qla3xxx.c 90 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/init.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/if_arp.h>
  25. #include <linux/if_ether.h>
  26. #include <linux/netdevice.h>
  27. #include <linux/etherdevice.h>
  28. #include <linux/ethtool.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/rtnetlink.h>
  31. #include <linux/if_vlan.h>
  32. #include <linux/init.h>
  33. #include <linux/delay.h>
  34. #include <linux/mm.h>
  35. #include "qla3xxx.h"
  36. #define DRV_NAME "qla3xxx"
  37. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  38. #define DRV_VERSION "v2.02.00-k36"
  39. #define PFX DRV_NAME " "
  40. static const char ql3xxx_driver_name[] = DRV_NAME;
  41. static const char ql3xxx_driver_version[] = DRV_VERSION;
  42. MODULE_AUTHOR("QLogic Corporation");
  43. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  44. MODULE_LICENSE("GPL");
  45. MODULE_VERSION(DRV_VERSION);
  46. static const u32 default_msg
  47. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  48. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  49. static int debug = -1; /* defaults above */
  50. module_param(debug, int, 0);
  51. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  52. static int msi;
  53. module_param(msi, int, 0);
  54. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  55. static struct pci_device_id ql3xxx_pci_tbl[] __devinitdata = {
  56. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  57. /* required last entry */
  58. {0,}
  59. };
  60. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  61. /*
  62. * Caller must take hw_lock.
  63. */
  64. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  65. u32 sem_mask, u32 sem_bits)
  66. {
  67. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  68. u32 value;
  69. unsigned int seconds = 3;
  70. do {
  71. writel((sem_mask | sem_bits),
  72. &port_regs->CommonRegs.semaphoreReg);
  73. value = readl(&port_regs->CommonRegs.semaphoreReg);
  74. if ((value & (sem_mask >> 16)) == sem_bits)
  75. return 0;
  76. ssleep(1);
  77. } while(--seconds);
  78. return -1;
  79. }
  80. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  81. {
  82. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  83. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  84. readl(&port_regs->CommonRegs.semaphoreReg);
  85. }
  86. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  87. {
  88. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  89. u32 value;
  90. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  91. value = readl(&port_regs->CommonRegs.semaphoreReg);
  92. return ((value & (sem_mask >> 16)) == sem_bits);
  93. }
  94. /*
  95. * Caller holds hw_lock.
  96. */
  97. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  98. {
  99. int i = 0;
  100. while (1) {
  101. if (!ql_sem_lock(qdev,
  102. QL_DRVR_SEM_MASK,
  103. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  104. * 2) << 1)) {
  105. if (i < 10) {
  106. ssleep(1);
  107. i++;
  108. } else {
  109. printk(KERN_ERR PFX "%s: Timed out waiting for "
  110. "driver lock...\n",
  111. qdev->ndev->name);
  112. return 0;
  113. }
  114. } else {
  115. printk(KERN_DEBUG PFX
  116. "%s: driver lock acquired.\n",
  117. qdev->ndev->name);
  118. return 1;
  119. }
  120. }
  121. }
  122. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  123. {
  124. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  125. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  126. &port_regs->CommonRegs.ispControlStatus);
  127. readl(&port_regs->CommonRegs.ispControlStatus);
  128. qdev->current_page = page;
  129. }
  130. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
  131. u32 __iomem * reg)
  132. {
  133. u32 value;
  134. unsigned long hw_flags;
  135. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  136. value = readl(reg);
  137. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  138. return value;
  139. }
  140. static u32 ql_read_common_reg(struct ql3_adapter *qdev,
  141. u32 __iomem * reg)
  142. {
  143. return readl(reg);
  144. }
  145. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  146. {
  147. u32 value;
  148. unsigned long hw_flags;
  149. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  150. if (qdev->current_page != 0)
  151. ql_set_register_page(qdev,0);
  152. value = readl(reg);
  153. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  154. return value;
  155. }
  156. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  157. {
  158. if (qdev->current_page != 0)
  159. ql_set_register_page(qdev,0);
  160. return readl(reg);
  161. }
  162. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  163. u32 __iomem *reg, u32 value)
  164. {
  165. unsigned long hw_flags;
  166. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  167. writel(value, reg);
  168. readl(reg);
  169. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  170. return;
  171. }
  172. static void ql_write_common_reg(struct ql3_adapter *qdev,
  173. u32 __iomem *reg, u32 value)
  174. {
  175. writel(value, reg);
  176. readl(reg);
  177. return;
  178. }
  179. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  180. u32 __iomem *reg, u32 value)
  181. {
  182. if (qdev->current_page != 0)
  183. ql_set_register_page(qdev,0);
  184. writel(value, reg);
  185. readl(reg);
  186. return;
  187. }
  188. /*
  189. * Caller holds hw_lock. Only called during init.
  190. */
  191. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  192. u32 __iomem *reg, u32 value)
  193. {
  194. if (qdev->current_page != 1)
  195. ql_set_register_page(qdev,1);
  196. writel(value, reg);
  197. readl(reg);
  198. return;
  199. }
  200. /*
  201. * Caller holds hw_lock. Only called during init.
  202. */
  203. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  204. u32 __iomem *reg, u32 value)
  205. {
  206. if (qdev->current_page != 2)
  207. ql_set_register_page(qdev,2);
  208. writel(value, reg);
  209. readl(reg);
  210. return;
  211. }
  212. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  213. {
  214. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  215. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  216. (ISP_IMR_ENABLE_INT << 16));
  217. }
  218. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  219. {
  220. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  221. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  222. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  223. }
  224. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  225. struct ql_rcv_buf_cb *lrg_buf_cb)
  226. {
  227. u64 map;
  228. lrg_buf_cb->next = NULL;
  229. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  230. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  231. } else {
  232. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  233. qdev->lrg_buf_free_tail = lrg_buf_cb;
  234. }
  235. if (!lrg_buf_cb->skb) {
  236. lrg_buf_cb->skb = dev_alloc_skb(qdev->lrg_buffer_len);
  237. if (unlikely(!lrg_buf_cb->skb)) {
  238. printk(KERN_ERR PFX "%s: failed dev_alloc_skb().\n",
  239. qdev->ndev->name);
  240. qdev->lrg_buf_skb_check++;
  241. } else {
  242. /*
  243. * We save some space to copy the ethhdr from first
  244. * buffer
  245. */
  246. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  247. map = pci_map_single(qdev->pdev,
  248. lrg_buf_cb->skb->data,
  249. qdev->lrg_buffer_len -
  250. QL_HEADER_SPACE,
  251. PCI_DMA_FROMDEVICE);
  252. lrg_buf_cb->buf_phy_addr_low =
  253. cpu_to_le32(LS_64BITS(map));
  254. lrg_buf_cb->buf_phy_addr_high =
  255. cpu_to_le32(MS_64BITS(map));
  256. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  257. pci_unmap_len_set(lrg_buf_cb, maplen,
  258. qdev->lrg_buffer_len -
  259. QL_HEADER_SPACE);
  260. }
  261. }
  262. qdev->lrg_buf_free_count++;
  263. }
  264. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  265. *qdev)
  266. {
  267. struct ql_rcv_buf_cb *lrg_buf_cb;
  268. if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
  269. if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
  270. qdev->lrg_buf_free_tail = NULL;
  271. qdev->lrg_buf_free_count--;
  272. }
  273. return lrg_buf_cb;
  274. }
  275. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  276. static u32 dataBits = EEPROM_NO_DATA_BITS;
  277. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  278. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  279. unsigned short *value);
  280. /*
  281. * Caller holds hw_lock.
  282. */
  283. static void fm93c56a_select(struct ql3_adapter *qdev)
  284. {
  285. struct ql3xxx_port_registers __iomem *port_regs =
  286. qdev->mem_map_registers;
  287. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  288. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  289. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  290. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  291. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  292. }
  293. /*
  294. * Caller holds hw_lock.
  295. */
  296. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  297. {
  298. int i;
  299. u32 mask;
  300. u32 dataBit;
  301. u32 previousBit;
  302. struct ql3xxx_port_registers __iomem *port_regs =
  303. qdev->mem_map_registers;
  304. /* Clock in a zero, then do the start bit */
  305. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  306. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  307. AUBURN_EEPROM_DO_1);
  308. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  309. ISP_NVRAM_MASK | qdev->
  310. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  311. AUBURN_EEPROM_CLK_RISE);
  312. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  313. ISP_NVRAM_MASK | qdev->
  314. eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
  315. AUBURN_EEPROM_CLK_FALL);
  316. mask = 1 << (FM93C56A_CMD_BITS - 1);
  317. /* Force the previous data bit to be different */
  318. previousBit = 0xffff;
  319. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  320. dataBit =
  321. (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
  322. if (previousBit != dataBit) {
  323. /*
  324. * If the bit changed, then change the DO state to
  325. * match
  326. */
  327. ql_write_common_reg(qdev,
  328. &port_regs->CommonRegs.
  329. serialPortInterfaceReg,
  330. ISP_NVRAM_MASK | qdev->
  331. eeprom_cmd_data | dataBit);
  332. previousBit = dataBit;
  333. }
  334. ql_write_common_reg(qdev,
  335. &port_regs->CommonRegs.
  336. serialPortInterfaceReg,
  337. ISP_NVRAM_MASK | qdev->
  338. eeprom_cmd_data | dataBit |
  339. AUBURN_EEPROM_CLK_RISE);
  340. ql_write_common_reg(qdev,
  341. &port_regs->CommonRegs.
  342. serialPortInterfaceReg,
  343. ISP_NVRAM_MASK | qdev->
  344. eeprom_cmd_data | dataBit |
  345. AUBURN_EEPROM_CLK_FALL);
  346. cmd = cmd << 1;
  347. }
  348. mask = 1 << (addrBits - 1);
  349. /* Force the previous data bit to be different */
  350. previousBit = 0xffff;
  351. for (i = 0; i < addrBits; i++) {
  352. dataBit =
  353. (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
  354. AUBURN_EEPROM_DO_0;
  355. if (previousBit != dataBit) {
  356. /*
  357. * If the bit changed, then change the DO state to
  358. * match
  359. */
  360. ql_write_common_reg(qdev,
  361. &port_regs->CommonRegs.
  362. serialPortInterfaceReg,
  363. ISP_NVRAM_MASK | qdev->
  364. eeprom_cmd_data | dataBit);
  365. previousBit = dataBit;
  366. }
  367. ql_write_common_reg(qdev,
  368. &port_regs->CommonRegs.
  369. serialPortInterfaceReg,
  370. ISP_NVRAM_MASK | qdev->
  371. eeprom_cmd_data | dataBit |
  372. AUBURN_EEPROM_CLK_RISE);
  373. ql_write_common_reg(qdev,
  374. &port_regs->CommonRegs.
  375. serialPortInterfaceReg,
  376. ISP_NVRAM_MASK | qdev->
  377. eeprom_cmd_data | dataBit |
  378. AUBURN_EEPROM_CLK_FALL);
  379. eepromAddr = eepromAddr << 1;
  380. }
  381. }
  382. /*
  383. * Caller holds hw_lock.
  384. */
  385. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  386. {
  387. struct ql3xxx_port_registers __iomem *port_regs =
  388. qdev->mem_map_registers;
  389. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  390. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  391. ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  392. }
  393. /*
  394. * Caller holds hw_lock.
  395. */
  396. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  397. {
  398. int i;
  399. u32 data = 0;
  400. u32 dataBit;
  401. struct ql3xxx_port_registers __iomem *port_regs =
  402. qdev->mem_map_registers;
  403. /* Read the data bits */
  404. /* The first bit is a dummy. Clock right over it. */
  405. for (i = 0; i < dataBits; i++) {
  406. ql_write_common_reg(qdev,
  407. &port_regs->CommonRegs.
  408. serialPortInterfaceReg,
  409. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  410. AUBURN_EEPROM_CLK_RISE);
  411. ql_write_common_reg(qdev,
  412. &port_regs->CommonRegs.
  413. serialPortInterfaceReg,
  414. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  415. AUBURN_EEPROM_CLK_FALL);
  416. dataBit =
  417. (ql_read_common_reg
  418. (qdev,
  419. &port_regs->CommonRegs.
  420. serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
  421. data = (data << 1) | dataBit;
  422. }
  423. *value = (u16) data;
  424. }
  425. /*
  426. * Caller holds hw_lock.
  427. */
  428. static void eeprom_readword(struct ql3_adapter *qdev,
  429. u32 eepromAddr, unsigned short *value)
  430. {
  431. fm93c56a_select(qdev);
  432. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  433. fm93c56a_datain(qdev, value);
  434. fm93c56a_deselect(qdev);
  435. }
  436. static void ql_swap_mac_addr(u8 * macAddress)
  437. {
  438. #ifdef __BIG_ENDIAN
  439. u8 temp;
  440. temp = macAddress[0];
  441. macAddress[0] = macAddress[1];
  442. macAddress[1] = temp;
  443. temp = macAddress[2];
  444. macAddress[2] = macAddress[3];
  445. macAddress[3] = temp;
  446. temp = macAddress[4];
  447. macAddress[4] = macAddress[5];
  448. macAddress[5] = temp;
  449. #endif
  450. }
  451. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  452. {
  453. u16 *pEEPROMData;
  454. u16 checksum = 0;
  455. u32 index;
  456. unsigned long hw_flags;
  457. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  458. pEEPROMData = (u16 *) & qdev->nvram_data;
  459. qdev->eeprom_cmd_data = 0;
  460. if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  461. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  462. 2) << 10)) {
  463. printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
  464. __func__);
  465. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  466. return -1;
  467. }
  468. for (index = 0; index < EEPROM_SIZE; index++) {
  469. eeprom_readword(qdev, index, pEEPROMData);
  470. checksum += *pEEPROMData;
  471. pEEPROMData++;
  472. }
  473. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  474. if (checksum != 0) {
  475. printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
  476. qdev->ndev->name, checksum);
  477. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  478. return -1;
  479. }
  480. /*
  481. * We have a problem with endianness for the MAC addresses
  482. * and the two 8-bit values version, and numPorts. We
  483. * have to swap them on big endian systems.
