skge->hw, status) != len)
  2321. goto error;
  2322. if (len < RX_COPY_THRESHOLD) {
  2323. skb = netdev_alloc_skb(dev, len + 2);
  2324. if (!skb)
  2325. goto resubmit;
  2326. skb_reserve(skb, 2);
  2327. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2328. pci_unmap_addr(e, mapaddr),
  2329. len, PCI_DMA_FROMDEVICE);
  2330. memcpy(skb->data, e->skb->data, len);
  2331. pci_dma_sync_single_for_device(skge->hw->pdev,
  2332. pci_unmap_addr(e, mapaddr),
  2333. len, PCI_DMA_FROMDEVICE);
  2334. skge_rx_reuse(e, skge->rx_buf_size);
  2335. } else {
  2336. struct sk_buff *nskb;
  2337. nskb = netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN);
  2338. if (!nskb)
  2339. goto resubmit;
  2340. skb_reserve(nskb, NET_IP_ALIGN);
  2341. pci_unmap_single(skge->hw->pdev,
  2342. pci_unmap_addr(e, mapaddr),
  2343. pci_unmap_len(e, maplen),
  2344. PCI_DMA_FROMDEVICE);
  2345. skb = e->skb;
  2346. prefetch(skb->data);
  2347. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2348. }
  2349. skb_put(skb, len);
  2350. if (skge->rx_csum) {
  2351. skb->csum = csum;
  2352. skb->ip_summed = CHECKSUM_COMPLETE;
  2353. }
  2354. skb->protocol = eth_type_trans(skb, dev);
  2355. return skb;
  2356. error:
  2357. if (netif_msg_rx_err(skge))
  2358. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2359. dev->name, e - skge->rx_ring.start,
  2360. control, status);
  2361. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2362. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2363. skge->net_stats.rx_length_errors++;
  2364. if (status & XMR_FS_FRA_ERR)
  2365. skge->net_stats.rx_frame_errors++;
  2366. if (status & XMR_FS_FCS_ERR)
  2367. skge->net_stats.rx_crc_errors++;
  2368. } else {
  2369. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2370. skge->net_stats.rx_length_errors++;
  2371. if (status & GMR_FS_FRAGMENT)
  2372. skge->net_stats.rx_frame_errors++;
  2373. if (status & GMR_FS_CRC_ERR)
  2374. skge->net_stats.rx_crc_errors++;
  2375. }
  2376. resubmit:
  2377. skge_rx_reuse(e, skge->rx_buf_size);
  2378. return NULL;
  2379. }
  2380. /* Free all buffers in Tx ring which are no longer owned by device */
  2381. static void skge_tx_done(struct net_device *dev)
  2382. {
  2383. struct skge_port *skge = netdev_priv(dev);
  2384. struct skge_ring *ring = &skge->tx_ring;
  2385. struct skge_element *e;
  2386. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2387. netif_tx_lock(dev);
  2388. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2389. struct skge_tx_desc *td = e->desc;
  2390. if (td->control & BMU_OWN)
  2391. break;
  2392. skge_tx_free(skge, e, td->control);
  2393. }
  2394. skge->tx_ring.to_clean = e;
  2395. if (skge_avail(&skge->tx_ring) > TX_LOW_WATER)
  2396. netif_wake_queue(dev);
  2397. netif_tx_unlock(dev);
  2398. }
  2399. static int skge_poll(struct net_device *dev, int *budget)
  2400. {
  2401. struct skge_port *skge = netdev_priv(dev);
  2402. struct skge_hw *hw = skge->hw;
  2403. struct skge_ring *ring = &skge->rx_ring;
  2404. struct skge_element *e;
  2405. int to_do = min(dev->quota, *budget);
  2406. int work_done = 0;
  2407. skge_tx_done(dev);
  2408. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2409. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2410. struct skge_rx_desc *rd = e->desc;
  2411. struct sk_buff *skb;
  2412. u32 control;
  2413. rmb();
  2414. control = rd->control;
  2415. if (control & BMU_OWN)
  2416. break;
  2417. skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
  2418. if (likely(skb)) {
  2419. dev->last_rx = jiffies;
  2420. netif_receive_skb(skb);
  2421. ++work_done;
  2422. }
  2423. }
  2424. ring->to_clean = e;
  2425. /* restart receiver */
  2426. wmb();
  2427. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
  2428. *budget -= work_done;
  2429. dev->quota -= work_done;
  2430. if (work_done >= to_do)
  2431. return 1; /* not done */
  2432. spin_lock_irq(&hw->hw_lock);
  2433. __netif_rx_complete(dev);
  2434. hw->intr_mask |= irqmask[skge->port];
  2435. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2436. skge_read32(hw, B0_IMSK);
  2437. spin_unlock_irq(&hw->hw_lock);
  2438. return 0;
  2439. }
  2440. /* Parity errors seem to happen when Genesis is connected to a switch
  2441. * with no other ports present. Heartbeat error??
