ns83820.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205
  1. #define VERSION "0.22"
  2. /* ns83820.c by Benjamin LaHaise with contributions.
  3. *
  4. * Questions/comments/discussion to linux-ns83820@kvack.org.
  5. *
  6. * $Revision: 1.34.2.23 $
  7. *
  8. * Copyright 2001 Benjamin LaHaise.
  9. * Copyright 2001, 2002 Red Hat.
  10. *
  11. * Mmmm, chocolate vanilla mocha...
  12. *
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  27. *
  28. *
  29. * ChangeLog
  30. * =========
  31. * 20010414 0.1 - created
  32. * 20010622 0.2 - basic rx and tx.
  33. * 20010711 0.3 - added duplex and link state detection support.
  34. * 20010713 0.4 - zero copy, no hangs.
  35. * 0.5 - 64 bit dma support (davem will hate me for this)
  36. * - disable jumbo frames to avoid tx hangs
  37. * - work around tx deadlocks on my 1.02 card via
  38. * fiddling with TXCFG
  39. * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
  40. * 20010816 0.7 - misc cleanups
  41. * 20010826 0.8 - fix critical zero copy bugs
  42. * 0.9 - internal experiment
  43. * 20010827 0.10 - fix ia64 unaligned access.
  44. * 20010906 0.11 - accept all packets with checksum errors as
  45. * otherwise fragments get lost
  46. * - fix >> 32 bugs
  47. * 0.12 - add statistics counters
  48. * - add allmulti/promisc support
  49. * 20011009 0.13 - hotplug support, other smaller pci api cleanups
  50. * 20011204 0.13a - optical transceiver support added
  51. * by Michael Clark <michael@metaparadigm.com>
  52. * 20011205 0.13b - call register_netdev earlier in initialization
  53. * suppress duplicate link status messages
  54. * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  55. * 20011204 0.15 get ppc (big endian) working
  56. * 20011218 0.16 various cleanups
  57. * 20020310 0.17 speedups
  58. * 20020610 0.18 - actually use the pci dma api for highmem
  59. * - remove pci latency register fiddling
  60. * 0.19 - better bist support
  61. * - add ihr and reset_phy parameters
  62. * - gmii bus probing
  63. * - fix missed txok introduced during performance
  64. * tuning
  65. * 0.20 - fix stupid RFEN thinko. i am such a smurf.
  66. * 20040828 0.21 - add hardware vlan accleration
  67. * by Neil Horman <nhorman@redhat.com>
  68. * 20050406 0.22 - improved DAC ifdefs from Andi Kleen
  69. * - removal of dead code from Adrian Bunk
  70. * - fix half duplex collision behaviour
  71. * Driver Overview
  72. * ===============
  73. *
  74. * This driver was originally written for the National Semiconductor
  75. * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
  76. * this code will turn out to be a) clean, b) correct, and c) fast.
  77. * With that in mind, I'm aiming to split the code up as much as
  78. * reasonably possible. At present there are X major sections that
  79. * break down into a) packet receive, b) packet transmit, c) link
  80. * management, d) initialization and configuration. Where possible,
  81. * these code paths are designed to run in parallel.
  82. *
  83. * This driver has been tested and found to work with the following
  84. * cards (in no particular order):
  85. *
  86. * Cameo SOHO-GA2000T SOHO-GA2500T
  87. * D-Link DGE-500T
  88. * PureData PDP8023Z-TG
  89. * SMC SMC9452TX SMC9462TX
  90. * Netgear GA621
  91. *
  92. * Special thanks to SMC for providing hardware to test this driver on.
  93. *
  94. * Reports of success or failure would be greatly appreciated.
  95. */
  96. //#define dprintk printk
  97. #define dprintk(x...) do { } while (0)
  98. #include <linux/module.h>
  99. #include <linux/moduleparam.h>
  100. #include <linux/types.h>
  101. #include <linux/pci.h>
  102. #include <linux/dma-mapping.h>
  103. #include <linux/netdevice.h>
  104. #include <linux/etherdevice.h>
  105. #include <linux/delay.h>
  106. #include <linux/smp_lock.h>
  107. #include <linux/workqueue.h>
  108. #include <linux/init.h>
  109. #include <linux/ip.h> /* for iph */
  110. #include <linux/in.h> /* for IPPROTO_... */
  111. #include <linux/compiler.h>
  112. #include <linux/prefetch.h>
  113. #include <linux/ethtool.h>
  114. #include <linux/timer.h>
  115. #include <linux/if_vlan.h>
  116. #include <linux/rtnetlink.h>
  117. #include <linux/jiffies.h>
  118. #include <asm/io.h>
  119. #include <asm/uaccess.h>
  120. #include <asm/system.h>
  121. #define DRV_NAME "ns83820"
  122. /* Global parameters. See module_param near the bottom. */
  123. static int ihr = 2;
  124. static int reset_phy = 0;
  125. static int lnksts = 0; /* CFG_LNKSTS bit polarity */
  126. /* Dprintk is used for more interesting debug events */
  127. #undef Dprintk
  128. #define Dprintk dprintk
  129. /* tunables */
  130. #define RX_BUF_SIZE 1500 /* 8192 */
  131. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  132. #define NS83820_VLAN_ACCEL_SUPPORT
  133. #endif
  134. /* Must not exceed ~65000. */
  135. #define NR_RX_DESC 64
  136. #define NR_TX_DESC 128
  137. /* not tunable */
  138. #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
  139. #define MIN_TX_DESC_FREE 8
  140. /* register defines */
  141. #define CFGCS 0x04
  142. #define CR_TXE 0x00000001
  143. #define CR_TXD 0x00000002
  144. /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
  145. * The Receive engine skips one descriptor and moves
  146. * onto the next one!! */
  147. #define CR_RXE 0x00000004
  148. #define CR_RXD 0x00000008
  149. #define CR_TXR 0x00000010
  150. #define CR_RXR 0x00000020
  151. #define CR_SWI 0x00000080
  152. #define CR_RST 0x00000100
  153. #define PTSCR_EEBIST_FAIL 0x00000001
  154. #define PTSCR_EEBIST_EN 0x00000002
  155. #define PTSCR_EELOAD_EN 0x00000004
  156. #define PTSCR_RBIST_FAIL 0x000001b8
  157. #define PTSCR_RBIST_DONE 0x00000200
  158. #define PTSCR_RBIST_EN 0x00000400
  159. #define PTSCR_RBIST_RST 0x00002000
  160. #define MEAR_EEDI 0x00000001
  161. #define MEAR_EEDO 0x00000002
  162. #define MEAR_EECLK 0x00000004
  163. #define MEAR_EESEL 0x00000008
  164. #define MEAR_MDIO 0x00000010
  165. #define MEAR_MDDIR 0x00000020
  166. #define MEAR_MDC 0x00000040
  167. #define ISR_TXDESC3 0x40000000
  168. #define ISR_TXDESC2 0x20000000
  169. #define ISR_TXDESC1 0x10000000
  170. #define ISR_TXDESC0 0x08000000
  171. #define ISR_RXDESC3 0x04000000
  172. #define ISR_RXDESC2 0x02000000
  173. #define ISR_RXDESC1 0x01000000
  174. #define ISR_RXDESC0 0x00800000
  175. #define ISR_TXRCMP 0x00400000
  176. #define ISR_RXRCMP 0x00200000
  177. #define ISR_DPERR 0x00100000
  178. #define ISR_SSERR 0x00080000
  179. #define ISR_RMABT 0x00040000
  180. #define ISR_RTABT 0x00020000
  181. #define ISR_RXSOVR 0x00010000
  182. #define ISR_HIBINT 0x00008000
  183. #define ISR_PHY 0x00004000
  184. #define ISR_PME 0x00002000
  185. #define ISR_SWI 0x00001000
  186. #define ISR_MIB 0x00000800
  187. #define ISR_TXURN 0x00000400
  188. #define ISR_TXIDLE 0x00000200
  189. #define ISR_TXERR 0x00000100
  190. #define ISR_TXDESC 0x00000080
  191. #define ISR_TXOK 0x00000040
  192. #define ISR_RXORN 0x00000020
  193. #define ISR_RXIDLE 0x00000010
  194. #define ISR_RXEARLY 0x00000008
  195. #define ISR_RXERR 0x00000004
  196. #define ISR_RXDESC 0x00000002
  197. #define ISR_RXOK 0x00000001
  198. #define TXCFG_CSI 0x80000000
  199. #define TXCFG_HBI 0x40000000
  200. #define TXCFG_MLB 0x20000000
  201. #define TXCFG_ATP 0x10000000
  202. #define TXCFG_ECRETRY 0x00800000
  203. #define TXCFG_BRST_DIS 0x00080000
  204. #define TXCFG_MXDMA1024 0x00000000
  205. #define TXCFG_MXDMA512 0x00700000
  206. #define TXCFG_MXDMA256 0x00600000
  207. #define TXCFG_MXDMA128 0x00500000
  208. #define TXCFG_MXDMA64 0x00400000
  209. #define TXCFG_MXDMA32 0x00300000
  210. #define TXCFG_MXDMA16 0x00200000
  211. #define TXCFG_MXDMA8 0x00100000
  212. #define CFG_LNKSTS 0x80000000
  213. #define CFG_SPDSTS 0x60000000
  214. #define CFG_SPDSTS1 0x40000000
  215. #define CFG_SPDSTS0 0x20000000
  216. #define CFG_DUPSTS 0x10000000
  217. #define CFG_TBI_EN 0x01000000
  218. #define CFG_MODE_1000 0x00400000
  219. /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
  220. * Read the Phy response and then configure the MAC accordingly */
  221. #define CFG_AUTO_1000 0x00200000
  222. #define CFG_PINT_CTL 0x001c0000
  223. #define CFG_PINT_DUPSTS 0x00100000
  224. #define CFG_PINT_LNKSTS 0x00080000
  225. #define CFG_PINT_SPDSTS 0x00040000