  484. */
  485. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn0.macAddress);
  486. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn1.macAddress);
  487. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn2.macAddress);
  488. ql_swap_mac_addr(qdev->nvram_data.funcCfg_fn3.macAddress);
  489. pEEPROMData = (u16 *) & qdev->nvram_data.version;
  490. *pEEPROMData = le16_to_cpu(*pEEPROMData);
  491. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  492. return checksum;
  493. }
  494. static const u32 PHYAddr[2] = {
  495. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  496. };
  497. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  498. {
  499. struct ql3xxx_port_registers __iomem *port_regs =
  500. qdev->mem_map_registers;
  501. u32 temp;
  502. int count = 1000;
  503. while (count) {
  504. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  505. if (!(temp & MAC_MII_STATUS_BSY))
  506. return 0;
  507. udelay(10);
  508. count--;
  509. }
  510. return -1;
  511. }
  512. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  513. {
  514. struct ql3xxx_port_registers __iomem *port_regs =
  515. qdev->mem_map_registers;
  516. u32 scanControl;
  517. if (qdev->numPorts > 1) {
  518. /* Auto scan will cycle through multiple ports */
  519. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  520. } else {
  521. scanControl = MAC_MII_CONTROL_SC;
  522. }
  523. /*
  524. * Scan register 1 of PHY/PETBI,
  525. * Set up to scan both devices
  526. * The autoscan starts from the first register, completes
  527. * the last one before rolling over to the first
  528. */
  529. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  530. PHYAddr[0] | MII_SCAN_REGISTER);
  531. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  532. (scanControl) |
  533. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  534. }
  535. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  536. {
  537. u8 ret;
  538. struct ql3xxx_port_registers __iomem *port_regs =
  539. qdev->mem_map_registers;
  540. /* See if scan mode is enabled before we turn it off */
  541. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  542. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  543. /* Scan is enabled */
  544. ret = 1;
  545. } else {
  546. /* Scan is disabled */
  547. ret = 0;
  548. }
  549. /*
  550. * When disabling scan mode you must first change the MII register
  551. * address
  552. */
  553. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  554. PHYAddr[0] | MII_SCAN_REGISTER);
  555. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  556. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  557. MAC_MII_CONTROL_RC) << 16));
  558. return ret;
  559. }
  560. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  561. u16 regAddr, u16 value, u32 mac_index)
  562. {
  563. struct ql3xxx_port_registers __iomem *port_regs =
  564. qdev->mem_map_registers;
  565. u8 scanWasEnabled;
  566. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  567. if (ql_wait_for_mii_ready(qdev)) {
  568. if (netif_msg_link(qdev))
  569. printk(KERN_WARNING PFX
  570. "%s Timed out waiting for management port to "
  571. "get free before issuing command.\n",
  572. qdev->ndev->name);
  573. return -1;
  574. }
  575. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  576. PHYAddr[mac_index] | regAddr);
  577. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  578. /* Wait for write to complete 9/10/04 SJP */
  579. if (ql_wait_for_mii_ready(qdev)) {
  580. if (netif_msg_link(qdev))
  581. printk(KERN_WARNING PFX
  582. "%s: Timed out waiting for management port to"
  583. "get free before issuing command.\n",
  584. qdev->ndev->name);
  585. return -1;
  586. }
  587. if (scanWasEnabled)
  588. ql_mii_enable_scan_mode(qdev);
  589. return 0;
  590. }
  591. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  592. u16 * value, u32 mac_index)
  593. {
  594. struct ql3xxx_port_registers __iomem *port_regs =
  595. qdev->mem_map_registers;
  596. u8 scanWasEnabled;
  597. u32 temp;
  598. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  599. if (ql_wait_for_mii_ready(qdev)) {
  600. if (netif_msg_link(qdev))
  601. printk(KERN_WARNING PFX
  602. "%s: Timed out waiting for management port to "
  603. "get free before issuing command.\n",
  604. qdev->ndev->name);
  605. return -1;
  606. }
  607. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  608. PHYAddr[mac_index] | regAddr);
  609. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  610. (MAC_MII_CONTROL_RC << 16));
  611. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  612. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  613. /* Wait for the read to complete */
  614. if (ql_wait_for_mii_ready(qdev)) {
  615. if (netif_msg_link(qdev))
  616. printk(KERN_WARNING PFX
  617. "%s: Timed out waiting for management port to "
  618. "get free after issuing command.\n",
  619. qdev->ndev->name);
  620. return -1;
  621. }
  622. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  623. *value = (u16) temp;
  624. if (scanWasEnabled)
  625. ql_mii_enable_scan_mode(qdev);
  626. return 0;
  627. }
  628. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  629. {
  630. struct ql3xxx_port_registers __iomem *port_regs =
  631. qdev->mem_map_registers;
  632. ql_mii_disable_scan_mode(qdev);
  633. if (ql_wait_for_mii_ready(qdev)) {
  634. if (netif_msg_link(qdev))
  635. printk(KERN_WARNING PFX
  636. "%s: Timed out waiting for management port to "
  637. "get free before issuing command.\n",
  638. qdev->ndev->name);
  639. return -1;
  640. }
  641. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  642. qdev->PHYAddr | regAddr);
  643. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  644. /* Wait for write to complete. */
  645. if (ql_wait_for_mii_ready(qdev)) {
  646. if (netif_msg_link(qdev))
  647. printk(KERN_WARNING PFX
  648. "%s: Timed out waiting for management port to "
  649. "get free before issuing command.\n",
  650. qdev->ndev->name);
  651. return -1;
  652. }
  653. ql_mii_enable_scan_mode(qdev);
  654. return 0;
  655. }
  656. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  657. {
  658. u32 temp;
  659. struct ql3xxx_port_registers __iomem *port_regs =
  660. qdev->mem_map_registers;
  661. ql_mii_disable_scan_mode(qdev);
  662. if (ql_wait_for_mii_ready(qdev)) {
  663. if (netif_msg_link(qdev))
  664. printk(KERN_WARNING PFX
  665. "%s: Timed out waiting for management port to "
  666. "get free before issuing command.\n",
  667. qdev->ndev->name);
  668. return -1;
  669. }
  670. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  671. qdev->PHYAddr | regAddr);
  672. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  673. (MAC_MII_CONTROL_RC << 16));
  674. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  675. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  676. /* Wait for the read to complete */
  677. if (ql_wait_for_mii_ready(qdev)) {
  678. if (netif_msg_link(qdev))
  679. printk(KERN_WARNING PFX
  680. "%s: Timed out waiting for management port to "
  681. "get free before issuing command.\n",
  682. qdev->ndev->name);
  683. return -1;
  684. }
  685. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  686. *value = (u16) temp;
  687. ql_mii_enable_scan_mode(qdev);
  688. return 0;
  689. }
  690. static void ql_petbi_reset(struct ql3_adapter *qdev)
  691. {
  692. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  693. }
  694. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  695. {
  696. u16 reg;
  697. /* Enable Auto-negotiation sense */
  698. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  699. reg |= PETBI_TBI_AUTO_SENSE;
  700. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  701. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  702. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  703. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  704. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  705. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  706. }
  707. static void ql_petbi_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  708. {
  709. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  710. mac_index);
  711. }
  712. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  713. {
  714. u16 reg;
  715. /* Enable Auto-negotiation sense */
  716. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg, mac_index);
  717. reg |= PETBI_TBI_AUTO_SENSE;
  718. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg, mac_index);
  719. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  720. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX, mac_index);
  721. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  722. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  723. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  724. mac_index);
  725. }
  726. static void ql_petbi_init(struct ql3_adapter *qdev)
  727. {
  728. ql_petbi_reset(qdev);
  729. ql_petbi_start_neg(qdev);
  730. }
  731. static void ql_petbi_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  732. {
  733. ql_petbi_reset_ex(qdev, mac_index);
  734. ql_petbi_start_neg_ex(qdev, mac_index);
  735. }
  736. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  737. {
  738. u16 reg;
  739. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  740. return 0;
  741. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  742. }
  743. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  744. {
  745. u16 reg;
  746. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  747. return 0;
  748. reg = (((reg & 0x18) >> 3) & 3);
  749. if (reg == 2)
  750. return SPEED_1000;
  751. else if (reg == 1)
  752. return SPEED_100;
  753. else if (reg == 0)
  754. return SPEED_10;
  755. else
  756. return -1;
  757. }
  758. static int ql_is_full_dup(struct ql3_adapter *qdev)
  759. {
  760. u16 reg;
  761. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  762. return 0;
  763. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  764. }
  765. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  766. {
  767. u16 reg;
  768. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  769. return 0;
  770. return (reg & PHY_NEG_PAUSE) != 0;
  771. }
  772. /*
  773. * Caller holds hw_lock.
  774. */
  775. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  776. {
  777. struct ql3xxx_port_registers __iomem *port_regs =
  778. qdev->mem_map_registers;
  779. u32 value;
  780. if (enable)
  781. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  782. else
  783. value = (MAC_CONFIG_REG_PE << 16);
  784. if (qdev->mac_index)
  785. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  786. else
  787. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  788. }
  789. /*
  790. * Caller holds hw_lock.
  791. */
  792. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  793. {
  794. struct ql3xxx_port_registers __iomem *port_regs =
  795. qdev->mem_map_registers;
  796. u32 value;
  797. if (enable)
  798. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  799. else
  800. value = (MAC_CONFIG_REG_SR << 16);
  801. if (qdev->mac_index)
  802. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  803. else
  804. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  805. }
  806. /*
  807. * Caller holds hw_lock.
  808. */
  809. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  810. {
  811. struct ql3xxx_port_registers __iomem *port_regs =
  812. qdev->mem_map_registers;
  813. u32 value;
  814. if (enable)
  815. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  816. else
  817. value = (MAC_CONFIG_REG_GM << 16);
  818. if (qdev->mac_index)
  819. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  820. else
  821. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  822. }
  823. /*
  824. * Caller holds hw_lock.
  825. */
  826. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  827. {
  828. struct ql3xxx_port_registers __iomem *port_regs =
  829. qdev->mem_map_registers;
  830. u32 value;
  831. if (enable)
  832. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  833. else
  834. value = (MAC_CONFIG_REG_FD << 16);
  835. if (qdev->mac_index)
  836. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  837. else
  838. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  839. }
  840. /*
  841. * Caller holds hw_lock.
  842. */
  843. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  844. {
  845. struct ql3xxx_port_registers __iomem *port_regs =
  846. qdev->mem_map_registers;
  847. u32 value;
  848. if (enable)
  849. value =
  850. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  851. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  852. else
  853. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  854. if (qdev->mac_index)
  855. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  856. else
  857. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  858. }
  859. /*
  860. * Caller holds hw_lock.
  861. */
  862. static int ql_is_fiber(struct ql3_adapter *qdev)
  863. {
  864. struct ql3xxx_port_registers __iomem *port_regs =
  865. qdev->mem_map_registers;
  866. u32 bitToCheck = 0;
  867. u32 temp;
  868. switch (qdev->mac_index) {
  869. case 0:
  870. bitToCheck = PORT_STATUS_SM0;
  871. break;
  872. case 1:
  873. bitToCheck = PORT_STATUS_SM1;
  874. break;
  875. }
  876. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  877. return (temp & bitToCheck) != 0;
  878. }
  879. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  880. {
  881. u16 reg;
  882. ql_mii_read_reg(qdev, 0x00, &reg);
  883. return (reg & 0x1000) != 0;
  884. }
  885. /*
  886. * Caller holds hw_lock.
  887. */
  888. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  889. {
  890. struct ql3xxx_port_registers __iomem *port_regs =
  891. qdev->mem_map_registers;
  892. u32 bitToCheck = 0;
  893. u32 temp;
  894. switch (qdev->mac_index) {
  895. case 0:
  896. bitToCheck = PORT_STATUS_AC0;
  897. break;
  898. case 1:
  899. bitToCheck = PORT_STATUS_AC1;
  900. break;
  901. }
  902. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  903. if (temp & bitToCheck) {
  904. if (netif_msg_link(qdev))
  905. printk(KERN_INFO PFX
  906. "%s: Auto-Negotiate complete.\n",
  907. qdev->ndev->name);
  908. return 1;
  909. } else {
  910. if (netif_msg_link(qdev))
  911. printk(KERN_WARNING PFX
  912. "%s: Auto-Negotiate incomplete.\n",
  913. qdev->ndev->name);
  914. return 0;
  915. }
  916. }
  917. /*
  918. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  919. */
  920. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  921. {
  922. if (ql_is_fiber(qdev))
  923. return ql_is_petbi_neg_pause(qdev);
  924. else
  925. return ql_is_phy_neg_pause(qdev);
  926. }
  927. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  928. {
  929. struct ql3xxx_port_registers __iomem *port_regs =
  930. qdev->mem_map_registers;
  931. u32 bitToCheck = 0;
  932. u32 temp;
  933. switch (qdev->mac_index) {
  934. case 0:
  935. bitToCheck = PORT_STATUS_AE0;
  936. break;
  937. case 1:
  938. bitToCheck = PORT_STATUS_AE1;
  939. break;
  940. }
  941. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  942. return (temp & bitToCheck) != 0;
  943. }
  944. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  945. {
  946. if (ql_is_fiber(qdev))
  947. return SPEED_1000;
  948. else
  949. return ql_phy_get_speed(qdev);
  950. }
  951. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  952. {
  953. if (ql_is_fiber(qdev))
  954. return 1;
  955. else
  956. return ql_is_full_dup(qdev);
  957. }
  958. /*
  959. * Caller holds hw_lock.