  2442. */
  2443. static void skge_mac_parity(struct skge_hw *hw, int port)
  2444. {
  2445. struct net_device *dev = hw->dev[port];
  2446. if (dev) {
  2447. struct skge_port *skge = netdev_priv(dev);
  2448. ++skge->net_stats.tx_heartbeat_errors;
  2449. }
  2450. if (hw->chip_id == CHIP_ID_GENESIS)
  2451. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2452. MFF_CLR_PERR);
  2453. else
  2454. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2455. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2456. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2457. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2458. }
  2459. static void skge_mac_intr(struct skge_hw *hw, int port)
  2460. {
  2461. if (hw->chip_id == CHIP_ID_GENESIS)
  2462. genesis_mac_intr(hw, port);
  2463. else
  2464. yukon_mac_intr(hw, port);
  2465. }
  2466. /* Handle device specific framing and timeout interrupts */
  2467. static void skge_error_irq(struct skge_hw *hw)
  2468. {
  2469. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2470. if (hw->chip_id == CHIP_ID_GENESIS) {
  2471. /* clear xmac errors */
  2472. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2473. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2474. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2475. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2476. } else {
  2477. /* Timestamp (unused) overflow */
  2478. if (hwstatus & IS_IRQ_TIST_OV)
  2479. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2480. }
  2481. if (hwstatus & IS_RAM_RD_PAR) {
  2482. printk(KERN_ERR PFX "Ram read data parity error\n");
  2483. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2484. }
  2485. if (hwstatus & IS_RAM_WR_PAR) {
  2486. printk(KERN_ERR PFX "Ram write data parity error\n");
  2487. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2488. }
  2489. if (hwstatus & IS_M1_PAR_ERR)
  2490. skge_mac_parity(hw, 0);
  2491. if (hwstatus & IS_M2_PAR_ERR)
  2492. skge_mac_parity(hw, 1);
  2493. if (hwstatus & IS_R1_PAR_ERR) {
  2494. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2495. hw->dev[0]->name);
  2496. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2497. }
  2498. if (hwstatus & IS_R2_PAR_ERR) {
  2499. printk(KERN_ERR PFX "%s: receive queue parity error\n",
  2500. hw->dev[1]->name);
  2501. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2502. }
  2503. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2504. u16 pci_status, pci_cmd;
  2505. pci_read_config_word(hw->pdev, PCI_COMMAND, &pci_cmd);
  2506. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2507. printk(KERN_ERR PFX "%s: PCI error cmd=%#x status=%#x\n",
  2508. pci_name(hw->pdev), pci_cmd, pci_status);
  2509. /* Write the error bits back to clear them. */
  2510. pci_status &= PCI_STATUS_ERROR_BITS;
  2511. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2512. pci_write_config_word(hw->pdev, PCI_COMMAND,
  2513. pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  2514. pci_write_config_word(hw->pdev, PCI_STATUS, pci_status);
  2515. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2516. /* if error still set then just ignore it */
  2517. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2518. if (hwstatus & IS_IRQ_STAT) {
  2519. printk(KERN_INFO PFX "unable to clear error (so ignoring them)\n");
  2520. hw->intr_mask &= ~IS_HW_ERR;
  2521. }
  2522. }
  2523. }
  2524. /*
  2525. * Interrupt from PHY are handled in work queue
  2526. * because accessing phy registers requires spin wait which might
  2527. * cause excess interrupt latency.