  226. #define CFG_TMRTEST 0x00020000
  227. #define CFG_MRM_DIS 0x00010000
  228. #define CFG_MWI_DIS 0x00008000
  229. #define CFG_T64ADDR 0x00004000
  230. #define CFG_PCI64_DET 0x00002000
  231. #define CFG_DATA64_EN 0x00001000
  232. #define CFG_M64ADDR 0x00000800
  233. #define CFG_PHY_RST 0x00000400
  234. #define CFG_PHY_DIS 0x00000200
  235. #define CFG_EXTSTS_EN 0x00000100
  236. #define CFG_REQALG 0x00000080
  237. #define CFG_SB 0x00000040
  238. #define CFG_POW 0x00000020
  239. #define CFG_EXD 0x00000010
  240. #define CFG_PESEL 0x00000008
  241. #define CFG_BROM_DIS 0x00000004
  242. #define CFG_EXT_125 0x00000002
  243. #define CFG_BEM 0x00000001
  244. #define EXTSTS_UDPPKT 0x00200000
  245. #define EXTSTS_TCPPKT 0x00080000
  246. #define EXTSTS_IPPKT 0x00020000
  247. #define EXTSTS_VPKT 0x00010000
  248. #define EXTSTS_VTG_MASK 0x0000ffff
  249. #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
  250. #define MIBC_MIBS 0x00000008
  251. #define MIBC_ACLR 0x00000004
  252. #define MIBC_FRZ 0x00000002
  253. #define MIBC_WRN 0x00000001
  254. #define PCR_PSEN (1 << 31)
  255. #define PCR_PS_MCAST (1 << 30)
  256. #define PCR_PS_DA (1 << 29)
  257. #define PCR_STHI_8 (3 << 23)
  258. #define PCR_STLO_4 (1 << 23)
  259. #define PCR_FFHI_8K (3 << 21)
  260. #define PCR_FFLO_4K (1 << 21)
  261. #define PCR_PAUSE_CNT 0xFFFE
  262. #define RXCFG_AEP 0x80000000
  263. #define RXCFG_ARP 0x40000000
  264. #define RXCFG_STRIPCRC 0x20000000
  265. #define RXCFG_RX_FD 0x10000000
  266. #define RXCFG_ALP 0x08000000
  267. #define RXCFG_AIRL 0x04000000
  268. #define RXCFG_MXDMA512 0x00700000
  269. #define RXCFG_DRTH 0x0000003e
  270. #define RXCFG_DRTH0 0x00000002
  271. #define RFCR_RFEN 0x80000000
  272. #define RFCR_AAB 0x40000000
  273. #define RFCR_AAM 0x20000000
  274. #define RFCR_AAU 0x10000000
  275. #define RFCR_APM 0x08000000
  276. #define RFCR_APAT 0x07800000
  277. #define RFCR_APAT3 0x04000000
  278. #define RFCR_APAT2 0x02000000
  279. #define RFCR_APAT1 0x01000000
  280. #define RFCR_APAT0 0x00800000
  281. #define RFCR_AARP 0x00400000
  282. #define RFCR_MHEN 0x00200000
  283. #define RFCR_UHEN 0x00100000
  284. #define RFCR_ULM 0x00080000
  285. #define VRCR_RUDPE 0x00000080
  286. #define VRCR_RTCPE 0x00000040
  287. #define VRCR_RIPE 0x00000020
  288. #define VRCR_IPEN 0x00000010
  289. #define VRCR_DUTF 0x00000008
  290. #define VRCR_DVTF 0x00000004
  291. #define VRCR_VTREN 0x00000002
  292. #define VRCR_VTDEN 0x00000001
  293. #define VTCR_PPCHK 0x00000008
  294. #define VTCR_GCHK 0x00000004
  295. #define VTCR_VPPTI 0x00000002
  296. #define VTCR_VGTI 0x00000001
  297. #define CR 0x00
  298. #define CFG 0x04
  299. #define MEAR 0x08
  300. #define PTSCR 0x0c
  301. #define ISR 0x10
  302. #define IMR 0x14
  303. #define IER 0x18
  304. #define IHR 0x1c
  305. #define TXDP 0x20
  306. #define TXDP_HI 0x24
  307. #define TXCFG 0x28
  308. #define GPIOR 0x2c
  309. #define RXDP 0x30
  310. #define RXDP_HI 0x34
  311. #define RXCFG 0x38
  312. #define PQCR 0x3c
  313. #define WCSR 0x40
  314. #define PCR 0x44
  315. #define RFCR 0x48
  316. #define RFDR 0x4c
  317. #define SRR 0x58
  318. #define VRCR 0xbc
  319. #define VTCR 0xc0
  320. #define VDR 0xc4
  321. #define CCSR 0xcc
  322. #define TBICR 0xe0
  323. #define TBISR 0xe4
  324. #define TANAR 0xe8
  325. #define TANLPAR 0xec
  326. #define TANER 0xf0
  327. #define TESR 0xf4
  328. #define TBICR_MR_AN_ENABLE 0x00001000
  329. #define TBICR_MR_RESTART_AN 0x00000200
  330. #define TBISR_MR_LINK_STATUS 0x00000020
  331. #define TBISR_MR_AN_COMPLETE 0x00000004
  332. #define TANAR_PS2 0x00000100
  333. #define TANAR_PS1 0x00000080
  334. #define TANAR_HALF_DUP 0x00000040
  335. #define TANAR_FULL_DUP 0x00000020
  336. #define GPIOR_GP5_OE 0x00000200
  337. #define GPIOR_GP4_OE 0x00000100
  338. #define GPIOR_GP3_OE 0x00000080
  339. #define GPIOR_GP2_OE 0x00000040
  340. #define GPIOR_GP1_OE 0x00000020
  341. #define GPIOR_GP3_OUT 0x00000004
  342. #define GPIOR_GP1_OUT 0x00000001
  343. #define LINK_AUTONEGOTIATE 0x01
  344. #define LINK_DOWN 0x02
  345. #define LINK_UP 0x04
  346. #define HW_ADDR_LEN sizeof(dma_addr_t)
  347. #define desc_addr_set(desc, addr) \
  348. do { \
  349. ((desc)[0] = cpu_to_le32(addr)); \
  350. if (HW_ADDR_LEN == 8) \
  351. (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \
  352. } while(0)
  353. #define desc_addr_get(desc) \
  354. (le32_to_cpu((desc)[0]) | \
  355. (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
  356. #define DESC_LINK 0
  357. #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
  358. #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
  359. #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
  360. #define CMDSTS_OWN 0x80000000
  361. #define CMDSTS_MORE 0x40000000
  362. #define CMDSTS_INTR 0x20000000
  363. #define CMDSTS_ERR 0x10000000
  364. #define CMDSTS_OK 0x08000000
  365. #define CMDSTS_RUNT 0x00200000
  366. #define CMDSTS_LEN_MASK 0x0000ffff
  367. #define CMDSTS_DEST_MASK 0x01800000
  368. #define CMDSTS_DEST_SELF 0x00800000
  369. #define CMDSTS_DEST_MULTI 0x01000000
  370. #define DESC_SIZE 8 /* Should be cache line sized */
  371. struct rx_info {
  372. spinlock_t lock;
  373. int up;
  374. long idle;
  375. struct sk_buff *skbs[NR_RX_DESC];
  376. u32 *next_rx_desc;
  377. u16 next_rx, next_empty;
  378. u32 *descs;
  379. dma_addr_t phy_descs;
  380. };
  381. struct ns83820 {
  382. struct net_device_stats stats;
  383. u8 __iomem *base;
  384. struct pci_dev *pci_dev;
  385. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  386. struct vlan_group *vlgrp;
  387. #endif
  388. struct rx_info rx_info;
  389. struct tasklet_struct rx_tasklet;
  390. unsigned ihr;
  391. struct work_struct tq_refill;
  392. /* protects everything below. irqsave when using. */
  393. spinlock_t misc_lock;
  394. u32 CFG_cache;
  395. u32 MEAR_cache;
  396. u32 IMR_cache;
  397. unsigned linkstate;
  398. spinlock_t tx_lock;
  399. u16 tx_done_idx;
  400. u16 tx_idx;
  401. volatile u16 tx_free_idx; /* idx of free desc chain */
  402. u16 tx_intr_idx;
  403. atomic_t nr_tx_skbs;
  404. struct sk_buff *tx_skbs[NR_TX_DESC];
  405. char pad[16] __attribute__((aligned(16)));
  406. u32 *tx_descs;
  407. dma_addr_t tx_phy_descs;
  408. struct timer_list tx_watchdog;
  409. };
  410. static inline struct ns83820 *PRIV(struct net_device *dev)
  411. {
  412. return netdev_priv(dev);
  413. }
  414. #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
  415. static inline void kick_rx(struct net_device *ndev)
  416. {
  417. struct ns83820 *dev = PRIV(ndev);
  418. dprintk("kick_rx: maybe kicking\n");
  419. if (test_and_clear_bit(0, &dev->rx_info.idle)) {
  420. dprintk("actually kicking\n");
  421. writel(dev->rx_info.phy_descs +
  422. (4 * DESC_SIZE * dev->rx_info.next_rx),
  423. dev->base + RXDP);
  424. if (dev->rx_info.next_rx == dev->rx_info.next_empty)
  425. printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
  426. ndev->name);
  427. __kick_rx(dev);
  428. }
  429. }
  430. //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
  431. #define start_tx_okay(dev) \
  432. (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
  433. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  434. static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  435. {
  436. struct ns83820 *dev = PRIV(ndev);
  437. spin_lock_irq(&dev->misc_lock);
  438. spin_lock(&dev->tx_lock);
  439. dev->vlgrp = grp;
  440. spin_unlock(&dev->tx_lock);
  441. spin_unlock_irq(&dev->misc_lock);
  442. }
  443. static void ns83820_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  444. {
  445. struct ns83820 *dev = PRIV(ndev);
  446. spin_lock_irq(&dev->misc_lock);
  447. spin_lock(&dev->tx_lock);
  448. if (dev->vlgrp)
  449. dev->vlgrp->vlan_devices[vid] = NULL;
  450. spin_unlock(&dev->tx_lock);
  451. spin_unlock_irq(&dev->misc_lock);
  452. }
  453. #endif
  454. /* Packet Receiver
  455. *
  456. * The hardware supports linked lists of receive descriptors for
  457. * which ownership is transfered back and forth by means of an
  458. * ownership bit. While the hardware does support the use of a
  459. * ring for receive descriptors, we only make use of a chain in
  460. * an attempt to reduce bus traffic under heavy load scenarios.