  960. */
  961. static int ql_link_down_detect(struct ql3_adapter *qdev)
  962. {
  963. struct ql3xxx_port_registers __iomem *port_regs =
  964. qdev->mem_map_registers;
  965. u32 bitToCheck = 0;
  966. u32 temp;
  967. switch (qdev->mac_index) {
  968. case 0:
  969. bitToCheck = ISP_CONTROL_LINK_DN_0;
  970. break;
  971. case 1:
  972. bitToCheck = ISP_CONTROL_LINK_DN_1;
  973. break;
  974. }
  975. temp =
  976. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  977. return (temp & bitToCheck) != 0;
  978. }
  979. /*
  980. * Caller holds hw_lock.
  981. */
  982. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  983. {
  984. struct ql3xxx_port_registers __iomem *port_regs =
  985. qdev->mem_map_registers;
  986. switch (qdev->mac_index) {
  987. case 0:
  988. ql_write_common_reg(qdev,
  989. &port_regs->CommonRegs.ispControlStatus,
  990. (ISP_CONTROL_LINK_DN_0) |
  991. (ISP_CONTROL_LINK_DN_0 << 16));
  992. break;
  993. case 1:
  994. ql_write_common_reg(qdev,
  995. &port_regs->CommonRegs.ispControlStatus,
  996. (ISP_CONTROL_LINK_DN_1) |
  997. (ISP_CONTROL_LINK_DN_1 << 16));
  998. break;
  999. default:
  1000. return 1;
  1001. }
  1002. return 0;
  1003. }
  1004. /*
  1005. * Caller holds hw_lock.
  1006. */
  1007. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev,
  1008. u32 mac_index)
  1009. {
  1010. struct ql3xxx_port_registers __iomem *port_regs =
  1011. qdev->mem_map_registers;
  1012. u32 bitToCheck = 0;
  1013. u32 temp;
  1014. switch (mac_index) {
  1015. case 0:
  1016. bitToCheck = PORT_STATUS_F1_ENABLED;
  1017. break;
  1018. case 1:
  1019. bitToCheck = PORT_STATUS_F3_ENABLED;
  1020. break;
  1021. default:
  1022. break;
  1023. }
  1024. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1025. if (temp & bitToCheck) {
  1026. if (netif_msg_link(qdev))
  1027. printk(KERN_DEBUG PFX
  1028. "%s: is not link master.\n", qdev->ndev->name);
  1029. return 0;
  1030. } else {
  1031. if (netif_msg_link(qdev))
  1032. printk(KERN_DEBUG PFX
  1033. "%s: is link master.\n", qdev->ndev->name);
  1034. return 1;
  1035. }
  1036. }
  1037. static void ql_phy_reset_ex(struct ql3_adapter *qdev, u32 mac_index)
  1038. {
  1039. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET, mac_index);
  1040. }
  1041. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev, u32 mac_index)
  1042. {
  1043. u16 reg;
  1044. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER,
  1045. PHY_NEG_PAUSE | PHY_NEG_ADV_SPEED | 1, mac_index);
  1046. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, mac_index);
  1047. ql_mii_write_reg_ex(qdev, CONTROL_REG, reg | PHY_CTRL_RESTART_NEG,
  1048. mac_index);
  1049. }
  1050. static void ql_phy_init_ex(struct ql3_adapter *qdev, u32 mac_index)
  1051. {
  1052. ql_phy_reset_ex(qdev, mac_index);
  1053. ql_phy_start_neg_ex(qdev, mac_index);
  1054. }
  1055. /*
  1056. * Caller holds hw_lock.
  1057. */
  1058. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1059. {
  1060. struct ql3xxx_port_registers __iomem *port_regs =
  1061. qdev->mem_map_registers;
  1062. u32 bitToCheck = 0;
  1063. u32 temp, linkState;
  1064. switch (qdev->mac_index) {
  1065. case 0:
  1066. bitToCheck = PORT_STATUS_UP0;
  1067. break;
  1068. case 1:
  1069. bitToCheck = PORT_STATUS_UP1;
  1070. break;
  1071. }
  1072. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1073. if (temp & bitToCheck) {
  1074. linkState = LS_UP;
  1075. } else {
  1076. linkState = LS_DOWN;
  1077. if (netif_msg_link(qdev))
  1078. printk(KERN_WARNING PFX
  1079. "%s: Link is down.\n", qdev->ndev->name);
  1080. }
  1081. return linkState;
  1082. }
  1083. static int ql_port_start(struct ql3_adapter *qdev)
  1084. {
  1085. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1086. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1087. 2) << 7))
  1088. return -1;
  1089. if (ql_is_fiber(qdev)) {
  1090. ql_petbi_init(qdev);
  1091. } else {
  1092. /* Copper port */
  1093. ql_phy_init_ex(qdev, qdev->mac_index);
  1094. }
  1095. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1096. return 0;
  1097. }
  1098. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1099. {
  1100. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1101. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1102. 2) << 7))
  1103. return -1;
  1104. if (!ql_auto_neg_error(qdev)) {
  1105. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1106. /* configure the MAC */
  1107. if (netif_msg_link(qdev))
  1108. printk(KERN_DEBUG PFX
  1109. "%s: Configuring link.\n",
  1110. qdev->ndev->
  1111. name);
  1112. ql_mac_cfg_soft_reset(qdev, 1);
  1113. ql_mac_cfg_gig(qdev,
  1114. (ql_get_link_speed
  1115. (qdev) ==
  1116. SPEED_1000));
  1117. ql_mac_cfg_full_dup(qdev,
  1118. ql_is_link_full_dup
  1119. (qdev));
  1120. ql_mac_cfg_pause(qdev,
  1121. ql_is_neg_pause
  1122. (qdev));
  1123. ql_mac_cfg_soft_reset(qdev, 0);
  1124. /* enable the MAC */
  1125. if (netif_msg_link(qdev))
  1126. printk(KERN_DEBUG PFX
  1127. "%s: Enabling mac.\n",
  1128. qdev->ndev->
  1129. name);
  1130. ql_mac_enable(qdev, 1);
  1131. }
  1132. if (netif_msg_link(qdev))
  1133. printk(KERN_DEBUG PFX
  1134. "%s: Change port_link_state LS_DOWN to LS_UP.\n",
  1135. qdev->ndev->name);
  1136. qdev->port_link_state = LS_UP;
  1137. netif_start_queue(qdev->ndev);
  1138. netif_carrier_on(qdev->ndev);
  1139. if (netif_msg_link(qdev))
  1140. printk(KERN_INFO PFX
  1141. "%s: Link is up at %d Mbps, %s duplex.\n",
  1142. qdev->ndev->name,
  1143. ql_get_link_speed(qdev),
  1144. ql_is_link_full_dup(qdev)
  1145. ? "full" : "half");
  1146. } else { /* Remote error detected */
  1147. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1148. if (netif_msg_link(qdev))
  1149. printk(KERN_DEBUG PFX
  1150. "%s: Remote error detected. "
  1151. "Calling ql_port_start().\n",
  1152. qdev->ndev->
  1153. name);
  1154. /*
  1155. * ql_port_start() is shared code and needs
  1156. * to lock the PHY on it's own.
  1157. */
  1158. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1159. if(ql_port_start(qdev)) {/* Restart port */
  1160. return -1;
  1161. } else
  1162. return 0;
  1163. }
  1164. }
  1165. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1166. return 0;
  1167. }
  1168. static void ql_link_state_machine(struct ql3_adapter *qdev)
  1169. {
  1170. u32 curr_link_state;
  1171. unsigned long hw_flags;
  1172. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1173. curr_link_state = ql_get_link_state(qdev);
  1174. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  1175. if (netif_msg_link(qdev))
  1176. printk(KERN_INFO PFX
  1177. "%s: Reset in progress, skip processing link "
  1178. "state.\n", qdev->ndev->name);
  1179. return;
  1180. }
  1181. switch (qdev->port_link_state) {
  1182. default:
  1183. if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
  1184. ql_port_start(qdev);
  1185. }
  1186. qdev->port_link_state = LS_DOWN;
  1187. /* Fall Through */
  1188. case LS_DOWN:
  1189. if (netif_msg_link(qdev))
  1190. printk(KERN_DEBUG PFX
  1191. "%s: port_link_state = LS_DOWN.\n",
  1192. qdev->ndev->name);
  1193. if (curr_link_state == LS_UP) {
  1194. if (netif_msg_link(qdev))
  1195. printk(KERN_DEBUG PFX
  1196. "%s: curr_link_state = LS_UP.\n",
  1197. qdev->ndev->name);
  1198. if (ql_is_auto_neg_complete(qdev))
  1199. ql_finish_auto_neg(qdev);
  1200. if (qdev->port_link_state == LS_UP)
  1201. ql_link_down_detect_clear(qdev);
  1202. }
  1203. break;
  1204. case LS_UP:
  1205. /*
  1206. * See if the link is currently down or went down and came
  1207. * back up
  1208. */
  1209. if ((curr_link_state == LS_DOWN) || ql_link_down_detect(qdev)) {
  1210. if (netif_msg_link(qdev))
  1211. printk(KERN_INFO PFX "%s: Link is down.\n",
  1212. qdev->ndev->name);
  1213. qdev->port_link_state = LS_DOWN;
  1214. }
  1215. break;
  1216. }
  1217. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1218. }
  1219. /*
  1220. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1221. */
  1222. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1223. {
  1224. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1225. set_bit(QL_LINK_MASTER,&qdev->flags);
  1226. else
  1227. clear_bit(QL_LINK_MASTER,&qdev->flags);
  1228. }
  1229. /*
  1230. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1231. */
  1232. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1233. {
  1234. ql_mii_enable_scan_mode(qdev);
  1235. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1236. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1237. ql_petbi_init_ex(qdev, qdev->mac_index);
  1238. } else {
  1239. if (ql_this_adapter_controls_port(qdev, qdev->mac_index))
  1240. ql_phy_init_ex(qdev, qdev->mac_index);
  1241. }
  1242. }
  1243. /*
  1244. * MII_Setup needs to be called before taking the PHY out of reset so that the
  1245. * management interface clock speed can be set properly. It would be better if
  1246. * we had a way to disable MDC until after the PHY is out of reset, but we
  1247. * don't have that capability.