  2528. */
  2529. static void skge_extirq(void *arg)
  2530. {
  2531. struct skge_hw *hw = arg;
  2532. int port;
  2533. mutex_lock(&hw->phy_mutex);
  2534. for (port = 0; port < hw->ports; port++) {
  2535. struct net_device *dev = hw->dev[port];
  2536. struct skge_port *skge = netdev_priv(dev);
  2537. if (netif_running(dev)) {
  2538. if (hw->chip_id != CHIP_ID_GENESIS)
  2539. yukon_phy_intr(skge);
  2540. else if (hw->phy_type == SK_PHY_BCOM)
  2541. bcom_phy_intr(skge);
  2542. }
  2543. }
  2544. mutex_unlock(&hw->phy_mutex);
  2545. spin_lock_irq(&hw->hw_lock);
  2546. hw->intr_mask |= IS_EXT_REG;
  2547. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2548. skge_read32(hw, B0_IMSK);
  2549. spin_unlock_irq(&hw->hw_lock);
  2550. }
  2551. static irqreturn_t skge_intr(int irq, void *dev_id)
  2552. {
  2553. struct skge_hw *hw = dev_id;
  2554. u32 status;
  2555. int handled = 0;
  2556. spin_lock(&hw->hw_lock);
  2557. /* Reading this register masks IRQ */
  2558. status = skge_read32(hw, B0_SP_ISRC);
  2559. if (status == 0 || status == ~0)
  2560. goto out;
  2561. handled = 1;
  2562. status &= hw->intr_mask;
  2563. if (status & IS_EXT_REG) {
  2564. hw->intr_mask &= ~IS_EXT_REG;
  2565. schedule_work(&hw->phy_work);
  2566. }
  2567. if (status & (IS_XA1_F|IS_R1_F)) {
  2568. hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
  2569. netif_rx_schedule(hw->dev[0]);
  2570. }
  2571. if (status & IS_PA_TO_TX1)
  2572. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2573. if (status & IS_PA_TO_RX1) {
  2574. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2575. ++skge->net_stats.rx_over_errors;
  2576. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2577. }
  2578. if (status & IS_MAC1)
  2579. skge_mac_intr(hw, 0);
  2580. if (hw->dev[1]) {
  2581. if (status & (IS_XA2_F|IS_R2_F)) {
  2582. hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
  2583. netif_rx_schedule(hw->dev[1]);
  2584. }
  2585. if (status & IS_PA_TO_RX2) {
  2586. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2587. ++skge->net_stats.rx_over_errors;
  2588. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2589. }
  2590. if (status & IS_PA_TO_TX2)
  2591. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2592. if (status & IS_MAC2)
  2593. skge_mac_intr(hw, 1);
  2594. }
  2595. if (status & IS_HW_ERR)
  2596. skge_error_irq(hw);
  2597. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2598. skge_read32(hw, B0_IMSK);
  2599. out:
  2600. spin_unlock(&hw->hw_lock);
  2601. return IRQ_RETVAL(handled);
  2602. }
  2603. #ifdef CONFIG_NET_POLL_CONTROLLER
  2604. static void skge_netpoll(struct net_device *dev)
  2605. {
  2606. struct skge_port *skge = netdev_priv(dev);
  2607. disable_irq(dev->irq);
  2608. skge_intr(dev->irq, skge->hw);
  2609. enable_irq(dev->irq);
  2610. }
  2611. #endif
  2612. static int skge_set_mac_address(struct net_device *dev, void *p)
  2613. {
  2614. struct skge_port *skge = netdev_priv(dev);
  2615. struct skge_hw *hw = skge->hw;
  2616. unsigned port = skge->port;
  2617. const struct sockaddr *addr = p;
  2618. if (!is_valid_ether_addr(addr->sa_data))
  2619. return -EADDRNOTAVAIL;
  2620. mutex_lock(&hw->phy_mutex);
  2621. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2622. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2623. dev->dev_addr, ETH_ALEN);
  2624. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2625. dev->dev_addr, ETH_ALEN);
  2626. if (hw->chip_id == CHIP_ID_GENESIS)
  2627. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2628. else {
  2629. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2630. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2631. }
  2632. mutex_unlock(&hw->phy_mutex);
  2633. return 0;
  2634. }
  2635. static const struct {
  2636. u8 id;
  2637. const char *name;
  2638. } skge_chips[] = {
  2639. { CHIP_ID_GENESIS, "Genesis" },