  461. * This will also make bugs a bit more obvious. The current code
  462. * only makes use of a single rx chain; I hope to implement
  463. * priority based rx for version 1.0. Goal: even under overload
  464. * conditions, still route realtime traffic with as low jitter as
  465. * possible.
  466. */
  467. static inline void build_rx_desc(struct ns83820 *dev, u32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
  468. {
  469. desc_addr_set(desc + DESC_LINK, link);
  470. desc_addr_set(desc + DESC_BUFPTR, buf);
  471. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  472. mb();
  473. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  474. }
  475. #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
  476. static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
  477. {
  478. unsigned next_empty;
  479. u32 cmdsts;
  480. u32 *sg;
  481. dma_addr_t buf;
  482. next_empty = dev->rx_info.next_empty;
  483. /* don't overrun last rx marker */
  484. if (unlikely(nr_rx_empty(dev) <= 2)) {
  485. kfree_skb(skb);
  486. return 1;
  487. }
  488. #if 0
  489. dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
  490. dev->rx_info.next_empty,
  491. dev->rx_info.nr_used,
  492. dev->rx_info.next_rx
  493. );
  494. #endif
  495. sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
  496. BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
  497. dev->rx_info.skbs[next_empty] = skb;
  498. dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
  499. cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
  500. buf = pci_map_single(dev->pci_dev, skb->data,
  501. REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  502. build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
  503. /* update link of previous rx */
  504. if (likely(next_empty != dev->rx_info.next_rx))
  505. dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
  506. return 0;
  507. }
  508. static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
  509. {
  510. struct ns83820 *dev = PRIV(ndev);
  511. unsigned i;
  512. unsigned long flags = 0;
  513. if (unlikely(nr_rx_empty(dev) <= 2))
  514. return 0;
  515. dprintk("rx_refill(%p)\n", ndev);
  516. if (gfp == GFP_ATOMIC)
  517. spin_lock_irqsave(&dev->rx_info.lock, flags);
  518. for (i=0; i<NR_RX_DESC; i++) {
  519. struct sk_buff *skb;
  520. long res;
  521. /* extra 16 bytes for alignment */
  522. skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
  523. if (unlikely(!skb))
  524. break;
  525. res = (long)skb->data & 0xf;
  526. res = 0x10 - res;
  527. res &= 0xf;
  528. skb_reserve(skb, res);
  529. skb->dev = ndev;
  530. if (gfp != GFP_ATOMIC)
  531. spin_lock_irqsave(&dev->rx_info.lock, flags);
  532. res = ns83820_add_rx_skb(dev, skb);
  533. if (gfp != GFP_ATOMIC)
  534. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  535. if (res) {
  536. i = 1;
  537. break;
  538. }
  539. }
  540. if (gfp == GFP_ATOMIC)
  541. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  542. return i ? 0 : -ENOMEM;
  543. }
  544. static void FASTCALL(rx_refill_atomic(struct net_device *ndev));
  545. static void fastcall rx_refill_atomic(struct net_device *ndev)
  546. {
  547. rx_refill(ndev, GFP_ATOMIC);
  548. }
  549. /* REFILL */
  550. static inline void queue_refill(void *_dev)
  551. {
  552. struct net_device *ndev = _dev;
  553. struct ns83820 *dev = PRIV(ndev);
  554. rx_refill(ndev, GFP_KERNEL);
  555. if (dev->rx_info.up)
  556. kick_rx(ndev);
  557. }
  558. static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
  559. {
  560. build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
  561. }
  562. static void FASTCALL(phy_intr(struct net_device *ndev));
  563. static void fastcall phy_intr(struct net_device *ndev)
  564. {
  565. struct ns83820 *dev = PRIV(ndev);
  566. static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
  567. u32 cfg, new_cfg;
  568. u32 tbisr, tanar, tanlpar;
  569. int speed, fullduplex, newlinkstate;
  570. cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  571. if (dev->CFG_cache & CFG_TBI_EN) {
  572. /* we have an optical transceiver */
  573. tbisr = readl(dev->base + TBISR);
  574. tanar = readl(dev->base + TANAR);
  575. tanlpar = readl(dev->base + TANLPAR);
  576. dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
  577. tbisr, tanar, tanlpar);
  578. if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
  579. && (tanar & TANAR_FULL_DUP)) ) {
  580. /* both of us are full duplex */
  581. writel(readl(dev->base + TXCFG)
  582. | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
  583. dev->base + TXCFG);
  584. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  585. dev->base + RXCFG);
  586. /* Light up full duplex LED */
  587. writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
  588. dev->base + GPIOR);
  589. } else if(((tanlpar & TANAR_HALF_DUP)
  590. && (tanar & TANAR_HALF_DUP))
  591. || ((tanlpar & TANAR_FULL_DUP)
  592. && (tanar & TANAR_HALF_DUP))
  593. || ((tanlpar & TANAR_HALF_DUP)
  594. && (tanar & TANAR_FULL_DUP))) {
  595. /* one or both of us are half duplex */
  596. writel((readl(dev->base + TXCFG)
  597. & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
  598. dev->base + TXCFG);
  599. writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
  600. dev->base + RXCFG);
  601. /* Turn off full duplex LED */
  602. writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
  603. dev->base + GPIOR);
  604. }
  605. speed = 4; /* 1000F */
  606. } else {
  607. /* we have a copper transceiver */
  608. new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
  609. if (cfg & CFG_SPDSTS1)
  610. new_cfg |= CFG_MODE_1000;
  611. else
  612. new_cfg &= ~CFG_MODE_1000;
  613. speed = ((cfg / CFG_SPDSTS0) & 3);
  614. fullduplex = (cfg & CFG_DUPSTS);
  615. if (fullduplex) {
  616. new_cfg |= CFG_SB;
  617. writel(readl(dev->base + TXCFG)
  618. | TXCFG_CSI | TXCFG_HBI,
  619. dev->base + TXCFG);
  620. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  621. dev->base + RXCFG);
  622. } else {
  623. writel(readl(dev->base + TXCFG)
  624. & ~(TXCFG_CSI | TXCFG_HBI),
  625. dev->base + TXCFG);
  626. writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
  627. dev->base + RXCFG);
  628. }
  629. if ((cfg & CFG_LNKSTS) &&
  630. ((new_cfg ^ dev->CFG_cache) != 0)) {
  631. writel(new_cfg, dev->base + CFG);
  632. dev->CFG_cache = new_cfg;
  633. }
  634. dev->CFG_cache &= ~CFG_SPDSTS;
  635. dev->CFG_cache |= cfg & CFG_SPDSTS;
  636. }
  637. newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
  638. if (newlinkstate & LINK_UP
  639. && dev->linkstate != newlinkstate) {
  640. netif_start_queue(ndev);
  641. netif_wake_queue(ndev);
  642. printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
  643. ndev->name,
  644. speeds[speed],
  645. fullduplex ? "full" : "half");
  646. } else if (newlinkstate & LINK_DOWN
  647. && dev->linkstate != newlinkstate) {
  648. netif_stop_queue(ndev);
  649. printk(KERN_INFO "%s: link now down.\n", ndev->name);
  650. }
  651. dev->linkstate = newlinkstate;
  652. }
  653. static int ns83820_setup_rx(struct net_device *ndev)
  654. {
  655. struct ns83820 *dev = PRIV(ndev);
  656. unsigned i;
  657. int ret;
  658. dprintk("ns83820_setup_rx(%p)\n", ndev);
  659. dev->rx_info.idle = 1;
  660. dev->rx_info.next_rx = 0;