  1248. */
  1249. static int ql_mii_setup(struct ql3_adapter *qdev)
  1250. {
  1251. u32 reg;
  1252. struct ql3xxx_port_registers __iomem *port_regs =
  1253. qdev->mem_map_registers;
  1254. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1255. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1256. 2) << 7))
  1257. return -1;
  1258. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1259. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1260. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1261. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1262. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1263. return 0;
  1264. }
  1265. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1266. {
  1267. u32 supported;
  1268. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1269. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  1270. | SUPPORTED_Autoneg;
  1271. } else {
  1272. supported = SUPPORTED_10baseT_Half
  1273. | SUPPORTED_10baseT_Full
  1274. | SUPPORTED_100baseT_Half
  1275. | SUPPORTED_100baseT_Full
  1276. | SUPPORTED_1000baseT_Half
  1277. | SUPPORTED_1000baseT_Full
  1278. | SUPPORTED_Autoneg | SUPPORTED_TP;
  1279. }
  1280. return supported;
  1281. }
  1282. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1283. {
  1284. int status;
  1285. unsigned long hw_flags;
  1286. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1287. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1288. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1289. 2) << 7))
  1290. return 0;
  1291. status = ql_is_auto_cfg(qdev);
  1292. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1293. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1294. return status;
  1295. }
  1296. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1297. {
  1298. u32 status;
  1299. unsigned long hw_flags;
  1300. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1301. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1302. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1303. 2) << 7))
  1304. return 0;
  1305. status = ql_get_link_speed(qdev);
  1306. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1307. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1308. return status;
  1309. }
  1310. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1311. {
  1312. int status;
  1313. unsigned long hw_flags;
  1314. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1315. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1316. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1317. 2) << 7))
  1318. return 0;
  1319. status = ql_is_link_full_dup(qdev);
  1320. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1321. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1322. return status;
  1323. }
  1324. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1325. {
  1326. struct ql3_adapter *qdev = netdev_priv(ndev);
  1327. ecmd->transceiver = XCVR_INTERNAL;
  1328. ecmd->supported = ql_supported_modes(qdev);
  1329. if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
  1330. ecmd->port = PORT_FIBRE;
  1331. } else {
  1332. ecmd->port = PORT_TP;
  1333. ecmd->phy_address = qdev->PHYAddr;
  1334. }
  1335. ecmd->advertising = ql_supported_modes(qdev);
  1336. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1337. ecmd->speed = ql_get_speed(qdev);
  1338. ecmd->duplex = ql_get_full_dup(qdev);
  1339. return 0;
  1340. }
  1341. static void ql_get_drvinfo(struct net_device *ndev,
  1342. struct ethtool_drvinfo *drvinfo)
  1343. {
  1344. struct ql3_adapter *qdev = netdev_priv(ndev);
  1345. strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
  1346. strncpy(drvinfo->version, ql3xxx_driver_version, 32);
  1347. strncpy(drvinfo->fw_version, "N/A", 32);
  1348. strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
  1349. drvinfo->n_stats = 0;
  1350. drvinfo->testinfo_len = 0;
  1351. drvinfo->regdump_len = 0;
  1352. drvinfo->eedump_len = 0;
  1353. }
  1354. static u32 ql_get_msglevel(struct net_device *ndev)
  1355. {
  1356. struct ql3_adapter *qdev = netdev_priv(ndev);
  1357. return qdev->msg_enable;
  1358. }
  1359. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1360. {
  1361. struct ql3_adapter *qdev = netdev_priv(ndev);
  1362. qdev->msg_enable = value;
  1363. }
  1364. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1365. .get_settings = ql_get_settings,
  1366. .get_drvinfo = ql_get_drvinfo,
  1367. .get_perm_addr = ethtool_op_get_perm_addr,
  1368. .get_link = ethtool_op_get_link,
  1369. .get_msglevel = ql_get_msglevel,
  1370. .set_msglevel = ql_set_msglevel,
  1371. };
  1372. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1373. {
  1374. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1375. u64 map;
  1376. while (lrg_buf_cb) {
  1377. if (!lrg_buf_cb->skb) {
  1378. lrg_buf_cb->skb = dev_alloc_skb(qdev->lrg_buffer_len);
  1379. if (unlikely(!lrg_buf_cb->skb)) {
  1380. printk(KERN_DEBUG PFX
  1381. "%s: Failed dev_alloc_skb().\n",
  1382. qdev->ndev->name);
  1383. break;
  1384. } else {
  1385. /*
  1386. * We save some space to copy the ethhdr from
  1387. * first buffer
  1388. */
  1389. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1390. map = pci_map_single(qdev->pdev,
  1391. lrg_buf_cb->skb->data,
  1392. qdev->lrg_buffer_len -
  1393. QL_HEADER_SPACE,
  1394. PCI_DMA_FROMDEVICE);
  1395. lrg_buf_cb->buf_phy_addr_low =
  1396. cpu_to_le32(LS_64BITS(map));
  1397. lrg_buf_cb->buf_phy_addr_high =
  1398. cpu_to_le32(MS_64BITS(map));
  1399. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1400. pci_unmap_len_set(lrg_buf_cb, maplen,
  1401. qdev->lrg_buffer_len -
  1402. QL_HEADER_SPACE);
  1403. --qdev->lrg_buf_skb_check;
  1404. if (!qdev->lrg_buf_skb_check)
  1405. return 1;
  1406. }
  1407. }
  1408. lrg_buf_cb = lrg_buf_cb->next;
  1409. }
  1410. return 0;
  1411. }
  1412. /*
  1413. * Caller holds hw_lock.
  1414. */
  1415. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1416. {
  1417. struct bufq_addr_element *lrg_buf_q_ele;
  1418. int i;
  1419. struct ql_rcv_buf_cb *lrg_buf_cb;
  1420. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1421. if ((qdev->lrg_buf_free_count >= 8)
  1422. && (qdev->lrg_buf_release_cnt >= 16)) {
  1423. if (qdev->lrg_buf_skb_check)
  1424. if (!ql_populate_free_queue(qdev))
  1425. return;
  1426. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1427. while ((qdev->lrg_buf_release_cnt >= 16)
  1428. && (qdev->lrg_buf_free_count >= 8)) {
  1429. for (i = 0; i < 8; i++) {
  1430. lrg_buf_cb =
  1431. ql_get_from_lrg_buf_free_list(qdev);
  1432. lrg_buf_q_ele->addr_high =
  1433. lrg_buf_cb->buf_phy_addr_high;
  1434. lrg_buf_q_ele->addr_low =
  1435. lrg_buf_cb->buf_phy_addr_low;
  1436. lrg_buf_q_ele++;
  1437. qdev->lrg_buf_release_cnt--;
  1438. }
  1439. qdev->lrg_buf_q_producer_index++;
  1440. if (qdev->lrg_buf_q_producer_index == NUM_LBUFQ_ENTRIES)
  1441. qdev->lrg_buf_q_producer_index = 0;
  1442. if (qdev->lrg_buf_q_producer_index ==
  1443. (NUM_LBUFQ_ENTRIES - 1)) {
  1444. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1445. }
  1446. }
  1447. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1448. ql_write_common_reg(qdev,
  1449. &port_regs->CommonRegs.
  1450. rxLargeQProducerIndex,
  1451. qdev->lrg_buf_q_producer_index);
  1452. }
  1453. }
  1454. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1455. struct ob_mac_iocb_rsp *mac_rsp)
  1456. {
  1457. struct ql_tx_buf_cb *tx_cb;
  1458. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1459. pci_unmap_single(qdev->pdev,
  1460. pci_unmap_addr(tx_cb, mapaddr),
  1461. pci_unmap_len(tx_cb, maplen), PCI_DMA_TODEVICE);
  1462. dev_kfree_skb_irq(tx_cb->skb);
  1463. qdev->stats.tx_packets++;
  1464. qdev->stats.tx_bytes += tx_cb->skb->len;
  1465. tx_cb->skb = NULL;
  1466. atomic_inc(&qdev->tx_count);
  1467. }
  1468. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1469. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1470. {
  1471. long int offset;
  1472. u32 lrg_buf_phy_addr_low = 0;
  1473. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1474. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1475. u32 *curr_ial_ptr;
  1476. struct sk_buff *skb;
  1477. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1478. /*
  1479. * Get the inbound address list (small buffer).
  1480. */
  1481. offset = qdev->small_buf_index * QL_SMALL_BUFFER_SIZE;
  1482. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1483. qdev->small_buf_index = 0;
  1484. curr_ial_ptr = (u32 *) (qdev->small_buf_virt_addr + offset);
  1485. qdev->last_rsp_offset = qdev->small_buf_phy_addr_low + offset;
  1486. qdev->small_buf_release_cnt++;
  1487. /* start of first buffer */
  1488. lrg_buf_phy_addr_low = le32_to_cpu(*curr_ial_ptr);
  1489. lrg_buf_cb1 = &qdev->lrg_buf[qdev->lrg_buf_index];
  1490. qdev->lrg_buf_release_cnt++;
  1491. if (++qdev->lrg_buf_index == NUM_LARGE_BUFFERS)
  1492. qdev->lrg_buf_index = 0;
  1493. curr_ial_ptr++; /* 64-bit pointers require two incs. */
  1494. curr_ial_ptr++;
  1495. /* start of second buffer */
  1496. lrg_buf_phy_addr_low = le32_to_cpu(*curr_ial_ptr);
  1497. lrg_buf_cb2 = &qdev->lrg_buf[qdev->lrg_buf_index];
  1498. /*
  1499. * Second buffer gets sent up the stack.
  1500. */
  1501. qdev->lrg_buf_release_cnt++;
  1502. if (++qdev->lrg_buf_index == NUM_LARGE_BUFFERS)
  1503. qdev->lrg_buf_index = 0;
  1504. skb = lrg_buf_cb2->skb;
  1505. qdev->stats.rx_packets++;
  1506. qdev->stats.rx_bytes += length;
  1507. skb_put(skb, length);
  1508. pci_unmap_single(qdev->pdev,
  1509. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1510. pci_unmap_len(lrg_buf_cb2, maplen),
  1511. PCI_DMA_FROMDEVICE);
  1512. prefetch(skb->data);
  1513. skb->dev = qdev->ndev;
  1514. skb->ip_summed = CHECKSUM_NONE;
  1515. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1516. netif_receive_skb(skb);
  1517. qdev->ndev->last_rx = jiffies;
  1518. lrg_buf_cb2->skb = NULL;
  1519. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1520. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1521. }
  1522. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1523. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1524. {
  1525. long int offset;
  1526. u32 lrg_buf_phy_addr_low = 0;
  1527. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1528. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1529. u32 *curr_ial_ptr;
  1530. struct sk_buff *skb1, *skb2;
  1531. struct net_device *ndev = qdev->ndev;
  1532. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1533. u16 size = 0;
  1534. /*
  1535. * Get the inbound address list (small buffer).
  1536. */
  1537. offset = qdev->small_buf_index * QL_SMALL_BUFFER_SIZE;
  1538. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1539. qdev->small_buf_index = 0;
  1540. curr_ial_ptr = (u32 *) (qdev->small_buf_virt_addr + offset);
  1541. qdev->last_rsp_offset = qdev->small_buf_phy_addr_low + offset;
  1542. qdev->small_buf_release_cnt++;
  1543. /* start of first buffer */
  1544. lrg_buf_phy_addr_low = le32_to_cpu(*curr_ial_ptr);
  1545. lrg_buf_cb1 = &qdev->lrg_buf[qdev->lrg_buf_index];
  1546. qdev->lrg_buf_release_cnt++;
  1547. if (++qdev->lrg_buf_index == NUM_LARGE_BUFFERS)
  1548. qdev->lrg_buf_index = 0;
  1549. skb1 = lrg_buf_cb1->skb;
  1550. curr_ial_ptr++; /* 64-bit pointers require two incs. */
  1551. curr_ial_ptr++;
  1552. /* start of second buffer */
  1553. lrg_buf_phy_addr_low = le32_to_cpu(*curr_ial_ptr);
  1554. lrg_buf_cb2 = &qdev->lrg_buf[qdev->lrg_buf_index];
  1555. skb2 = lrg_buf_cb2->skb;
  1556. qdev->lrg_buf_release_cnt++;
  1557. if (++qdev->lrg_buf_index == NUM_LARGE_BUFFERS)
  1558. qdev->lrg_buf_index = 0;
  1559. qdev->stats.rx_packets++;
  1560. qdev->stats.rx_bytes += length;
  1561. /*
  1562. * Copy the ethhdr from first buffer to second. This
  1563. * is necessary for IP completions.
  1564. */
  1565. if (*((u16 *) skb1->data) != 0xFFFF)
  1566. size = VLAN_ETH_HLEN;
  1567. else
  1568. size = ETH_HLEN;
  1569. skb_put(skb2, length); /* Just the second buffer length here. */
  1570. pci_unmap_single(qdev->pdev,
  1571. pci_unmap_addr(lrg_buf_cb2, mapaddr),
  1572. pci_unmap_len(lrg_buf_cb2, maplen),
  1573. PCI_DMA_FROMDEVICE);
  1574. prefetch(skb2->data);
  1575. memcpy(skb_push(skb2, size), skb1->data + VLAN_ID_LEN, size);
  1576. skb2->dev = qdev->ndev;
  1577. skb2->ip_summed = CHECKSUM_NONE;
  1578. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1579. netif_receive_skb(skb2);
  1580. ndev->last_rx = jiffies;
  1581. lrg_buf_cb2->skb = NULL;
  1582. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1583. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1584. }
  1585. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1586. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1587. {
  1588. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1589. struct net_rsp_iocb *net_rsp;
  1590. struct net_device *ndev = qdev->ndev;
  1591. unsigned long hw_flags;
  1592. /* While there are entries in the completion queue. */
  1593. while ((cpu_to_le32(*(qdev->prsp_producer_index)) !=
  1594. qdev->rsp_consumer_index) && (*rx_cleaned < work_to_do)) {
  1595. net_rsp = qdev->rsp_current;
  1596. switch (net_rsp->opcode) {
  1597. case OPCODE_OB_MAC_IOCB_FN0:
  1598. case OPCODE_OB_MAC_IOCB_FN2:
  1599. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1600. net_rsp);
  1601. (*tx_cleaned)++;
  1602. break;
  1603. case OPCODE_IB_MAC_IOCB:
  1604. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1605. net_rsp);
  1606. (*rx_cleaned)++;
  1607. break;
  1608. case OPCODE_IB_IP_IOCB:
  1609. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1610. net_rsp);
  1611. (*rx_cleaned)++;
  1612. break;
  1613. default:
  1614. {
  1615. u32 *tmp = (u32 *) net_rsp;
  1616. printk(KERN_ERR PFX
  1617. "%s: Hit default case, not "
  1618. "handled!\n"
  1619. " dropping the packet, opcode = "
  1620. "%x.\n",
  1621. ndev->name, net_rsp->opcode);
  1622. printk(KERN_ERR PFX
  1623. "0x%08lx 0x%08lx 0x%08lx 0x%08lx \n",
  1624. (unsigned long int)tmp[0],
  1625. (unsigned long int)tmp[1],
  1626. (unsigned long int)tmp[2],
  1627. (unsigned long int)tmp[3]);
  1628. }
  1629. }
  1630. qdev->rsp_consumer_index++;
  1631. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1632. qdev->rsp_consumer_index = 0;
  1633. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1634. } else {
  1635. qdev->rsp_current++;
  1636. }
  1637. }
  1638. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1639. ql_update_lrg_bufq_prod_index(qdev);
  1640. if (qdev->small_buf_release_cnt >= 16) {
  1641. while (qdev->small_buf_release_cnt >= 16) {
  1642. qdev->small_buf_q_producer_index++;
  1643. if (qdev->small_buf_q_producer_index ==
  1644. NUM_SBUFQ_ENTRIES)
  1645. qdev->small_buf_q_producer_index = 0;
  1646. qdev->small_buf_release_cnt -= 8;
  1647. }
  1648. ql_write_common_reg(qdev,
  1649. &port_regs->CommonRegs.