  2640. { CHIP_ID_YUKON, "Yukon" },
  2641. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2642. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2643. };
  2644. static const char *skge_board_name(const struct skge_hw *hw)
  2645. {
  2646. int i;
  2647. static char buf[16];
  2648. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2649. if (skge_chips[i].id == hw->chip_id)
  2650. return skge_chips[i].name;
  2651. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2652. return buf;
  2653. }
  2654. /*
  2655. * Setup the board data structure, but don't bring up
  2656. * the port(s)
  2657. */
  2658. static int skge_reset(struct skge_hw *hw)
  2659. {
  2660. u32 reg;
  2661. u16 ctst, pci_status;
  2662. u8 t8, mac_cfg, pmd_type;
  2663. int i;
  2664. ctst = skge_read16(hw, B0_CTST);
  2665. /* do a SW reset */
  2666. skge_write8(hw, B0_CTST, CS_RST_SET);
  2667. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2668. /* clear PCI errors, if any */
  2669. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2670. skge_write8(hw, B2_TST_CTRL2, 0);
  2671. pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
  2672. pci_write_config_word(hw->pdev, PCI_STATUS,
  2673. pci_status | PCI_STATUS_ERROR_BITS);
  2674. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2675. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2676. /* restore CLK_RUN bits (for Yukon-Lite) */
  2677. skge_write16(hw, B0_CTST,
  2678. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2679. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2680. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2681. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2682. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2683. switch (hw->chip_id) {
  2684. case CHIP_ID_GENESIS:
  2685. switch (hw->phy_type) {
  2686. case SK_PHY_XMAC:
  2687. hw->phy_addr = PHY_ADDR_XMAC;
  2688. break;
  2689. case SK_PHY_BCOM:
  2690. hw->phy_addr = PHY_ADDR_BCOM;
  2691. break;
  2692. default:
  2693. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2694. pci_name(hw->pdev), hw->phy_type);
  2695. return -EOPNOTSUPP;
  2696. }
  2697. break;
  2698. case CHIP_ID_YUKON:
  2699. case CHIP_ID_YUKON_LITE:
  2700. case CHIP_ID_YUKON_LP:
  2701. if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2702. hw->copper = 1;
  2703. hw->phy_addr = PHY_ADDR_MARV;
  2704. break;
  2705. default:
  2706. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2707. pci_name(hw->pdev), hw->chip_id);
  2708. return -EOPNOTSUPP;
  2709. }
  2710. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2711. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2712. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2713. /* read the adapters RAM size */
  2714. t8 = skge_read8(hw, B2_E_0);
  2715. if (hw->chip_id == CHIP_ID_GENESIS) {
  2716. if (t8 == 3) {
  2717. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2718. hw->ram_size = 0x100000;
  2719. hw->ram_offset = 0x80000;
  2720. } else
  2721. hw->ram_size = t8 * 512;
  2722. }
  2723. else if (t8 == 0)
  2724. hw->ram_size = 0x20000;
  2725. else
  2726. hw->ram_size = t8 * 4096;
  2727. hw->intr_mask = IS_HW_ERR | IS_PORT_1;
  2728. if (hw->ports > 1)
  2729. hw->intr_mask |= IS_PORT_2;
  2730. if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
  2731. hw->intr_mask |= IS_EXT_REG;
  2732. if (hw->chip_id == CHIP_ID_GENESIS)
  2733. genesis_init(hw);
  2734. else {
  2735. /* switch power to VCC (WA for VAUX problem) */
  2736. skge_write8(hw, B0_POWER_CTRL,
  2737. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2738. /* avoid boards with stuck Hardware error bits */
  2739. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2740. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2741. printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
  2742. hw->intr_mask &= ~IS_HW_ERR;
  2743. }
  2744. /* Clear PHY COMA */