  661. dev->rx_info.next_rx_desc = dev->rx_info.descs;
  662. dev->rx_info.next_empty = 0;
  663. for (i=0; i<NR_RX_DESC; i++)
  664. clear_rx_desc(dev, i);
  665. writel(0, dev->base + RXDP_HI);
  666. writel(dev->rx_info.phy_descs, dev->base + RXDP);
  667. ret = rx_refill(ndev, GFP_KERNEL);
  668. if (!ret) {
  669. dprintk("starting receiver\n");
  670. /* prevent the interrupt handler from stomping on us */
  671. spin_lock_irq(&dev->rx_info.lock);
  672. writel(0x0001, dev->base + CCSR);
  673. writel(0, dev->base + RFCR);
  674. writel(0x7fc00000, dev->base + RFCR);
  675. writel(0xffc00000, dev->base + RFCR);
  676. dev->rx_info.up = 1;
  677. phy_intr(ndev);
  678. /* Okay, let it rip */
  679. spin_lock_irq(&dev->misc_lock);
  680. dev->IMR_cache |= ISR_PHY;
  681. dev->IMR_cache |= ISR_RXRCMP;
  682. //dev->IMR_cache |= ISR_RXERR;
  683. //dev->IMR_cache |= ISR_RXOK;
  684. dev->IMR_cache |= ISR_RXORN;
  685. dev->IMR_cache |= ISR_RXSOVR;
  686. dev->IMR_cache |= ISR_RXDESC;
  687. dev->IMR_cache |= ISR_RXIDLE;
  688. dev->IMR_cache |= ISR_TXDESC;
  689. dev->IMR_cache |= ISR_TXIDLE;
  690. writel(dev->IMR_cache, dev->base + IMR);
  691. writel(1, dev->base + IER);
  692. spin_unlock(&dev->misc_lock);
  693. kick_rx(ndev);
  694. spin_unlock_irq(&dev->rx_info.lock);
  695. }
  696. return ret;
  697. }
  698. static void ns83820_cleanup_rx(struct ns83820 *dev)
  699. {
  700. unsigned i;
  701. unsigned long flags;
  702. dprintk("ns83820_cleanup_rx(%p)\n", dev);
  703. /* disable receive interrupts */
  704. spin_lock_irqsave(&dev->misc_lock, flags);
  705. dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
  706. writel(dev->IMR_cache, dev->base + IMR);
  707. spin_unlock_irqrestore(&dev->misc_lock, flags);
  708. /* synchronize with the interrupt handler and kill it */
  709. dev->rx_info.up = 0;
  710. synchronize_irq(dev->pci_dev->irq);
  711. /* touch the pci bus... */
  712. readl(dev->base + IMR);
  713. /* assumes the transmitter is already disabled and reset */
  714. writel(0, dev->base + RXDP_HI);
  715. writel(0, dev->base + RXDP);
  716. for (i=0; i<NR_RX_DESC; i++) {
  717. struct sk_buff *skb = dev->rx_info.skbs[i];
  718. dev->rx_info.skbs[i] = NULL;
  719. clear_rx_desc(dev, i);
  720. if (skb)
  721. kfree_skb(skb);
  722. }
  723. }
  724. static void FASTCALL(ns83820_rx_kick(struct net_device *ndev));
  725. static void fastcall ns83820_rx_kick(struct net_device *ndev)
  726. {
  727. struct ns83820 *dev = PRIV(ndev);
  728. /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
  729. if (dev->rx_info.up) {
  730. rx_refill_atomic(ndev);
  731. kick_rx(ndev);
  732. }
  733. }
  734. if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
  735. schedule_work(&dev->tq_refill);
  736. else
  737. kick_rx(ndev);
  738. if (dev->rx_info.idle)
  739. printk(KERN_DEBUG "%s: BAD\n", ndev->name);
  740. }
  741. /* rx_irq
  742. *
  743. */
  744. static void FASTCALL(rx_irq(struct net_device *ndev));
  745. static void fastcall rx_irq(struct net_device *ndev)
  746. {
  747. struct ns83820 *dev = PRIV(ndev);
  748. struct rx_info *info = &dev->rx_info;
  749. unsigned next_rx;
  750. int rx_rc, len;
  751. u32 cmdsts, *desc;
  752. unsigned long flags;
  753. int nr = 0;
  754. dprintk("rx_irq(%p)\n", ndev);
  755. dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
  756. readl(dev->base + RXDP),
  757. (long)(dev->rx_info.phy_descs),
  758. (int)dev->rx_info.next_rx,
  759. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
  760. (int)dev->rx_info.next_empty,
  761. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
  762. );
  763. spin_lock_irqsave(&info->lock, flags);
  764. if (!info->up)
  765. goto out;
  766. dprintk("walking descs\n");
  767. next_rx = info->next_rx;
  768. desc = info->next_rx_desc;
  769. while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
  770. (cmdsts != CMDSTS_OWN)) {
  771. struct sk_buff *skb;
  772. u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
  773. dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
  774. dprintk("cmdsts: %08x\n", cmdsts);
  775. dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
  776. dprintk("extsts: %08x\n", extsts);
  777. skb = info->skbs[next_rx];
  778. info->skbs[next_rx] = NULL;
  779. info->next_rx = (next_rx + 1) % NR_RX_DESC;
  780. mb();
  781. clear_rx_desc(dev, next_rx);
  782. pci_unmap_single(dev->pci_dev, bufptr,
  783. RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  784. len = cmdsts & CMDSTS_LEN_MASK;
  785. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  786. /* NH: As was mentioned below, this chip is kinda
  787. * brain dead about vlan tag stripping. Frames
  788. * that are 64 bytes with a vlan header appended
  789. * like arp frames, or pings, are flagged as Runts
  790. * when the tag is stripped and hardware. This
  791. * also means that the OK bit in the descriptor
  792. * is cleared when the frame comes in so we have
  793. * to do a specific length check here to make sure
  794. * the frame would have been ok, had we not stripped
  795. * the tag.
  796. */
  797. if (likely((CMDSTS_OK & cmdsts) ||
  798. ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
  799. #else
  800. if (likely(CMDSTS_OK & cmdsts)) {
  801. #endif
  802. skb_put(skb, len);
  803. if (unlikely(!skb))
  804. goto netdev_mangle_me_harder_failed;
  805. if (cmdsts & CMDSTS_DEST_MULTI)
  806. dev->stats.multicast ++;
  807. dev->stats.rx_packets ++;
  808. dev->stats.rx_bytes += len;
  809. if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
  810. skb->ip_summed = CHECKSUM_UNNECESSARY;
  811. } else {
  812. skb->ip_summed = CHECKSUM_NONE;
  813. }
  814. skb->protocol = eth_type_trans(skb, ndev);
  815. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  816. if(extsts & EXTSTS_VPKT) {
  817. unsigned short tag;
  818. tag = ntohs(extsts & EXTSTS_VTG_MASK);
  819. rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
  820. } else {
  821. rx_rc = netif_rx(skb);
  822. }
  823. #else
  824. rx_rc = netif_rx(skb);
  825. #endif
  826. if (NET_RX_DROP == rx_rc) {
  827. netdev_mangle_me_harder_failed:
  828. dev->stats.rx_dropped ++;
  829. }
  830. } else {
  831. kfree_skb(skb);
  832. }
  833. nr++;
  834. next_rx = info->next_rx;
  835. desc = info->descs + (DESC_SIZE * next_rx);
  836. }
  837. info->next_rx = next_rx;
  838. info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
  839. out:
  840. if (0 && !nr) {
  841. Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
  842. }
  843. spin_unlock_irqrestore(&info->lock, flags);
  844. }
  845. static void rx_action(unsigned long _dev)
  846. {
  847. struct net_device *ndev = (void *)_dev;
  848. struct ns83820 *dev = PRIV(ndev);
  849. rx_irq(ndev);
  850. writel(ihr, dev->base + IHR);
  851. spin_lock_irq(&dev->misc_lock);
  852. dev->IMR_cache |= ISR_RXDESC;
  853. writel(dev->IMR_cache, dev->base + IMR);
  854. spin_unlock_irq(&dev->misc_lock);
  855. rx_irq(ndev);
  856. ns83820_rx_kick(ndev);
  857. }
  858. /* Packet Transmit code
  859. */
  860. static inline void kick_tx(struct ns83820 *dev)
  861. {
  862. dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
  863. dev, dev->tx_idx, dev->tx_free_idx);
  864. writel(CR_TXE, dev->base + CR);
  865. }
  866. /* No spinlock needed on the transmit irq path as the interrupt handler is
  867. * serialized.