  1650. rxSmallQProducerIndex,
  1651. qdev->small_buf_q_producer_index);
  1652. }
  1653. ql_write_common_reg(qdev,
  1654. &port_regs->CommonRegs.rspQConsumerIndex,
  1655. qdev->rsp_consumer_index);
  1656. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1657. if (unlikely(netif_queue_stopped(qdev->ndev))) {
  1658. if (netif_queue_stopped(qdev->ndev) &&
  1659. (atomic_read(&qdev->tx_count) > (NUM_REQ_Q_ENTRIES / 4)))
  1660. netif_wake_queue(qdev->ndev);
  1661. }
  1662. return *tx_cleaned + *rx_cleaned;
  1663. }
  1664. static int ql_poll(struct net_device *ndev, int *budget)
  1665. {
  1666. struct ql3_adapter *qdev = netdev_priv(ndev);
  1667. int work_to_do = min(*budget, ndev->quota);
  1668. int rx_cleaned = 0, tx_cleaned = 0;
  1669. if (!netif_carrier_ok(ndev))
  1670. goto quit_polling;
  1671. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, work_to_do);
  1672. *budget -= rx_cleaned;
  1673. ndev->quota -= rx_cleaned;
  1674. if ((!tx_cleaned && !rx_cleaned) || !netif_running(ndev)) {
  1675. quit_polling:
  1676. netif_rx_complete(ndev);
  1677. ql_enable_interrupts(qdev);
  1678. return 0;
  1679. }
  1680. return 1;
  1681. }
  1682. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1683. {
  1684. struct net_device *ndev = dev_id;
  1685. struct ql3_adapter *qdev = netdev_priv(ndev);
  1686. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1687. u32 value;
  1688. int handled = 1;
  1689. u32 var;
  1690. port_regs = qdev->mem_map_registers;
  1691. value =
  1692. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  1693. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1694. spin_lock(&qdev->adapter_lock);
  1695. netif_stop_queue(qdev->ndev);
  1696. netif_carrier_off(qdev->ndev);
  1697. ql_disable_interrupts(qdev);
  1698. qdev->port_link_state = LS_DOWN;
  1699. set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
  1700. if (value & ISP_CONTROL_FE) {
  1701. /*
  1702. * Chip Fatal Error.
  1703. */
  1704. var =
  1705. ql_read_page0_reg_l(qdev,
  1706. &port_regs->PortFatalErrStatus);
  1707. printk(KERN_WARNING PFX
  1708. "%s: Resetting chip. PortFatalErrStatus "
  1709. "register = 0x%x\n", ndev->name, var);
  1710. set_bit(QL_RESET_START,&qdev->flags) ;
  1711. } else {
  1712. /*
  1713. * Soft Reset Requested.
  1714. */
  1715. set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
  1716. printk(KERN_ERR PFX
  1717. "%s: Another function issued a reset to the "
  1718. "chip. ISR value = %x.\n", ndev->name, value);
  1719. }
  1720. queue_work(qdev->workqueue, &qdev->reset_work);
  1721. spin_unlock(&qdev->adapter_lock);
  1722. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1723. ql_disable_interrupts(qdev);
  1724. if (likely(netif_rx_schedule_prep(ndev)))
  1725. __netif_rx_schedule(ndev);
  1726. else
  1727. ql_enable_interrupts(qdev);
  1728. } else {
  1729. return IRQ_NONE;
  1730. }
  1731. return IRQ_RETVAL(handled);
  1732. }
  1733. static int ql3xxx_send(struct sk_buff *skb, struct net_device *ndev)
  1734. {
  1735. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  1736. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  1737. struct ql_tx_buf_cb *tx_cb;
  1738. struct ob_mac_iocb_req *mac_iocb_ptr;
  1739. u64 map;
  1740. if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
  1741. if (!netif_queue_stopped(ndev))
  1742. netif_stop_queue(ndev);
  1743. return NETDEV_TX_BUSY;
  1744. }
  1745. tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
  1746. mac_iocb_ptr = tx_cb->queue_entry;
  1747. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  1748. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  1749. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  1750. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  1751. mac_iocb_ptr->data_len = cpu_to_le16((u16) skb->len);
  1752. tx_cb->skb = skb;
  1753. map = pci_map_single(qdev->pdev, skb->data, skb->len, PCI_DMA_TODEVICE);
  1754. mac_iocb_ptr->buf_addr0_low = cpu_to_le32(LS_64BITS(map));
  1755. mac_iocb_ptr->buf_addr0_high = cpu_to_le32(MS_64BITS(map));
  1756. mac_iocb_ptr->buf_0_len = cpu_to_le32(skb->len | OB_MAC_IOCB_REQ_E);
  1757. pci_unmap_addr_set(tx_cb, mapaddr, map);
  1758. pci_unmap_len_set(tx_cb, maplen, skb->len);
  1759. atomic_dec(&qdev->tx_count);
  1760. qdev->req_producer_index++;
  1761. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  1762. qdev->req_producer_index = 0;
  1763. wmb();
  1764. ql_write_common_reg_l(qdev,
  1765. &port_regs->CommonRegs.reqQProducerIndex,
  1766. qdev->req_producer_index);
  1767. ndev->trans_start = jiffies;
  1768. if (netif_msg_tx_queued(qdev))
  1769. printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
  1770. ndev->name, qdev->req_producer_index, skb->len);
  1771. return NETDEV_TX_OK;
  1772. }
  1773. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  1774. {
  1775. qdev->req_q_size =
  1776. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  1777. qdev->req_q_virt_addr =
  1778. pci_alloc_consistent(qdev->pdev,
  1779. (size_t) qdev->req_q_size,
  1780. &qdev->req_q_phy_addr);
  1781. if ((qdev->req_q_virt_addr == NULL) ||
  1782. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  1783. printk(KERN_ERR PFX "%s: reqQ failed.\n",
  1784. qdev->ndev->name);
  1785. return -ENOMEM;
  1786. }
  1787. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  1788. qdev->rsp_q_virt_addr =
  1789. pci_alloc_consistent(qdev->pdev,
  1790. (size_t) qdev->rsp_q_size,
  1791. &qdev->rsp_q_phy_addr);
  1792. if ((qdev->rsp_q_virt_addr == NULL) ||
  1793. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  1794. printk(KERN_ERR PFX
  1795. "%s: rspQ allocation failed\n",
  1796. qdev->ndev->name);
  1797. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  1798. qdev->req_q_virt_addr,
  1799. qdev->req_q_phy_addr);
  1800. return -ENOMEM;
  1801. }
  1802. set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  1803. return 0;
  1804. }
  1805. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  1806. {
  1807. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
  1808. printk(KERN_INFO PFX
  1809. "%s: Already done.\n", qdev->ndev->name);
  1810. return;
  1811. }
  1812. pci_free_consistent(qdev->pdev,
  1813. qdev->req_q_size,
  1814. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  1815. qdev->req_q_virt_addr = NULL;
  1816. pci_free_consistent(qdev->pdev,
  1817. qdev->rsp_q_size,
  1818. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  1819. qdev->rsp_q_virt_addr = NULL;
  1820. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
  1821. }
  1822. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  1823. {
  1824. /* Create Large Buffer Queue */
  1825. qdev->lrg_buf_q_size =
  1826. NUM_LBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  1827. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  1828. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  1829. else
  1830. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  1831. qdev->lrg_buf_q_alloc_virt_addr =
  1832. pci_alloc_consistent(qdev->pdev,
  1833. qdev->lrg_buf_q_alloc_size,
  1834. &qdev->lrg_buf_q_alloc_phy_addr);
  1835. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  1836. printk(KERN_ERR PFX
  1837. "%s: lBufQ failed\n", qdev->ndev->name);
  1838. return -ENOMEM;
  1839. }
  1840. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  1841. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  1842. /* Create Small Buffer Queue */
  1843. qdev->small_buf_q_size =
  1844. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  1845. if (qdev->small_buf_q_size < PAGE_SIZE)
  1846. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  1847. else
  1848. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  1849. qdev->small_buf_q_alloc_virt_addr =
  1850. pci_alloc_consistent(qdev->pdev,
  1851. qdev->small_buf_q_alloc_size,
  1852. &qdev->small_buf_q_alloc_phy_addr);
  1853. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  1854. printk(KERN_ERR PFX
  1855. "%s: Small Buffer Queue allocation failed.\n",
  1856. qdev->ndev->name);
  1857. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  1858. qdev->lrg_buf_q_alloc_virt_addr,
  1859. qdev->lrg_buf_q_alloc_phy_addr);
  1860. return -ENOMEM;
  1861. }
  1862. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  1863. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  1864. set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  1865. return 0;
  1866. }
  1867. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  1868. {
  1869. if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
  1870. printk(KERN_INFO PFX
  1871. "%s: Already done.\n", qdev->ndev->name);
  1872. return;
  1873. }
  1874. pci_free_consistent(qdev->pdev,
  1875. qdev->lrg_buf_q_alloc_size,
  1876. qdev->lrg_buf_q_alloc_virt_addr,
  1877. qdev->lrg_buf_q_alloc_phy_addr);
  1878. qdev->lrg_buf_q_virt_addr = NULL;
  1879. pci_free_consistent(qdev->pdev,
  1880. qdev->small_buf_q_alloc_size,
  1881. qdev->small_buf_q_alloc_virt_addr,
  1882. qdev->small_buf_q_alloc_phy_addr);
  1883. qdev->small_buf_q_virt_addr = NULL;
  1884. clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
  1885. }
  1886. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  1887. {
  1888. int i;
  1889. struct bufq_addr_element *small_buf_q_entry;
  1890. /* Currently we allocate on one of memory and use it for smallbuffers */
  1891. qdev->small_buf_total_size =
  1892. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  1893. QL_SMALL_BUFFER_SIZE);
  1894. qdev->small_buf_virt_addr =
  1895. pci_alloc_consistent(qdev->pdev,
  1896. qdev->small_buf_total_size,
  1897. &qdev->small_buf_phy_addr);
  1898. if (qdev->small_buf_virt_addr == NULL) {
  1899. printk(KERN_ERR PFX
  1900. "%s: Failed to get small buffer memory.\n",
  1901. qdev->ndev->name);
  1902. return -ENOMEM;
  1903. }
  1904. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  1905. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  1906. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  1907. qdev->last_rsp_offset = qdev->small_buf_phy_addr_low;
  1908. /* Initialize the small buffer queue. */
  1909. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  1910. small_buf_q_entry->addr_high =
  1911. cpu_to_le32(qdev->small_buf_phy_addr_high);
  1912. small_buf_q_entry->addr_low =
  1913. cpu_to_le32(qdev->small_buf_phy_addr_low +
  1914. (i * QL_SMALL_BUFFER_SIZE));
  1915. small_buf_q_entry++;
  1916. }
  1917. qdev->small_buf_index = 0;
  1918. set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
  1919. return 0;
  1920. }
  1921. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  1922. {
  1923. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
  1924. printk(KERN_INFO PFX
  1925. "%s: Already done.\n", qdev->ndev->name);
  1926. return;
  1927. }
  1928. if (qdev->small_buf_virt_addr != NULL) {
  1929. pci_free_consistent(qdev->pdev,
  1930. qdev->small_buf_total_size,
  1931. qdev->small_buf_virt_addr,
  1932. qdev->small_buf_phy_addr);
  1933. qdev->small_buf_virt_addr = NULL;
  1934. }
  1935. }
  1936. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  1937. {
  1938. int i = 0;
  1939. struct ql_rcv_buf_cb *lrg_buf_cb;
  1940. for (i = 0; i < NUM_LARGE_BUFFERS; i++) {
  1941. lrg_buf_cb = &qdev->lrg_buf[i];
  1942. if (lrg_buf_cb->skb) {
  1943. dev_kfree_skb(lrg_buf_cb->skb);
  1944. pci_unmap_single(qdev->pdev,
  1945. pci_unmap_addr(lrg_buf_cb, mapaddr),
  1946. pci_unmap_len(lrg_buf_cb, maplen),
  1947. PCI_DMA_FROMDEVICE);
  1948. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  1949. } else {
  1950. break;
  1951. }
  1952. }
  1953. }
  1954. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  1955. {
  1956. int i;
  1957. struct ql_rcv_buf_cb *lrg_buf_cb;