  2745. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2746. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2747. reg &= ~PCI_PHY_COMA;
  2748. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2749. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2750. for (i = 0; i < hw->ports; i++) {
  2751. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2752. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2753. }
  2754. }
  2755. /* turn off hardware timer (unused) */
  2756. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2757. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2758. skge_write8(hw, B0_LED, LED_STAT_ON);
  2759. /* enable the Tx Arbiters */
  2760. for (i = 0; i < hw->ports; i++)
  2761. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2762. /* Initialize ram interface */
  2763. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2764. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2765. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2766. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2767. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2768. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2769. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2770. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2771. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2772. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2773. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2774. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2775. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2776. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2777. /* Set interrupt moderation for Transmit only
  2778. * Receive interrupts avoided by NAPI
  2779. */
  2780. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2781. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2782. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2783. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2784. mutex_lock(&hw->phy_mutex);
  2785. for (i = 0; i < hw->ports; i++) {
  2786. if (hw->chip_id == CHIP_ID_GENESIS)
  2787. genesis_reset(hw, i);
  2788. else
  2789. yukon_reset(hw, i);
  2790. }
  2791. mutex_unlock(&hw->phy_mutex);
  2792. return 0;
  2793. }
  2794. /* Initialize network device */
  2795. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2796. int highmem)
  2797. {
  2798. struct skge_port *skge;
  2799. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2800. if (!dev) {
  2801. printk(KERN_ERR "skge etherdev alloc failed");
  2802. return NULL;
  2803. }
  2804. SET_MODULE_OWNER(dev);
  2805. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2806. dev->open = skge_up;
  2807. dev->stop = skge_down;
  2808. dev->do_ioctl = skge_ioctl;
  2809. dev->hard_start_xmit = skge_xmit_frame;
  2810. dev->get_stats = skge_get_stats;
  2811. if (hw->chip_id == CHIP_ID_GENESIS)
  2812. dev->set_multicast_list = genesis_set_multicast;
  2813. else
  2814. dev->set_multicast_list = yukon_set_multicast;
  2815. dev->set_mac_address = skge_set_mac_address;
  2816. dev->change_mtu = skge_change_mtu;
  2817. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2818. dev->tx_timeout = skge_tx_timeout;
  2819. dev->watchdog_timeo = TX_WATCHDOG;
  2820. dev->poll = skge_poll;
  2821. dev->weight = NAPI_WEIGHT;
  2822. #ifdef CONFIG_NET_POLL_CONTROLLER
  2823. dev->poll_controller = skge_netpoll;
  2824. #endif
  2825. dev->irq = hw->pdev->irq;
  2826. if (highmem)
  2827. dev->features |= NETIF_F_HIGHDMA;
  2828. skge = netdev_priv(dev);
  2829. skge->netdev = dev;
  2830. skge->hw = hw;
  2831. skge->msg_enable = netif_msg_init(debug, default_msg);
  2832. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2833. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2834. /* Auto speed and flow control */
  2835. skge->autoneg = AUTONEG_ENABLE;
  2836. skge->flow_control = FLOW_MODE_SYM_OR_REM;
  2837. skge->duplex = -1;
  2838. skge->speed = -1;