  868. */
  869. static void do_tx_done(struct net_device *ndev)
  870. {
  871. struct ns83820 *dev = PRIV(ndev);
  872. u32 cmdsts, tx_done_idx, *desc;
  873. dprintk("do_tx_done(%p)\n", ndev);
  874. tx_done_idx = dev->tx_done_idx;
  875. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  876. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  877. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  878. while ((tx_done_idx != dev->tx_free_idx) &&
  879. !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
  880. struct sk_buff *skb;
  881. unsigned len;
  882. dma_addr_t addr;
  883. if (cmdsts & CMDSTS_ERR)
  884. dev->stats.tx_errors ++;
  885. if (cmdsts & CMDSTS_OK)
  886. dev->stats.tx_packets ++;
  887. if (cmdsts & CMDSTS_OK)
  888. dev->stats.tx_bytes += cmdsts & 0xffff;
  889. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  890. tx_done_idx, dev->tx_free_idx, cmdsts);
  891. skb = dev->tx_skbs[tx_done_idx];
  892. dev->tx_skbs[tx_done_idx] = NULL;
  893. dprintk("done(%p)\n", skb);
  894. len = cmdsts & CMDSTS_LEN_MASK;
  895. addr = desc_addr_get(desc + DESC_BUFPTR);
  896. if (skb) {
  897. pci_unmap_single(dev->pci_dev,
  898. addr,
  899. len,
  900. PCI_DMA_TODEVICE);
  901. dev_kfree_skb_irq(skb);
  902. atomic_dec(&dev->nr_tx_skbs);
  903. } else
  904. pci_unmap_page(dev->pci_dev,
  905. addr,
  906. len,
  907. PCI_DMA_TODEVICE);
  908. tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
  909. dev->tx_done_idx = tx_done_idx;
  910. desc[DESC_CMDSTS] = cpu_to_le32(0);
  911. mb();
  912. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  913. }
  914. /* Allow network stack to resume queueing packets after we've
  915. * finished transmitting at least 1/4 of the packets in the queue.
  916. */
  917. if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
  918. dprintk("start_queue(%p)\n", ndev);
  919. netif_start_queue(ndev);
  920. netif_wake_queue(ndev);
  921. }
  922. }
  923. static void ns83820_cleanup_tx(struct ns83820 *dev)
  924. {
  925. unsigned i;
  926. for (i=0; i<NR_TX_DESC; i++) {
  927. struct sk_buff *skb = dev->tx_skbs[i];
  928. dev->tx_skbs[i] = NULL;
  929. if (skb) {
  930. u32 *desc = dev->tx_descs + (i * DESC_SIZE);
  931. pci_unmap_single(dev->pci_dev,
  932. desc_addr_get(desc + DESC_BUFPTR),
  933. le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
  934. PCI_DMA_TODEVICE);
  935. dev_kfree_skb_irq(skb);
  936. atomic_dec(&dev->nr_tx_skbs);
  937. }
  938. }
  939. memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
  940. }
  941. /* transmit routine. This code relies on the network layer serializing
  942. * its calls in, but will run happily in parallel with the interrupt
  943. * handler. This code currently has provisions for fragmenting tx buffers
  944. * while trying to track down a bug in either the zero copy code or
  945. * the tx fifo (hence the MAX_FRAG_LEN).
  946. */
  947. static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  948. {
  949. struct ns83820 *dev = PRIV(ndev);
  950. u32 free_idx, cmdsts, extsts;
  951. int nr_free, nr_frags;
  952. unsigned tx_done_idx, last_idx;
  953. dma_addr_t buf;
  954. unsigned len;
  955. skb_frag_t *frag;
  956. int stopped = 0;
  957. int do_intr = 0;
  958. volatile u32 *first_desc;
  959. dprintk("ns83820_hard_start_xmit\n");
  960. nr_frags = skb_shinfo(skb)->nr_frags;
  961. again:
  962. if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
  963. netif_stop_queue(ndev);
  964. if (unlikely(dev->CFG_cache & CFG_LNKSTS))
  965. return 1;
  966. netif_start_queue(ndev);
  967. }
  968. last_idx = free_idx = dev->tx_free_idx;
  969. tx_done_idx = dev->tx_done_idx;
  970. nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
  971. nr_free -= 1;
  972. if (nr_free <= nr_frags) {
  973. dprintk("stop_queue - not enough(%p)\n", ndev);
  974. netif_stop_queue(ndev);
  975. /* Check again: we may have raced with a tx done irq */
  976. if (dev->tx_done_idx != tx_done_idx) {
  977. dprintk("restart queue(%p)\n", ndev);
  978. netif_start_queue(ndev);
  979. goto again;
  980. }
  981. return 1;
  982. }
  983. if (free_idx == dev->tx_intr_idx) {
  984. do_intr = 1;
  985. dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
  986. }
  987. nr_free -= nr_frags;
  988. if (nr_free < MIN_TX_DESC_FREE) {
  989. dprintk("stop_queue - last entry(%p)\n", ndev);
  990. netif_stop_queue(ndev);
  991. stopped = 1;
  992. }
  993. frag = skb_shinfo(skb)->frags;
  994. if (!nr_frags)
  995. frag = NULL;
  996. extsts = 0;
  997. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  998. extsts |= EXTSTS_IPPKT;
  999. if (IPPROTO_TCP == skb->nh.iph->protocol)
  1000. extsts |= EXTSTS_TCPPKT;
  1001. else if (IPPROTO_UDP == skb->nh.iph->protocol)
  1002. extsts |= EXTSTS_UDPPKT;
  1003. }
  1004. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1005. if(vlan_tx_tag_present(skb)) {
  1006. /* fetch the vlan tag info out of the
  1007. * ancilliary data if the vlan code
  1008. * is using hw vlan acceleration
  1009. */
  1010. short tag = vlan_tx_tag_get(skb);
  1011. extsts |= (EXTSTS_VPKT | htons(tag));
  1012. }
  1013. #endif
  1014. len = skb->len;
  1015. if (nr_frags)
  1016. len -= skb->data_len;
  1017. buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
  1018. first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1019. for (;;) {
  1020. volatile u32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1021. dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
  1022. (unsigned long long)buf);
  1023. last_idx = free_idx;
  1024. free_idx = (free_idx + 1) % NR_TX_DESC;
  1025. desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
  1026. desc_addr_set(desc + DESC_BUFPTR, buf);
  1027. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  1028. cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
  1029. cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
  1030. cmdsts |= len;
  1031. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  1032. if (!nr_frags)
  1033. break;
  1034. buf = pci_map_page(dev->pci_dev, frag->page,
  1035. frag->page_offset,
  1036. frag->size, PCI_DMA_TODEVICE);
  1037. dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
  1038. (long long)buf, (long) page_to_pfn(frag->page),
  1039. frag->page_offset);
  1040. len = frag->size;
  1041. frag++;
  1042. nr_frags--;
  1043. }
  1044. dprintk("done pkt\n");
  1045. spin_lock_irq(&dev->tx_lock);
  1046. dev->tx_skbs[last_idx] = skb;
  1047. first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
  1048. dev->tx_free_idx = free_idx;
  1049. atomic_inc(&dev->nr_tx_skbs);
  1050. spin_unlock_irq(&dev->tx_lock);
  1051. kick_tx(dev);
  1052. /* Check again: we may have raced with a tx done irq */
  1053. if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
  1054. netif_start_queue(ndev);
  1055. /* set the transmit start time to catch transmit timeouts */
  1056. ndev->trans_start = jiffies;
  1057. return 0;
  1058. }
  1059. static void ns83820_update_stats(struct ns83820 *dev)
  1060. {
  1061. u8 __iomem *base = dev->base;
  1062. /* the DP83820 will freeze counters, so we need to read all of them */
  1063. dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
  1064. dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
  1065. dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
  1066. dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
  1067. /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
  1068. dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
  1069. dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
  1070. /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
  1071. /*dev->stats.rx_pause_count += */ readl(base + 0x80);
  1072. /*dev->stats.tx_pause_count += */ readl(base + 0x84);
  1073. dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
  1074. }
  1075. static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
  1076. {
  1077. struct ns83820 *dev = PRIV(ndev);
  1078. /* somewhat overkill */
  1079. spin_lock_irq(&dev->misc_lock);
  1080. ns83820_update_stats(dev);
  1081. spin_unlock_irq(&dev->misc_lock);
  1082. return &dev->stats;
  1083. }
  1084. static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
  1085. {
  1086. struct ns83820 *dev = PRIV(ndev);
  1087. strcpy(info->driver, "ns83820");
  1088. strcpy(info->version, VERSION);
  1089. strcpy(info->bus_info, pci_name(dev->pci_dev));
  1090. }
  1091. static u32 ns83820_get_link(struct net_device *ndev)
  1092. {
  1093. struct ns83820 *dev = PRIV(ndev);
  1094. u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  1095. return cfg & CFG_LNKSTS ? 1 : 0;
  1096. }
  1097. static const struct ethtool_ops ops = {