  1958. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  1959. for (i = 0; i < NUM_LARGE_BUFFERS; i++) {
  1960. lrg_buf_cb = &qdev->lrg_buf[i];
  1961. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  1962. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  1963. buf_addr_ele++;
  1964. }
  1965. qdev->lrg_buf_index = 0;
  1966. qdev->lrg_buf_skb_check = 0;
  1967. }
  1968. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  1969. {
  1970. int i;
  1971. struct ql_rcv_buf_cb *lrg_buf_cb;
  1972. struct sk_buff *skb;
  1973. u64 map;
  1974. for (i = 0; i < NUM_LARGE_BUFFERS; i++) {
  1975. skb = dev_alloc_skb(qdev->lrg_buffer_len);
  1976. if (unlikely(!skb)) {
  1977. /* Better luck next round */
  1978. printk(KERN_ERR PFX
  1979. "%s: large buff alloc failed, "
  1980. "for %d bytes at index %d.\n",
  1981. qdev->ndev->name,
  1982. qdev->lrg_buffer_len * 2, i);
  1983. ql_free_large_buffers(qdev);
  1984. return -ENOMEM;
  1985. } else {
  1986. lrg_buf_cb = &qdev->lrg_buf[i];
  1987. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  1988. lrg_buf_cb->index = i;
  1989. lrg_buf_cb->skb = skb;
  1990. /*
  1991. * We save some space to copy the ethhdr from first
  1992. * buffer
  1993. */
  1994. skb_reserve(skb, QL_HEADER_SPACE);
  1995. map = pci_map_single(qdev->pdev,
  1996. skb->data,
  1997. qdev->lrg_buffer_len -
  1998. QL_HEADER_SPACE,
  1999. PCI_DMA_FROMDEVICE);
  2000. pci_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2001. pci_unmap_len_set(lrg_buf_cb, maplen,
  2002. qdev->lrg_buffer_len -
  2003. QL_HEADER_SPACE);
  2004. lrg_buf_cb->buf_phy_addr_low =
  2005. cpu_to_le32(LS_64BITS(map));
  2006. lrg_buf_cb->buf_phy_addr_high =
  2007. cpu_to_le32(MS_64BITS(map));
  2008. }
  2009. }
  2010. return 0;
  2011. }
  2012. static void ql_create_send_free_list(struct ql3_adapter *qdev)
  2013. {
  2014. struct ql_tx_buf_cb *tx_cb;
  2015. int i;
  2016. struct ob_mac_iocb_req *req_q_curr =
  2017. qdev->req_q_virt_addr;
  2018. /* Create free list of transmit buffers */
  2019. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2020. tx_cb = &qdev->tx_buf[i];
  2021. tx_cb->skb = NULL;
  2022. tx_cb->queue_entry = req_q_curr;
  2023. req_q_curr++;
  2024. }
  2025. }
  2026. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2027. {
  2028. if (qdev->ndev->mtu == NORMAL_MTU_SIZE)
  2029. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2030. else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2031. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2032. } else {
  2033. printk(KERN_ERR PFX
  2034. "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
  2035. qdev->ndev->name);
  2036. return -ENOMEM;
  2037. }
  2038. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2039. qdev->max_frame_size =
  2040. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2041. /*
  2042. * First allocate a page of shared memory and use it for shadow
  2043. * locations of Network Request Queue Consumer Address Register and
  2044. * Network Completion Queue Producer Index Register
  2045. */
  2046. qdev->shadow_reg_virt_addr =
  2047. pci_alloc_consistent(qdev->pdev,
  2048. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2049. if (qdev->shadow_reg_virt_addr != NULL) {
  2050. qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
  2051. qdev->req_consumer_index_phy_addr_high =
  2052. MS_64BITS(qdev->shadow_reg_phy_addr);
  2053. qdev->req_consumer_index_phy_addr_low =
  2054. LS_64BITS(qdev->shadow_reg_phy_addr);
  2055. qdev->prsp_producer_index =
  2056. (u32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2057. qdev->rsp_producer_index_phy_addr_high =
  2058. qdev->req_consumer_index_phy_addr_high;
  2059. qdev->rsp_producer_index_phy_addr_low =
  2060. qdev->req_consumer_index_phy_addr_low + 8;
  2061. } else {
  2062. printk(KERN_ERR PFX
  2063. "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
  2064. return -ENOMEM;
  2065. }
  2066. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2067. printk(KERN_ERR PFX
  2068. "%s: ql_alloc_net_req_rsp_queues failed.\n",
  2069. qdev->ndev->name);
  2070. goto err_req_rsp;
  2071. }
  2072. if (ql_alloc_buffer_queues(qdev) != 0) {
  2073. printk(KERN_ERR PFX
  2074. "%s: ql_alloc_buffer_queues failed.\n",
  2075. qdev->ndev->name);
  2076. goto err_buffer_queues;
  2077. }
  2078. if (ql_alloc_small_buffers(qdev) != 0) {
  2079. printk(KERN_ERR PFX
  2080. "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
  2081. goto err_small_buffers;
  2082. }
  2083. if (ql_alloc_large_buffers(qdev) != 0) {
  2084. printk(KERN_ERR PFX
  2085. "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
  2086. goto err_small_buffers;
  2087. }
  2088. /* Initialize the large buffer queue. */
  2089. ql_init_large_buffers(qdev);
  2090. ql_create_send_free_list(qdev);
  2091. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2092. return 0;
  2093. err_small_buffers:
  2094. ql_free_buffer_queues(qdev);
  2095. err_buffer_queues:
  2096. ql_free_net_req_rsp_queues(qdev);
  2097. err_req_rsp:
  2098. pci_free_consistent(qdev->pdev,
  2099. PAGE_SIZE,
  2100. qdev->shadow_reg_virt_addr,
  2101. qdev->shadow_reg_phy_addr);
  2102. return -ENOMEM;
  2103. }
  2104. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2105. {
  2106. ql_free_large_buffers(qdev);
  2107. ql_free_small_buffers(qdev);
  2108. ql_free_buffer_queues(qdev);
  2109. ql_free_net_req_rsp_queues(qdev);
  2110. if (qdev->shadow_reg_virt_addr != NULL) {
  2111. pci_free_consistent(qdev->pdev,
  2112. PAGE_SIZE,
  2113. qdev->shadow_reg_virt_addr,
  2114. qdev->shadow_reg_phy_addr);
  2115. qdev->shadow_reg_virt_addr = NULL;
  2116. }
  2117. }
  2118. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2119. {
  2120. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2121. (void __iomem *)qdev->mem_map_registers;
  2122. if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2123. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2124. 2) << 4))
  2125. return -1;
  2126. ql_write_page2_reg(qdev,
  2127. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2128. ql_write_page2_reg(qdev,
  2129. &local_ram->maxBufletCount,
  2130. qdev->nvram_data.bufletCount);
  2131. ql_write_page2_reg(qdev,
  2132. &local_ram->freeBufletThresholdLow,
  2133. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2134. (qdev->nvram_data.tcpWindowThreshold0));
  2135. ql_write_page2_reg(qdev,
  2136. &local_ram->freeBufletThresholdHigh,
  2137. qdev->nvram_data.tcpWindowThreshold50);
  2138. ql_write_page2_reg(qdev,
  2139. &local_ram->ipHashTableBase,
  2140. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2141. qdev->nvram_data.ipHashTableBaseLo);
  2142. ql_write_page2_reg(qdev,
  2143. &local_ram->ipHashTableCount,
  2144. qdev->nvram_data.ipHashTableSize);
  2145. ql_write_page2_reg(qdev,
  2146. &local_ram->tcpHashTableBase,
  2147. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2148. qdev->nvram_data.tcpHashTableBaseLo);
  2149. ql_write_page2_reg(qdev,
  2150. &local_ram->tcpHashTableCount,
  2151. qdev->nvram_data.tcpHashTableSize);
  2152. ql_write_page2_reg(qdev,
  2153. &local_ram->ncbBase,
  2154. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2155. qdev->nvram_data.ncbTableBaseLo);
  2156. ql_write_page2_reg(qdev,
  2157. &local_ram->maxNcbCount,
  2158. qdev->nvram_data.ncbTableSize);
  2159. ql_write_page2_reg(qdev,
  2160. &local_ram->drbBase,
  2161. (qdev->nvram_data.drbTableBaseHi << 16) |
  2162. qdev->nvram_data.drbTableBaseLo);
  2163. ql_write_page2_reg(qdev,
  2164. &local_ram->maxDrbCount,
  2165. qdev->nvram_data.drbTableSize);
  2166. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2167. return 0;
  2168. }
  2169. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2170. {
  2171. u32 value;
  2172. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2173. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2174. (void __iomem *)port_regs;
  2175. u32 delay = 10;
  2176. int status = 0;
  2177. if(ql_mii_setup(qdev))
  2178. return -1;
  2179. /* Bring out PHY out of reset */
  2180. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2181. (ISP_SERIAL_PORT_IF_WE |
  2182. (ISP_SERIAL_PORT_IF_WE << 16)));
  2183. qdev->port_link_state = LS_DOWN;
  2184. netif_carrier_off(qdev->ndev);
  2185. /* V2 chip fix for ARS-39168. */
  2186. ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
  2187. (ISP_SERIAL_PORT_IF_SDE |
  2188. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2189. /* Request Queue Registers */
  2190. *((u32 *) (qdev->preq_consumer_index)) = 0;
  2191. atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
  2192. qdev->req_producer_index = 0;
  2193. ql_write_page1_reg(qdev,
  2194. &hmem_regs->reqConsumerIndexAddrHigh,
  2195. qdev->req_consumer_index_phy_addr_high);
  2196. ql_write_page1_reg(qdev,
  2197. &hmem_regs->reqConsumerIndexAddrLow,
  2198. qdev->req_consumer_index_phy_addr_low);
  2199. ql_write_page1_reg(qdev,
  2200. &hmem_regs->reqBaseAddrHigh,
  2201. MS_64BITS(qdev->req_q_phy_addr));
  2202. ql_write_page1_reg(qdev,
  2203. &hmem_regs->reqBaseAddrLow,
  2204. LS_64BITS(qdev->req_q_phy_addr));
  2205. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2206. /* Response Queue Registers */
  2207. *((u16 *) (qdev->prsp_producer_index)) = 0;
  2208. qdev->rsp_consumer_index = 0;
  2209. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2210. ql_write_page1_reg(qdev,
  2211. &hmem_regs->rspProducerIndexAddrHigh,
  2212. qdev->rsp_producer_index_phy_addr_high);
  2213. ql_write_page1_reg(qdev,
  2214. &hmem_regs->rspProducerIndexAddrLow,
  2215. qdev->rsp_producer_index_phy_addr_low);
  2216. ql_write_page1_reg(qdev,
  2217. &hmem_regs->rspBaseAddrHigh,
  2218. MS_64BITS(qdev->rsp_q_phy_addr));
  2219. ql_write_page1_reg(qdev,
  2220. &hmem_regs->rspBaseAddrLow,
  2221. LS_64BITS(qdev->rsp_q_phy_addr));
  2222. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2223. /* Large Buffer Queue */
  2224. ql_write_page1_reg(qdev,
  2225. &hmem_regs->rxLargeQBaseAddrHigh,
  2226. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2227. ql_write_page1_reg(qdev,
  2228. &hmem_regs->rxLargeQBaseAddrLow,
  2229. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2230. ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, NUM_LBUFQ_ENTRIES);
  2231. ql_write_page1_reg(qdev,
  2232. &hmem_regs->rxLargeBufferLength,
  2233. qdev->lrg_buffer_len);
  2234. /* Small Buffer Queue */
  2235. ql_write_page1_reg(qdev,
  2236. &hmem_regs->rxSmallQBaseAddrHigh,
  2237. MS_64BITS(qdev->small_buf_q_phy_addr));
  2238. ql_write_page1_reg(qdev,
  2239. &hmem_regs->rxSmallQBaseAddrLow,
  2240. LS_64BITS(qdev->small_buf_q_phy_addr));
  2241. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2242. ql_write_page1_reg(qdev,
  2243. &hmem_regs->rxSmallBufferLength,
  2244. QL_SMALL_BUFFER_SIZE);
  2245. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2246. qdev->small_buf_release_cnt = 8;
  2247. qdev->lrg_buf_q_producer_index = NUM_LBUFQ_ENTRIES - 1;
  2248. qdev->lrg_buf_release_cnt = 8;
  2249. qdev->lrg_buf_next_free =
  2250. (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
  2251. qdev->small_buf_index = 0;
  2252. qdev->lrg_buf_index = 0;
  2253. qdev->lrg_buf_free_count = 0;
  2254. qdev->lrg_buf_free_head = NULL;
  2255. qdev->lrg_buf_free_tail = NULL;
  2256. ql_write_common_reg(qdev,
  2257. &port_regs->CommonRegs.
  2258. rxSmallQProducerIndex,
  2259. qdev->small_buf_q_producer_index);
  2260. ql_write_common_reg(qdev,
  2261. &port_regs->CommonRegs.
  2262. rxLargeQProducerIndex,
  2263. qdev->lrg_buf_q_producer_index);
  2264. /*
  2265. * Find out if the chip has already been initialized. If it has, then
  2266. * we skip some of the initialization.