  2839. skge->advertising = skge_supported_modes(hw);
  2840. hw->dev[port] = dev;
  2841. skge->port = port;
  2842. /* Only used for Genesis XMAC */
  2843. INIT_WORK(&skge->link_thread, xm_link_timer, dev);
  2844. if (hw->chip_id != CHIP_ID_GENESIS) {
  2845. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2846. skge->rx_csum = 1;
  2847. }
  2848. /* read the mac address */
  2849. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2850. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2851. /* device is off until link detection */
  2852. netif_carrier_off(dev);
  2853. netif_stop_queue(dev);
  2854. return dev;
  2855. }
  2856. static void __devinit skge_show_addr(struct net_device *dev)
  2857. {
  2858. const struct skge_port *skge = netdev_priv(dev);
  2859. if (netif_msg_probe(skge))
  2860. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2861. dev->name,
  2862. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2863. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2864. }
  2865. static int __devinit skge_probe(struct pci_dev *pdev,
  2866. const struct pci_device_id *ent)
  2867. {
  2868. struct net_device *dev, *dev1;
  2869. struct skge_hw *hw;
  2870. int err, using_dac = 0;
  2871. err = pci_enable_device(pdev);
  2872. if (err) {
  2873. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2874. pci_name(pdev));
  2875. goto err_out;
  2876. }
  2877. err = pci_request_regions(pdev, DRV_NAME);
  2878. if (err) {
  2879. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2880. pci_name(pdev));
  2881. goto err_out_disable_pdev;
  2882. }
  2883. pci_set_master(pdev);
  2884. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2885. using_dac = 1;
  2886. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2887. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2888. using_dac = 0;
  2889. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2890. }
  2891. if (err) {
  2892. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2893. pci_name(pdev));
  2894. goto err_out_free_regions;
  2895. }
  2896. #ifdef __BIG_ENDIAN
  2897. /* byte swap descriptors in hardware */
  2898. {
  2899. u32 reg;
  2900. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2901. reg |= PCI_REV_DESC;
  2902. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2903. }
  2904. #endif
  2905. err = -ENOMEM;
  2906. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2907. if (!hw) {
  2908. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2909. pci_name(pdev));
  2910. goto err_out_free_regions;
  2911. }
  2912. hw->pdev = pdev;
  2913. mutex_init(&hw->phy_mutex);
  2914. INIT_WORK(&hw->phy_work, skge_extirq, hw);
  2915. spin_lock_init(&hw->hw_lock);
  2916. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2917. if (!hw->regs) {
  2918. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2919. pci_name(pdev));
  2920. goto err_out_free_hw;
  2921. }
  2922. err = skge_reset(hw);
  2923. if (err)
  2924. goto err_out_iounmap;
  2925. printk(KERN_INFO PFX DRV_VERSION " addr 0x%llx irq %d chip %s rev %d\n",
  2926. (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
  2927. skge_board_name(hw), hw->chip_rev);
  2928. dev = skge_devinit(hw, 0, using_dac);
  2929. if (!dev)
  2930. goto err_out_led_off;
  2931. if (!is_valid_ether_addr(dev->dev_addr)) {
  2932. printk(KERN_ERR PFX "%s: bad (zero?) ethernet address in rom\n",
  2933. pci_name(pdev));
  2934. err = -EIO;
  2935. goto err_out_free_netdev;
  2936. }
  2937. err = register_netdev(dev);
  2938. if (err) {
  2939. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2940. pci_name(pdev));
  2941. goto err_out_free_netdev;
  2942. }
  2943. err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, dev->name, hw);
  2944. if (err) {
  2945. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2946. dev->name, pdev->irq);
  2947. goto err_out_unregister;
  2948. }