  1098. .get_drvinfo = ns83820_get_drvinfo,
  1099. .get_link = ns83820_get_link
  1100. };
  1101. /* this function is called in irq context from the ISR */
  1102. static void ns83820_mib_isr(struct ns83820 *dev)
  1103. {
  1104. unsigned long flags;
  1105. spin_lock_irqsave(&dev->misc_lock, flags);
  1106. ns83820_update_stats(dev);
  1107. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1108. }
  1109. static void ns83820_do_isr(struct net_device *ndev, u32 isr);
  1110. static irqreturn_t ns83820_irq(int foo, void *data)
  1111. {
  1112. struct net_device *ndev = data;
  1113. struct ns83820 *dev = PRIV(ndev);
  1114. u32 isr;
  1115. dprintk("ns83820_irq(%p)\n", ndev);
  1116. dev->ihr = 0;
  1117. isr = readl(dev->base + ISR);
  1118. dprintk("irq: %08x\n", isr);
  1119. ns83820_do_isr(ndev, isr);
  1120. return IRQ_HANDLED;
  1121. }
  1122. static void ns83820_do_isr(struct net_device *ndev, u32 isr)
  1123. {
  1124. struct ns83820 *dev = PRIV(ndev);
  1125. unsigned long flags;
  1126. #ifdef DEBUG
  1127. if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
  1128. Dprintk("odd isr? 0x%08x\n", isr);
  1129. #endif
  1130. if (ISR_RXIDLE & isr) {
  1131. dev->rx_info.idle = 1;
  1132. Dprintk("oh dear, we are idle\n");
  1133. ns83820_rx_kick(ndev);
  1134. }
  1135. if ((ISR_RXDESC | ISR_RXOK) & isr) {
  1136. prefetch(dev->rx_info.next_rx_desc);
  1137. spin_lock_irqsave(&dev->misc_lock, flags);
  1138. dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
  1139. writel(dev->IMR_cache, dev->base + IMR);
  1140. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1141. tasklet_schedule(&dev->rx_tasklet);
  1142. //rx_irq(ndev);
  1143. //writel(4, dev->base + IHR);
  1144. }
  1145. if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
  1146. ns83820_rx_kick(ndev);
  1147. if (unlikely(ISR_RXSOVR & isr)) {
  1148. //printk("overrun: rxsovr\n");
  1149. dev->stats.rx_fifo_errors ++;
  1150. }
  1151. if (unlikely(ISR_RXORN & isr)) {
  1152. //printk("overrun: rxorn\n");
  1153. dev->stats.rx_fifo_errors ++;
  1154. }
  1155. if ((ISR_RXRCMP & isr) && dev->rx_info.up)
  1156. writel(CR_RXE, dev->base + CR);
  1157. if (ISR_TXIDLE & isr) {
  1158. u32 txdp;
  1159. txdp = readl(dev->base + TXDP);
  1160. dprintk("txdp: %08x\n", txdp);
  1161. txdp -= dev->tx_phy_descs;
  1162. dev->tx_idx = txdp / (DESC_SIZE * 4);
  1163. if (dev->tx_idx >= NR_TX_DESC) {
  1164. printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
  1165. dev->tx_idx = 0;
  1166. }
  1167. /* The may have been a race between a pci originated read
  1168. * and the descriptor update from the cpu. Just in case,
  1169. * kick the transmitter if the hardware thinks it is on a
  1170. * different descriptor than we are.
  1171. */
  1172. if (dev->tx_idx != dev->tx_free_idx)
  1173. kick_tx(dev);
  1174. }
  1175. /* Defer tx ring processing until more than a minimum amount of
  1176. * work has accumulated
  1177. */
  1178. if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
  1179. spin_lock_irqsave(&dev->tx_lock, flags);
  1180. do_tx_done(ndev);
  1181. spin_unlock_irqrestore(&dev->tx_lock, flags);
  1182. /* Disable TxOk if there are no outstanding tx packets.
  1183. */
  1184. if ((dev->tx_done_idx == dev->tx_free_idx) &&
  1185. (dev->IMR_cache & ISR_TXOK)) {
  1186. spin_lock_irqsave(&dev->misc_lock, flags);
  1187. dev->IMR_cache &= ~ISR_TXOK;
  1188. writel(dev->IMR_cache, dev->base + IMR);
  1189. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1190. }
  1191. }
  1192. /* The TxIdle interrupt can come in before the transmit has
  1193. * completed. Normally we reap packets off of the combination
  1194. * of TxDesc and TxIdle and leave TxOk disabled (since it
  1195. * occurs on every packet), but when no further irqs of this
  1196. * nature are expected, we must enable TxOk.
  1197. */
  1198. if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
  1199. spin_lock_irqsave(&dev->misc_lock, flags);
  1200. dev->IMR_cache |= ISR_TXOK;
  1201. writel(dev->IMR_cache, dev->base + IMR);
  1202. spin_unlock_irqrestore(&dev->misc_lock, flags);
  1203. }
  1204. /* MIB interrupt: one of the statistics counters is about to overflow */
  1205. if (unlikely(ISR_MIB & isr))
  1206. ns83820_mib_isr(dev);
  1207. /* PHY: Link up/down/negotiation state change */
  1208. if (unlikely(ISR_PHY & isr))
  1209. phy_intr(ndev);
  1210. #if 0 /* Still working on the interrupt mitigation strategy */
  1211. if (dev->ihr)
  1212. writel(dev->ihr, dev->base + IHR);
  1213. #endif
  1214. }
  1215. static void ns83820_do_reset(struct ns83820 *dev, u32 which)
  1216. {
  1217. Dprintk("resetting chip...\n");
  1218. writel(which, dev->base + CR);
  1219. do {
  1220. schedule();
  1221. } while (readl(dev->base + CR) & which);
  1222. Dprintk("okay!\n");
  1223. }
  1224. static int ns83820_stop(struct net_device *ndev)
  1225. {
  1226. struct ns83820 *dev = PRIV(ndev);
  1227. /* FIXME: protect against interrupt handler? */
  1228. del_timer_sync(&dev->tx_watchdog);
  1229. /* disable interrupts */
  1230. writel(0, dev->base + IMR);
  1231. writel(0, dev->base + IER);
  1232. readl(dev->base + IER);
  1233. dev->rx_info.up = 0;
  1234. synchronize_irq(dev->pci_dev->irq);
  1235. ns83820_do_reset(dev, CR_RST);
  1236. synchronize_irq(dev->pci_dev->irq);
  1237. spin_lock_irq(&dev->misc_lock);
  1238. dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
  1239. spin_unlock_irq(&dev->misc_lock);
  1240. ns83820_cleanup_rx(dev);
  1241. ns83820_cleanup_tx(dev);
  1242. return 0;
  1243. }
  1244. static void ns83820_tx_timeout(struct net_device *ndev)
  1245. {
  1246. struct ns83820 *dev = PRIV(ndev);
  1247. u32 tx_done_idx, *desc;
  1248. unsigned long flags;
  1249. spin_lock_irqsave(&dev->tx_lock, flags);
  1250. tx_done_idx = dev->tx_done_idx;
  1251. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1252. printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1253. ndev->name,
  1254. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1255. #if defined(DEBUG)
  1256. {
  1257. u32 isr;
  1258. isr = readl(dev->base + ISR);
  1259. printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
  1260. ns83820_do_isr(ndev, isr);
  1261. }
  1262. #endif
  1263. do_tx_done(ndev);
  1264. tx_done_idx = dev->tx_done_idx;
  1265. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1266. printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1267. ndev->name,
  1268. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1269. spin_unlock_irqrestore(&dev->tx_lock, flags);
  1270. }
  1271. static void ns83820_tx_watch(unsigned long data)
  1272. {
  1273. struct net_device *ndev = (void *)data;
  1274. struct ns83820 *dev = PRIV(ndev);
  1275. #if defined(DEBUG)
  1276. printk("ns83820_tx_watch: %u %u %d\n",
  1277. dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
  1278. );
  1279. #endif
  1280. if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
  1281. dev->tx_done_idx != dev->tx_free_idx) {
  1282. printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
  1283. ndev->name,
  1284. dev->tx_done_idx, dev->tx_free_idx,
  1285. atomic_read(&dev->nr_tx_skbs));
  1286. ns83820_tx_timeout(ndev);
  1287. }
  1288. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1289. }
  1290. static int ns83820_open(struct net_device *ndev)
  1291. {
  1292. struct ns83820 *dev = PRIV(ndev);
  1293. unsigned i;
  1294. u32 desc;
  1295. int ret;
  1296. dprintk("ns83820_open\n");
  1297. writel(0, dev->base + PQCR);
  1298. ret = ns83820_setup_rx(ndev);
  1299. if (ret)
  1300. goto failed;
  1301. memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
  1302. for (i=0; i<NR_TX_DESC; i++) {
  1303. dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
  1304. = cpu_to_le32(
  1305. dev->tx_phy_descs
  1306. + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
  1307. }
  1308. dev->tx_idx = 0;
  1309. dev->tx_done_idx = 0;
  1310. desc = dev->tx_phy_descs;
  1311. writel(0, dev->base + TXDP_HI);
  1312. writel(desc, dev->base + TXDP);
  1313. init_timer(&dev->tx_watchdog);
  1314. dev->tx_watchdog.data = (unsigned long)ndev;
  1315. dev->tx_watchdog.function = ns83820_tx_watch;
  1316. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1317. netif_start_queue(ndev); /* FIXME: wait for phy to come up */
  1318. return 0;
  1319. failed:
  1320. ns83820_stop(ndev);
  1321. return ret;
  1322. }
  1323. static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
  1324. {
  1325. unsigned i;
  1326. for (i=0; i<3; i++) {
  1327. u32 data;
  1328. /* Read from the perfect match memory: this is loaded by
  1329. * the chip from the EEPROM via the EELOAD self test.