  2267. */
  2268. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2269. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2270. if ((value & PORT_STATUS_IC) == 0) {
  2271. /* Chip has not been configured yet, so let it rip. */
  2272. if(ql_init_misc_registers(qdev)) {
  2273. status = -1;
  2274. goto out;
  2275. }
  2276. if (qdev->mac_index)
  2277. ql_write_page0_reg(qdev,
  2278. &port_regs->mac1MaxFrameLengthReg,
  2279. qdev->max_frame_size);
  2280. else
  2281. ql_write_page0_reg(qdev,
  2282. &port_regs->mac0MaxFrameLengthReg,
  2283. qdev->max_frame_size);
  2284. value = qdev->nvram_data.tcpMaxWindowSize;
  2285. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2286. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2287. if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2288. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2289. * 2) << 13)) {
  2290. status = -1;
  2291. goto out;
  2292. }
  2293. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2294. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2295. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2296. 16) | (INTERNAL_CHIP_SD |
  2297. INTERNAL_CHIP_WE)));
  2298. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2299. }
  2300. if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2301. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2302. 2) << 7)) {
  2303. status = -1;
  2304. goto out;
  2305. }
  2306. ql_init_scan_mode(qdev);
  2307. ql_get_phy_owner(qdev);
  2308. /* Load the MAC Configuration */
  2309. /* Program lower 32 bits of the MAC address */
  2310. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2311. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2312. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2313. ((qdev->ndev->dev_addr[2] << 24)
  2314. | (qdev->ndev->dev_addr[3] << 16)
  2315. | (qdev->ndev->dev_addr[4] << 8)
  2316. | qdev->ndev->dev_addr[5]));
  2317. /* Program top 16 bits of the MAC address */
  2318. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2319. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2320. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2321. ((qdev->ndev->dev_addr[0] << 8)
  2322. | qdev->ndev->dev_addr[1]));
  2323. /* Enable Primary MAC */
  2324. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2325. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2326. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2327. /* Clear Primary and Secondary IP addresses */
  2328. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2329. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2330. (qdev->mac_index << 2)));
  2331. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2332. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2333. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2334. ((qdev->mac_index << 2) + 1)));
  2335. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2336. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2337. /* Indicate Configuration Complete */
  2338. ql_write_page0_reg(qdev,
  2339. &port_regs->portControl,
  2340. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2341. do {
  2342. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2343. if (value & PORT_STATUS_IC)
  2344. break;
  2345. msleep(500);
  2346. } while (--delay);
  2347. if (delay == 0) {
  2348. printk(KERN_ERR PFX
  2349. "%s: Hw Initialization timeout.\n", qdev->ndev->name);
  2350. status = -1;
  2351. goto out;
  2352. }
  2353. /* Enable Ethernet Function */
  2354. value =
  2355. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2356. PORT_CONTROL_HH);
  2357. ql_write_page0_reg(qdev, &port_regs->portControl,
  2358. ((value << 16) | value));
  2359. out:
  2360. return status;
  2361. }
  2362. /*
  2363. * Caller holds hw_lock.
  2364. */
  2365. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2366. {
  2367. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2368. int status = 0;
  2369. u16 value;
  2370. int max_wait_time;
  2371. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2372. clear_bit(QL_RESET_DONE, &qdev->flags);
  2373. /*
  2374. * Issue soft reset to chip.
  2375. */
  2376. printk(KERN_DEBUG PFX
  2377. "%s: Issue soft reset to chip.\n",
  2378. qdev->ndev->name);
  2379. ql_write_common_reg(qdev,
  2380. &port_regs->CommonRegs.ispControlStatus,
  2381. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2382. /* Wait 3 seconds for reset to complete. */
  2383. printk(KERN_DEBUG PFX
  2384. "%s: Wait 10 milliseconds for reset to complete.\n",
  2385. qdev->ndev->name);
  2386. /* Wait until the firmware tells us the Soft Reset is done */
  2387. max_wait_time = 5;
  2388. do {
  2389. value =
  2390. ql_read_common_reg(qdev,
  2391. &port_regs->CommonRegs.ispControlStatus);
  2392. if ((value & ISP_CONTROL_SR) == 0)
  2393. break;
  2394. ssleep(1);
  2395. } while ((--max_wait_time));
  2396. /*
  2397. * Also, make sure that the Network Reset Interrupt bit has been
  2398. * cleared after the soft reset has taken place.
  2399. */
  2400. value =
  2401. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2402. if (value & ISP_CONTROL_RI) {
  2403. printk(KERN_DEBUG PFX
  2404. "ql_adapter_reset: clearing RI after reset.\n");
  2405. ql_write_common_reg(qdev,
  2406. &port_regs->CommonRegs.
  2407. ispControlStatus,
  2408. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2409. }
  2410. if (max_wait_time == 0) {
  2411. /* Issue Force Soft Reset */
  2412. ql_write_common_reg(qdev,
  2413. &port_regs->CommonRegs.
  2414. ispControlStatus,
  2415. ((ISP_CONTROL_FSR << 16) |
  2416. ISP_CONTROL_FSR));
  2417. /*
  2418. * Wait until the firmware tells us the Force Soft Reset is
  2419. * done
  2420. */
  2421. max_wait_time = 5;
  2422. do {
  2423. value =
  2424. ql_read_common_reg(qdev,
  2425. &port_regs->CommonRegs.
  2426. ispControlStatus);
  2427. if ((value & ISP_CONTROL_FSR) == 0) {
  2428. break;
  2429. }
  2430. ssleep(1);
  2431. } while ((--max_wait_time));
  2432. }
  2433. if (max_wait_time == 0)
  2434. status = 1;
  2435. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2436. set_bit(QL_RESET_DONE, &qdev->flags);
  2437. return status;
  2438. }
  2439. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2440. {
  2441. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2442. u32 value, port_status;
  2443. u8 func_number;
  2444. /* Get the function number */
  2445. value =
  2446. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2447. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2448. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2449. switch (value & ISP_CONTROL_FN_MASK) {
  2450. case ISP_CONTROL_FN0_NET:
  2451. qdev->mac_index = 0;
  2452. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2453. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2454. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2455. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2456. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2457. if (port_status & PORT_STATUS_SM0)
  2458. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2459. else
  2460. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2461. break;
  2462. case ISP_CONTROL_FN1_NET:
  2463. qdev->mac_index = 1;
  2464. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2465. qdev->tcp_ob_opcode = OUTBOUND_TCP_IOCB | func_number;
  2466. qdev->update_ob_opcode = UPDATE_NCB_IOCB | func_number;
  2467. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2468. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2469. if (port_status & PORT_STATUS_SM1)
  2470. set_bit(QL_LINK_OPTICAL,&qdev->flags);
  2471. else
  2472. clear_bit(QL_LINK_OPTICAL,&qdev->flags);
  2473. break;
  2474. case ISP_CONTROL_FN0_SCSI:
  2475. case ISP_CONTROL_FN1_SCSI:
  2476. default:
  2477. printk(KERN_DEBUG PFX
  2478. "%s: Invalid function number, ispControlStatus = 0x%x\n",
  2479. qdev->ndev->name,value);
  2480. break;
  2481. }
  2482. qdev->numPorts = qdev->nvram_data.numPorts;
  2483. }
  2484. static void ql_display_dev_info(struct net_device *ndev)
  2485. {
  2486. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2487. struct pci_dev *pdev = qdev->pdev;
  2488. printk(KERN_INFO PFX
  2489. "\n%s Adapter %d RevisionID %d found on PCI slot %d.\n",
  2490. DRV_NAME, qdev->index, qdev->chip_rev_id, qdev->pci_slot);
  2491. printk(KERN_INFO PFX
  2492. "%s Interface.\n",
  2493. test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
  2494. /*
  2495. * Print PCI bus width/type.
  2496. */
  2497. printk(KERN_INFO PFX
  2498. "Bus interface is %s %s.\n",
  2499. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2500. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2501. printk(KERN_INFO PFX
  2502. "mem IO base address adjusted = 0x%p\n",
  2503. qdev->mem_map_registers);
  2504. printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
  2505. if (netif_msg_probe(qdev))
  2506. printk(KERN_INFO PFX
  2507. "%s: MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
  2508. ndev->name, ndev->dev_addr[0], ndev->dev_addr[1],
  2509. ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
  2510. ndev->dev_addr[5]);
  2511. }
  2512. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2513. {
  2514. struct net_device *ndev = qdev->ndev;
  2515. int retval = 0;
  2516. netif_stop_queue(ndev);
  2517. netif_carrier_off(ndev);
  2518. clear_bit(QL_ADAPTER_UP,&qdev->flags);
  2519. clear_bit(QL_LINK_MASTER,&qdev->flags);
  2520. ql_disable_interrupts(qdev);
  2521. free_irq(qdev->pdev->irq, ndev);
  2522. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2523. printk(KERN_INFO PFX
  2524. "%s: calling pci_disable_msi().\n", qdev->ndev->name);
  2525. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2526. pci_disable_msi(qdev->pdev);
  2527. }
  2528. del_timer_sync(&qdev->adapter_timer);
  2529. netif_poll_disable(ndev);
  2530. if (do_reset) {
  2531. int soft_reset;
  2532. unsigned long hw_flags;
  2533. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2534. if (ql_wait_for_drvr_lock(qdev)) {
  2535. if ((soft_reset = ql_adapter_reset(qdev))) {
  2536. printk(KERN_ERR PFX
  2537. "%s: ql_adapter_reset(%d) FAILED!\n",
  2538. ndev->name, qdev->index);
  2539. }
  2540. printk(KERN_ERR PFX
  2541. "%s: Releaseing driver lock via chip reset.\n",ndev->name);
  2542. } else {
  2543. printk(KERN_ERR PFX
  2544. "%s: Could not acquire driver lock to do "
  2545. "reset!\n", ndev->name);
  2546. retval = -1;
  2547. }
  2548. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2549. }
  2550. ql_free_mem_resources(qdev);
  2551. return retval;
  2552. }
  2553. static int ql_adapter_up(struct ql3_adapter *qdev)
  2554. {
  2555. struct net_device *ndev = qdev->ndev;
  2556. int err;
  2557. unsigned long irq_flags = SA_SAMPLE_RANDOM | SA_SHIRQ;
  2558. unsigned long hw_flags;
  2559. if (ql_alloc_mem_resources(qdev)) {
  2560. printk(KERN_ERR PFX
  2561. "%s Unable to allocate buffers.\n", ndev->name);
  2562. return -ENOMEM;
  2563. }
  2564. if (qdev->msi) {
  2565. if (pci_enable_msi(qdev->pdev)) {
  2566. printk(KERN_ERR PFX
  2567. "%s: User requested MSI, but MSI failed to "
  2568. "initialize. Continuing without MSI.\n",
  2569. qdev->ndev->name);
  2570. qdev->msi = 0;
  2571. } else {
  2572. printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
  2573. set_bit(QL_MSI_ENABLED,&qdev->flags);
  2574. irq_flags &= ~SA_SHIRQ;
  2575. }
  2576. }
  2577. if ((err = request_irq(qdev->pdev->irq,
  2578. ql3xxx_isr,
  2579. irq_flags, ndev->name, ndev))) {
  2580. printk(KERN_ERR PFX
  2581. "%s: Failed to reserve interrupt %d already in use.\n",
  2582. ndev->name, qdev->pdev->irq);
  2583. goto err_irq;
  2584. }
  2585. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2586. if ((err = ql_wait_for_drvr_lock(qdev))) {
  2587. if ((err = ql_adapter_initialize(qdev))) {
  2588. printk(KERN_ERR PFX
  2589. "%s: Unable to initialize adapter.\n",
  2590. ndev->name);
  2591. goto err_init;
  2592. }
  2593. printk(KERN_ERR PFX
  2594. "%s: Releaseing driver lock.\n",ndev->name);
  2595. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2596. } else {
  2597. printk(KERN_ERR PFX
  2598. "%s: Could not aquire driver lock.\n",
  2599. ndev->name);
  2600. goto err_lock;
  2601. }
  2602. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2603. set_bit(QL_ADAPTER_UP,&qdev->flags);
  2604. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2605. netif_poll_enable(ndev);
  2606. ql_enable_interrupts(qdev);
  2607. return 0;
  2608. err_init:
  2609. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2610. err_lock:
  2611. free_irq(qdev->pdev->irq, ndev);
  2612. err_irq:
  2613. if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
  2614. printk(KERN_INFO PFX
  2615. "%s: calling pci_disable_msi().\n",
  2616. qdev->ndev->name);
  2617. clear_bit(QL_MSI_ENABLED,&qdev->flags);
  2618. pci_disable_msi(qdev->pdev);
  2619. }
  2620. return err;
  2621. }
  2622. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  2623. {
  2624. if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
  2625. printk(KERN_ERR PFX
  2626. "%s: Driver up/down cycle failed, "
  2627. "closing device\n",qdev->ndev->name);
  2628. dev_close(qdev->ndev);
  2629. return -1;
  2630. }
  2631. return 0;
  2632. }
  2633. static int ql3xxx_close(struct net_device *ndev)
  2634. {
  2635. struct ql3_adapter *qdev = netdev_priv(ndev);
  2636. /*
  2637. * Wait for device to recover from a reset.
  2638. * (Rarely happens, but possible.)
  2639. */
  2640. while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
  2641. msleep(50);
  2642. ql_adapter_down(qdev,QL_DO_RESET);
  2643. return 0;
  2644. }
  2645. static int ql3xxx_open(struct net_device *ndev)
  2646. {
  2647. struct ql3_adapter *qdev = netdev_priv(ndev);
  2648. return (ql_adapter_up(qdev));
  2649. }
  2650. static struct net_device_stats *ql3xxx_get_stats(struct net_device *dev)
  2651. {
  2652. struct ql3_adapter *qdev = (struct ql3_adapter *)dev->priv;
  2653. return &qdev->stats;
  2654. }
  2655. static int ql3xxx_change_mtu(struct net_device *ndev, int new_mtu)
  2656. {
  2657. struct ql3_adapter *qdev = netdev_priv(ndev);
  2658. printk(KERN_ERR PFX "%s: new mtu size = %d.\n", ndev->name, new_mtu);
  2659. if (new_mtu != NORMAL_MTU_SIZE && new_mtu != JUMBO_MTU_SIZE) {
  2660. printk(KERN_ERR PFX
  2661. "%s: mtu size of %d is not valid. Use exactly %d or "
  2662. "%d.\n", ndev->name, new_mtu, NORMAL_MTU_SIZE,
  2663. JUMBO_MTU_SIZE);
  2664. return -EINVAL;
  2665. }
  2666. if (!netif_running(ndev)) {
  2667. ndev->mtu = new_mtu;
  2668. return 0;
  2669. }
  2670. ndev->mtu = new_mtu;
  2671. return ql_cycle_adapter(qdev,QL_DO_RESET);
  2672. }
  2673. static void ql3xxx_set_multicast_list(struct net_device *ndev)
  2674. {
  2675. /*
  2676. * We are manually parsing the list in the net_device structure.