  2949. skge_show_addr(dev);
  2950. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2951. if (register_netdev(dev1) == 0)
  2952. skge_show_addr(dev1);
  2953. else {
  2954. /* Failure to register second port need not be fatal */
  2955. printk(KERN_WARNING PFX "register of second port failed\n");
  2956. hw->dev[1] = NULL;
  2957. free_netdev(dev1);
  2958. }
  2959. }
  2960. pci_set_drvdata(pdev, hw);
  2961. return 0;
  2962. err_out_unregister:
  2963. unregister_netdev(dev);
  2964. err_out_free_netdev:
  2965. free_netdev(dev);
  2966. err_out_led_off:
  2967. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2968. err_out_iounmap:
  2969. iounmap(hw->regs);
  2970. err_out_free_hw:
  2971. kfree(hw);
  2972. err_out_free_regions:
  2973. pci_release_regions(pdev);
  2974. err_out_disable_pdev:
  2975. pci_disable_device(pdev);
  2976. pci_set_drvdata(pdev, NULL);
  2977. err_out:
  2978. return err;
  2979. }
  2980. static void __devexit skge_remove(struct pci_dev *pdev)
  2981. {
  2982. struct skge_hw *hw = pci_get_drvdata(pdev);
  2983. struct net_device *dev0, *dev1;
  2984. if (!hw)
  2985. return;
  2986. if ((dev1 = hw->dev[1]))
  2987. unregister_netdev(dev1);
  2988. dev0 = hw->dev[0];
  2989. unregister_netdev(dev0);
  2990. spin_lock_irq(&hw->hw_lock);
  2991. hw->intr_mask = 0;
  2992. skge_write32(hw, B0_IMSK, 0);
  2993. skge_read32(hw, B0_IMSK);
  2994. spin_unlock_irq(&hw->hw_lock);
  2995. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2996. skge_write8(hw, B0_CTST, CS_RST_SET);
  2997. flush_scheduled_work();
  2998. free_irq(pdev->irq, hw);
  2999. pci_release_regions(pdev);
  3000. pci_disable_device(pdev);
  3001. if (dev1)
  3002. free_netdev(dev1);
  3003. free_netdev(dev0);
  3004. iounmap(hw->regs);
  3005. kfree(hw);
  3006. pci_set_drvdata(pdev, NULL);
  3007. }
  3008. #ifdef CONFIG_PM
  3009. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  3010. {
  3011. struct skge_hw *hw = pci_get_drvdata(pdev);
  3012. int i, wol = 0;
  3013. pci_save_state(pdev);
  3014. for (i = 0; i < hw->ports; i++) {
  3015. struct net_device *dev = hw->dev[i];
  3016. if (netif_running(dev)) {
  3017. struct skge_port *skge = netdev_priv(dev);
  3018. netif_carrier_off(dev);
  3019. if (skge->wol)
  3020. netif_stop_queue(dev);
  3021. else
  3022. skge_down(dev);
  3023. wol |= skge->wol;
  3024. }
  3025. netif_device_detach(dev);
  3026. }
  3027. skge_write32(hw, B0_IMSK, 0);
  3028. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  3029. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3030. return 0;
  3031. }
  3032. static int skge_resume(struct pci_dev *pdev)
  3033. {
  3034. struct skge_hw *hw = pci_get_drvdata(pdev);
  3035. int i, err;
  3036. pci_set_power_state(pdev, PCI_D0);
  3037. pci_restore_state(pdev);
  3038. pci_enable_wake(pdev, PCI_D0, 0);
  3039. err = skge_reset(hw);
  3040. if (err)
  3041. goto out;
  3042. for (i = 0; i < hw->ports; i++) {
  3043. struct net_device *dev = hw->dev[i];
  3044. netif_device_attach(dev);
  3045. if (netif_running(dev)) {
  3046. err = skge_up(dev);
  3047. if (err) {
  3048. printk(KERN_ERR PFX "%s: could not up: %d\n",
  3049. dev->name, err);
  3050. dev_close(dev);
  3051. goto out;
  3052. }
  3053. }
  3054. }
  3055. out:
  3056. return err;
  3057. }
  3058. #endif
  3059. static struct pci_driver skge_driver = {
  3060. .name = DRV_NAME,
  3061. .id_table = skge_id_table,
  3062. .probe = skge_probe,
  3063. .remove = __devexit_p(skge_remove),
  3064. #ifdef CONFIG_PM
  3065. .suspend = skge_suspend,
  3066. .resume = skge_resume,
  3067. #endif
  3068. };
  3069. static int __init skge_init_module(void)
  3070. {
  3071. return pci_register_driver(&skge_driver);
  3072. }
  3073. static void __exit skge_cleanup_module(void)
  3074. {
  3075. pci_unregister_driver(&skge_driver);
  3076. }
  3077. module_init(skge_init_module);
  3078. module_exit(skge_cleanup_module);