  1330. */
  1331. writel(i*2, dev->base + RFCR);
  1332. data = readl(dev->base + RFDR);
  1333. *mac++ = data;
  1334. *mac++ = data >> 8;
  1335. }
  1336. }
  1337. static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
  1338. {
  1339. if (new_mtu > RX_BUF_SIZE)
  1340. return -EINVAL;
  1341. ndev->mtu = new_mtu;
  1342. return 0;
  1343. }
  1344. static void ns83820_set_multicast(struct net_device *ndev)
  1345. {
  1346. struct ns83820 *dev = PRIV(ndev);
  1347. u8 __iomem *rfcr = dev->base + RFCR;
  1348. u32 and_mask = 0xffffffff;
  1349. u32 or_mask = 0;
  1350. u32 val;
  1351. if (ndev->flags & IFF_PROMISC)
  1352. or_mask |= RFCR_AAU | RFCR_AAM;
  1353. else
  1354. and_mask &= ~(RFCR_AAU | RFCR_AAM);
  1355. if (ndev->flags & IFF_ALLMULTI)
  1356. or_mask |= RFCR_AAM;
  1357. else
  1358. and_mask &= ~RFCR_AAM;
  1359. spin_lock_irq(&dev->misc_lock);
  1360. val = (readl(rfcr) & and_mask) | or_mask;
  1361. /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
  1362. writel(val & ~RFCR_RFEN, rfcr);
  1363. writel(val, rfcr);
  1364. spin_unlock_irq(&dev->misc_lock);
  1365. }
  1366. static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
  1367. {
  1368. struct ns83820 *dev = PRIV(ndev);
  1369. int timed_out = 0;
  1370. unsigned long start;
  1371. u32 status;
  1372. int loops = 0;
  1373. dprintk("%s: start %s\n", ndev->name, name);
  1374. start = jiffies;
  1375. writel(enable, dev->base + PTSCR);
  1376. for (;;) {
  1377. loops++;
  1378. status = readl(dev->base + PTSCR);
  1379. if (!(status & enable))
  1380. break;
  1381. if (status & done)
  1382. break;
  1383. if (status & fail)
  1384. break;
  1385. if (time_after_eq(jiffies, start + HZ)) {
  1386. timed_out = 1;
  1387. break;
  1388. }
  1389. schedule_timeout_uninterruptible(1);
  1390. }
  1391. if (status & fail)
  1392. printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
  1393. ndev->name, name, status, fail);
  1394. else if (timed_out)
  1395. printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
  1396. ndev->name, name, status);
  1397. dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
  1398. }
  1399. #ifdef PHY_CODE_IS_FINISHED
  1400. static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
  1401. {
  1402. /* drive MDC low */
  1403. dev->MEAR_cache &= ~MEAR_MDC;
  1404. writel(dev->MEAR_cache, dev->base + MEAR);
  1405. readl(dev->base + MEAR);
  1406. /* enable output, set bit */
  1407. dev->MEAR_cache |= MEAR_MDDIR;
  1408. if (bit)
  1409. dev->MEAR_cache |= MEAR_MDIO;
  1410. else
  1411. dev->MEAR_cache &= ~MEAR_MDIO;
  1412. /* set the output bit */
  1413. writel(dev->MEAR_cache, dev->base + MEAR);
  1414. readl(dev->base + MEAR);
  1415. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1416. udelay(1);
  1417. /* drive MDC high causing the data bit to be latched */
  1418. dev->MEAR_cache |= MEAR_MDC;
  1419. writel(dev->MEAR_cache, dev->base + MEAR);
  1420. readl(dev->base + MEAR);
  1421. /* Wait again... */
  1422. udelay(1);
  1423. }
  1424. static int ns83820_mii_read_bit(struct ns83820 *dev)
  1425. {
  1426. int bit;
  1427. /* drive MDC low, disable output */
  1428. dev->MEAR_cache &= ~MEAR_MDC;
  1429. dev->MEAR_cache &= ~MEAR_MDDIR;
  1430. writel(dev->MEAR_cache, dev->base + MEAR);
  1431. readl(dev->base + MEAR);
  1432. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1433. udelay(1);
  1434. /* drive MDC high causing the data bit to be latched */
  1435. bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
  1436. dev->MEAR_cache |= MEAR_MDC;
  1437. writel(dev->MEAR_cache, dev->base + MEAR);
  1438. /* Wait again... */
  1439. udelay(1);
  1440. return bit;
  1441. }
  1442. static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
  1443. {
  1444. unsigned data = 0;
  1445. int i;
  1446. /* read some garbage so that we eventually sync up */
  1447. for (i=0; i<64; i++)
  1448. ns83820_mii_read_bit(dev);
  1449. ns83820_mii_write_bit(dev, 0); /* start */
  1450. ns83820_mii_write_bit(dev, 1);
  1451. ns83820_mii_write_bit(dev, 1); /* opcode read */
  1452. ns83820_mii_write_bit(dev, 0);
  1453. /* write out the phy address: 5 bits, msb first */
  1454. for (i=0; i<5; i++)
  1455. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1456. /* write out the register address, 5 bits, msb first */
  1457. for (i=0; i<5; i++)
  1458. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1459. ns83820_mii_read_bit(dev); /* turn around cycles */
  1460. ns83820_mii_read_bit(dev);
  1461. /* read in the register data, 16 bits msb first */
  1462. for (i=0; i<16; i++) {
  1463. data <<= 1;
  1464. data |= ns83820_mii_read_bit(dev);
  1465. }
  1466. return data;
  1467. }
  1468. static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
  1469. {
  1470. int i;
  1471. /* read some garbage so that we eventually sync up */
  1472. for (i=0; i<64; i++)
  1473. ns83820_mii_read_bit(dev);
  1474. ns83820_mii_write_bit(dev, 0); /* start */
  1475. ns83820_mii_write_bit(dev, 1);
  1476. ns83820_mii_write_bit(dev, 0); /* opcode read */
  1477. ns83820_mii_write_bit(dev, 1);
  1478. /* write out the phy address: 5 bits, msb first */
  1479. for (i=0; i<5; i++)
  1480. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1481. /* write out the register address, 5 bits, msb first */
  1482. for (i=0; i<5; i++)
  1483. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1484. ns83820_mii_read_bit(dev); /* turn around cycles */
  1485. ns83820_mii_read_bit(dev);
  1486. /* read in the register data, 16 bits msb first */
  1487. for (i=0; i<16; i++)
  1488. ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
  1489. return data;
  1490. }
  1491. static void ns83820_probe_phy(struct net_device *ndev)
  1492. {
  1493. struct ns83820 *dev = PRIV(ndev);
  1494. static int first;
  1495. int i;
  1496. #define MII_PHYIDR1 0x02
  1497. #define MII_PHYIDR2 0x03
  1498. #if 0
  1499. if (!first) {
  1500. unsigned tmp;
  1501. ns83820_mii_read_reg(dev, 1, 0x09);
  1502. ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
  1503. tmp = ns83820_mii_read_reg(dev, 1, 0x00);
  1504. ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
  1505. udelay(1300);
  1506. ns83820_mii_read_reg(dev, 1, 0x09);
  1507. }
  1508. #endif
  1509. first = 1;
  1510. for (i=1; i<2; i++) {
  1511. int j;
  1512. unsigned a, b;
  1513. a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
  1514. b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
  1515. //printk("%s: phy %d: 0x%04x 0x%04x\n",
  1516. // ndev->name, i, a, b);
  1517. for (j=0; j<0x16; j+=4) {
  1518. dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
  1519. ndev->name, j,
  1520. ns83820_mii_read_reg(dev, i, 0 + j),
  1521. ns83820_mii_read_reg(dev, i, 1 + j),
  1522. ns83820_mii_read_reg(dev, i, 2 + j),
  1523. ns83820_mii_read_reg(dev, i, 3 + j)
  1524. );
  1525. }
  1526. }
  1527. {
  1528. unsigned a, b;
  1529. /* read firmware version: memory addr is 0x8402 and 0x8403 */
  1530. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1531. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1532. a = ns83820_mii_read_reg(dev, 1, 0x1d);
  1533. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1534. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1535. b = ns83820_mii_read_reg(dev, 1, 0x1d);
  1536. dprintk("version: 0x%04x 0x%04x\n", a, b);
  1537. }
  1538. }
  1539. #endif
  1540. static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
  1541. {
  1542. struct net_device *ndev;
  1543. struct ns83820 *dev;