  2677. */
  2678. return;
  2679. }
  2680. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  2681. {
  2682. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2683. struct ql3xxx_port_registers __iomem *port_regs =
  2684. qdev->mem_map_registers;
  2685. struct sockaddr *addr = p;
  2686. unsigned long hw_flags;
  2687. if (netif_running(ndev))
  2688. return -EBUSY;
  2689. if (!is_valid_ether_addr(addr->sa_data))
  2690. return -EADDRNOTAVAIL;
  2691. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  2692. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2693. /* Program lower 32 bits of the MAC address */
  2694. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2695. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2696. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2697. ((ndev->dev_addr[2] << 24) | (ndev->
  2698. dev_addr[3] << 16) |
  2699. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  2700. /* Program top 16 bits of the MAC address */
  2701. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2702. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2703. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2704. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  2705. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2706. return 0;
  2707. }
  2708. static void ql3xxx_tx_timeout(struct net_device *ndev)
  2709. {
  2710. struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
  2711. printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
  2712. /*
  2713. * Stop the queues, we've got a problem.
  2714. */
  2715. netif_stop_queue(ndev);
  2716. /*
  2717. * Wake up the worker to process this event.
  2718. */
  2719. queue_work(qdev->workqueue, &qdev->tx_timeout_work);
  2720. }
  2721. static void ql_reset_work(struct ql3_adapter *qdev)
  2722. {
  2723. struct net_device *ndev = qdev->ndev;
  2724. u32 value;
  2725. struct ql_tx_buf_cb *tx_cb;
  2726. int max_wait_time, i;
  2727. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2728. unsigned long hw_flags;
  2729. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
  2730. clear_bit(QL_LINK_MASTER,&qdev->flags);
  2731. /*
  2732. * Loop through the active list and return the skb.
  2733. */
  2734. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2735. tx_cb = &qdev->tx_buf[i];
  2736. if (tx_cb->skb) {
  2737. printk(KERN_DEBUG PFX
  2738. "%s: Freeing lost SKB.\n",
  2739. qdev->ndev->name);
  2740. pci_unmap_single(qdev->pdev,
  2741. pci_unmap_addr(tx_cb, mapaddr),
  2742. pci_unmap_len(tx_cb, maplen), PCI_DMA_TODEVICE);
  2743. dev_kfree_skb(tx_cb->skb);
  2744. tx_cb->skb = NULL;
  2745. }
  2746. }
  2747. printk(KERN_ERR PFX
  2748. "%s: Clearing NRI after reset.\n", qdev->ndev->name);
  2749. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2750. ql_write_common_reg(qdev,
  2751. &port_regs->CommonRegs.
  2752. ispControlStatus,
  2753. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2754. /*
  2755. * Wait the for Soft Reset to Complete.
  2756. */
  2757. max_wait_time = 10;
  2758. do {
  2759. value = ql_read_common_reg(qdev,
  2760. &port_regs->CommonRegs.
  2761. ispControlStatus);
  2762. if ((value & ISP_CONTROL_SR) == 0) {
  2763. printk(KERN_DEBUG PFX
  2764. "%s: reset completed.\n",
  2765. qdev->ndev->name);
  2766. break;
  2767. }
  2768. if (value & ISP_CONTROL_RI) {
  2769. printk(KERN_DEBUG PFX
  2770. "%s: clearing NRI after reset.\n",
  2771. qdev->ndev->name);
  2772. ql_write_common_reg(qdev,
  2773. &port_regs->
  2774. CommonRegs.
  2775. ispControlStatus,
  2776. ((ISP_CONTROL_RI <<
  2777. 16) | ISP_CONTROL_RI));
  2778. }
  2779. ssleep(1);
  2780. } while (--max_wait_time);
  2781. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2782. if (value & ISP_CONTROL_SR) {
  2783. /*
  2784. * Set the reset flags and clear the board again.
  2785. * Nothing else to do...
  2786. */
  2787. printk(KERN_ERR PFX
  2788. "%s: Timed out waiting for reset to "
  2789. "complete.\n", ndev->name);
  2790. printk(KERN_ERR PFX
  2791. "%s: Do a reset.\n", ndev->name);
  2792. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  2793. clear_bit(QL_RESET_START,&qdev->flags);
  2794. ql_cycle_adapter(qdev,QL_DO_RESET);
  2795. return;
  2796. }
  2797. clear_bit(QL_RESET_ACTIVE,&qdev->flags);
  2798. clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
  2799. clear_bit(QL_RESET_START,&qdev->flags);
  2800. ql_cycle_adapter(qdev,QL_NO_RESET);
  2801. }
  2802. }
  2803. static void ql_tx_timeout_work(struct ql3_adapter *qdev)
  2804. {
  2805. ql_cycle_adapter(qdev,QL_DO_RESET);
  2806. }
  2807. static void ql_get_board_info(struct ql3_adapter *qdev)
  2808. {
  2809. struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
  2810. u32 value;
  2811. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  2812. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  2813. if (value & PORT_STATUS_64)
  2814. qdev->pci_width = 64;
  2815. else
  2816. qdev->pci_width = 32;
  2817. if (value & PORT_STATUS_X)
  2818. qdev->pci_x = 1;
  2819. else
  2820. qdev->pci_x = 0;
  2821. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  2822. }
  2823. static void ql3xxx_timer(unsigned long ptr)
  2824. {
  2825. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  2826. if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
  2827. printk(KERN_DEBUG PFX
  2828. "%s: Reset in progress.\n",
  2829. qdev->ndev->name);
  2830. goto end;
  2831. }
  2832. ql_link_state_machine(qdev);
  2833. /* Restart timer on 2 second interval. */
  2834. end:
  2835. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2836. }
  2837. static int __devinit ql3xxx_probe(struct pci_dev *pdev,
  2838. const struct pci_device_id *pci_entry)
  2839. {
  2840. struct net_device *ndev = NULL;
  2841. struct ql3_adapter *qdev = NULL;
  2842. static int cards_found = 0;
  2843. int pci_using_dac, err;
  2844. err = pci_enable_device(pdev);
  2845. if (err) {
  2846. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2847. pci_name(pdev));
  2848. goto err_out;
  2849. }
  2850. err = pci_request_regions(pdev, DRV_NAME);
  2851. if (err) {
  2852. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2853. pci_name(pdev));
  2854. goto err_out_disable_pdev;
  2855. }
  2856. pci_set_master(pdev);
  2857. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  2858. pci_using_dac = 1;
  2859. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  2860. } else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2861. pci_using_dac = 0;
  2862. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  2863. }
  2864. if (err) {
  2865. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2866. pci_name(pdev));
  2867. goto err_out_free_regions;
  2868. }
  2869. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  2870. if (!ndev)
  2871. goto err_out_free_regions;
  2872. SET_MODULE_OWNER(ndev);
  2873. SET_NETDEV_DEV(ndev, &pdev->dev);
  2874. ndev->features = NETIF_F_LLTX;
  2875. if (pci_using_dac)
  2876. ndev->features |= NETIF_F_HIGHDMA;
  2877. pci_set_drvdata(pdev, ndev);
  2878. qdev = netdev_priv(ndev);
  2879. qdev->index = cards_found;
  2880. qdev->ndev = ndev;
  2881. qdev->pdev = pdev;
  2882. qdev->port_link_state = LS_DOWN;
  2883. if (msi)
  2884. qdev->msi = 1;
  2885. qdev->msg_enable = netif_msg_init(debug, default_msg);
  2886. qdev->mem_map_registers =
  2887. ioremap_nocache(pci_resource_start(pdev, 1),
  2888. pci_resource_len(qdev->pdev, 1));
  2889. if (!qdev->mem_map_registers) {
  2890. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2891. pci_name(pdev));
  2892. goto err_out_free_ndev;
  2893. }
  2894. spin_lock_init(&qdev->adapter_lock);
  2895. spin_lock_init(&qdev->hw_lock);
  2896. /* Set driver entry points */
  2897. ndev->open = ql3xxx_open;
  2898. ndev->hard_start_xmit = ql3xxx_send;
  2899. ndev->stop = ql3xxx_close;
  2900. ndev->get_stats = ql3xxx_get_stats;
  2901. ndev->change_mtu = ql3xxx_change_mtu;
  2902. ndev->set_multicast_list = ql3xxx_set_multicast_list;
  2903. SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
  2904. ndev->set_mac_address = ql3xxx_set_mac_address;
  2905. ndev->tx_timeout = ql3xxx_tx_timeout;
  2906. ndev->watchdog_timeo = 5 * HZ;
  2907. ndev->poll = &ql_poll;
  2908. ndev->weight = 64;
  2909. ndev->irq = pdev->irq;
  2910. /* make sure the EEPROM is good */
  2911. if (ql_get_nvram_params(qdev)) {
  2912. printk(KERN_ALERT PFX
  2913. "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
  2914. qdev->index);
  2915. goto err_out_iounmap;
  2916. }
  2917. ql_set_mac_info(qdev);
  2918. /* Validate and set parameters */
  2919. if (qdev->mac_index) {
  2920. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn2.macAddress,
  2921. ETH_ALEN);
  2922. } else {
  2923. memcpy(ndev->dev_addr, &qdev->nvram_data.funcCfg_fn0.macAddress,
  2924. ETH_ALEN);
  2925. }
  2926. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  2927. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  2928. /* Turn off support for multicasting */
  2929. ndev->flags &= ~IFF_MULTICAST;
  2930. /* Record PCI bus information. */
  2931. ql_get_board_info(qdev);
  2932. /*
  2933. * Set the Maximum Memory Read Byte Count value. We do this to handle
  2934. * jumbo frames.
  2935. */
  2936. if (qdev->pci_x) {
  2937. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  2938. }
  2939. err = register_netdev(ndev);
  2940. if (err) {
  2941. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2942. pci_name(pdev));
  2943. goto err_out_iounmap;
  2944. }
  2945. /* we're going to reset, so assume we have no link for now */
  2946. netif_carrier_off(ndev);
  2947. netif_stop_queue(ndev);
  2948. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  2949. INIT_WORK(&qdev->reset_work, (void (*)(void *))ql_reset_work, qdev);
  2950. INIT_WORK(&qdev->tx_timeout_work,
  2951. (void (*)(void *))ql_tx_timeout_work, qdev);
  2952. init_timer(&qdev->adapter_timer);
  2953. qdev->adapter_timer.function = ql3xxx_timer;
  2954. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  2955. qdev->adapter_timer.data = (unsigned long)qdev;
  2956. if(!cards_found) {
  2957. printk(KERN_ALERT PFX "%s\n", DRV_STRING);
  2958. printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
  2959. DRV_NAME, DRV_VERSION);
  2960. }
  2961. ql_display_dev_info(ndev);
  2962. cards_found++;
  2963. return 0;
  2964. err_out_iounmap:
  2965. iounmap(qdev->mem_map_registers);
  2966. err_out_free_ndev:
  2967. free_netdev(ndev);
  2968. err_out_free_regions:
  2969. pci_release_regions(pdev);
  2970. err_out_disable_pdev:
  2971. pci_disable_device(pdev);
  2972. pci_set_drvdata(pdev, NULL);
  2973. err_out:
  2974. return err;
  2975. }
  2976. static void __devexit ql3xxx_remove(struct pci_dev *pdev)
  2977. {
  2978. struct net_device *ndev = pci_get_drvdata(pdev);
  2979. struct ql3_adapter *qdev = netdev_priv(ndev);
  2980. unregister_netdev(ndev);
  2981. qdev = netdev_priv(ndev);
  2982. ql_disable_interrupts(qdev);
  2983. if (qdev->workqueue) {
  2984. cancel_delayed_work(&qdev->reset_work);
  2985. cancel_delayed_work(&qdev->tx_timeout_work);
  2986. destroy_workqueue(qdev->workqueue);
  2987. qdev->workqueue = NULL;
  2988. }
  2989. iounmap(qdev->mem_map_registers);
  2990. pci_release_regions(pdev);
  2991. pci_set_drvdata(pdev, NULL);
  2992. free_netdev(ndev);
  2993. }
  2994. static struct pci_driver ql3xxx_driver = {
  2995. .name = DRV_NAME,
  2996. .id_table = ql3xxx_pci_tbl,
  2997. .probe = ql3xxx_probe,
  2998. .remove = __devexit_p(ql3xxx_remove),
  2999. };
  3000. static int __init ql3xxx_init_module(void)
  3001. {
  3002. return pci_register_driver(&ql3xxx_driver);
  3003. }
  3004. static void __exit ql3xxx_exit(void)
  3005. {
  3006. pci_unregister_driver(&ql3xxx_driver);
  3007. }
  3008. module_init(ql3xxx_init_module);
  3009. module_exit(ql3xxx_exit);