  1544. long addr;
  1545. int err;
  1546. int using_dac = 0;
  1547. /* See if we can set the dma mask early on; failure is fatal. */
  1548. if (sizeof(dma_addr_t) == 8 &&
  1549. !pci_set_dma_mask(pci_dev, DMA_64BIT_MASK)) {
  1550. using_dac = 1;
  1551. } else if (!pci_set_dma_mask(pci_dev, DMA_32BIT_MASK)) {
  1552. using_dac = 0;
  1553. } else {
  1554. dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
  1555. return -ENODEV;
  1556. }
  1557. ndev = alloc_etherdev(sizeof(struct ns83820));
  1558. dev = PRIV(ndev);
  1559. err = -ENOMEM;
  1560. if (!dev)
  1561. goto out;
  1562. spin_lock_init(&dev->rx_info.lock);
  1563. spin_lock_init(&dev->tx_lock);
  1564. spin_lock_init(&dev->misc_lock);
  1565. dev->pci_dev = pci_dev;
  1566. SET_MODULE_OWNER(ndev);
  1567. SET_NETDEV_DEV(ndev, &pci_dev->dev);
  1568. INIT_WORK(&dev->tq_refill, queue_refill, ndev);
  1569. tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
  1570. err = pci_enable_device(pci_dev);
  1571. if (err) {
  1572. dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
  1573. goto out_free;
  1574. }
  1575. pci_set_master(pci_dev);
  1576. addr = pci_resource_start(pci_dev, 1);
  1577. dev->base = ioremap_nocache(addr, PAGE_SIZE);
  1578. dev->tx_descs = pci_alloc_consistent(pci_dev,
  1579. 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
  1580. dev->rx_info.descs = pci_alloc_consistent(pci_dev,
  1581. 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
  1582. err = -ENOMEM;
  1583. if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
  1584. goto out_disable;
  1585. dprintk("%p: %08lx %p: %08lx\n",
  1586. dev->tx_descs, (long)dev->tx_phy_descs,
  1587. dev->rx_info.descs, (long)dev->rx_info.phy_descs);
  1588. /* disable interrupts */
  1589. writel(0, dev->base + IMR);
  1590. writel(0, dev->base + IER);
  1591. readl(dev->base + IER);
  1592. dev->IMR_cache = 0;
  1593. err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
  1594. DRV_NAME, ndev);
  1595. if (err) {
  1596. dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
  1597. pci_dev->irq, err);
  1598. goto out_disable;
  1599. }
  1600. /*
  1601. * FIXME: we are holding rtnl_lock() over obscenely long area only
  1602. * because some of the setup code uses dev->name. It's Wrong(tm) -
  1603. * we should be using driver-specific names for all that stuff.
  1604. * For now that will do, but we really need to come back and kill
  1605. * most of the dev_alloc_name() users later.
  1606. */
  1607. rtnl_lock();
  1608. err = dev_alloc_name(ndev, ndev->name);
  1609. if (err < 0) {
  1610. dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
  1611. goto out_free_irq;
  1612. }
  1613. printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
  1614. ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
  1615. pci_dev->subsystem_vendor, pci_dev->subsystem_device);
  1616. ndev->open = ns83820_open;
  1617. ndev->stop = ns83820_stop;
  1618. ndev->hard_start_xmit = ns83820_hard_start_xmit;
  1619. ndev->get_stats = ns83820_get_stats;
  1620. ndev->change_mtu = ns83820_change_mtu;
  1621. ndev->set_multicast_list = ns83820_set_multicast;
  1622. SET_ETHTOOL_OPS(ndev, &ops);
  1623. ndev->tx_timeout = ns83820_tx_timeout;
  1624. ndev->watchdog_timeo = 5 * HZ;
  1625. pci_set_drvdata(pci_dev, ndev);
  1626. ns83820_do_reset(dev, CR_RST);
  1627. /* Must reset the ram bist before running it */
  1628. writel(PTSCR_RBIST_RST, dev->base + PTSCR);
  1629. ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
  1630. PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
  1631. ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
  1632. PTSCR_EEBIST_FAIL);
  1633. ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
  1634. /* I love config registers */
  1635. dev->CFG_cache = readl(dev->base + CFG);
  1636. if ((dev->CFG_cache & CFG_PCI64_DET)) {
  1637. printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
  1638. ndev->name);
  1639. /*dev->CFG_cache |= CFG_DATA64_EN;*/
  1640. if (!(dev->CFG_cache & CFG_DATA64_EN))
  1641. printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
  1642. ndev->name);
  1643. } else
  1644. dev->CFG_cache &= ~(CFG_DATA64_EN);
  1645. dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
  1646. CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
  1647. CFG_M64ADDR);
  1648. dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
  1649. CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
  1650. dev->CFG_cache |= CFG_REQALG;
  1651. dev->CFG_cache |= CFG_POW;
  1652. dev->CFG_cache |= CFG_TMRTEST;
  1653. /* When compiled with 64 bit addressing, we must always enable
  1654. * the 64 bit descriptor format.
  1655. */
  1656. if (sizeof(dma_addr_t) == 8)
  1657. dev->CFG_cache |= CFG_M64ADDR;
  1658. if (using_dac)
  1659. dev->CFG_cache |= CFG_T64ADDR;
  1660. /* Big endian mode does not seem to do what the docs suggest */
  1661. dev->CFG_cache &= ~CFG_BEM;
  1662. /* setup optical transceiver if we have one */
  1663. if (dev->CFG_cache & CFG_TBI_EN) {
  1664. printk(KERN_INFO "%s: enabling optical transceiver\n",
  1665. ndev->name);
  1666. writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
  1667. /* setup auto negotiation feature advertisement */
  1668. writel(readl(dev->base + TANAR)
  1669. | TANAR_HALF_DUP | TANAR_FULL_DUP,
  1670. dev->base + TANAR);
  1671. /* start auto negotiation */
  1672. writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
  1673. dev->base + TBICR);
  1674. writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
  1675. dev->linkstate = LINK_AUTONEGOTIATE;
  1676. dev->CFG_cache |= CFG_MODE_1000;
  1677. }
  1678. writel(dev->CFG_cache, dev->base + CFG);
  1679. dprintk("CFG: %08x\n", dev->CFG_cache);
  1680. if (reset_phy) {
  1681. printk(KERN_INFO "%s: resetting phy\n", ndev->name);
  1682. writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
  1683. msleep(10);
  1684. writel(dev->CFG_cache, dev->base + CFG);
  1685. }
  1686. #if 0 /* Huh? This sets the PCI latency register. Should be done via
  1687. * the PCI layer. FIXME.
  1688. */
  1689. if (readl(dev->base + SRR))
  1690. writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
  1691. #endif
  1692. /* Note! The DMA burst size interacts with packet
  1693. * transmission, such that the largest packet that
  1694. * can be transmitted is 8192 - FLTH - burst size.
  1695. * If only the transmit fifo was larger...
  1696. */
  1697. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1698. * some DELL and COMPAQ SMP systems */
  1699. writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
  1700. | ((1600 / 32) * 0x100),
  1701. dev->base + TXCFG);
  1702. /* Flush the interrupt holdoff timer */
  1703. writel(0x000, dev->base + IHR);
  1704. writel(0x100, dev->base + IHR);
  1705. writel(0x000, dev->base + IHR);
  1706. /* Set Rx to full duplex, don't accept runt, errored, long or length
  1707. * range errored packets. Use 512 byte DMA.
  1708. */
  1709. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1710. * some DELL and COMPAQ SMP systems
  1711. * Turn on ALP, only we are accpeting Jumbo Packets */
  1712. writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
  1713. | RXCFG_STRIPCRC
  1714. //| RXCFG_ALP
  1715. | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
  1716. /* Disable priority queueing */
  1717. writel(0, dev->base + PQCR);
  1718. /* Enable IP checksum validation and detetion of VLAN headers.
  1719. * Note: do not set the reject options as at least the 0x102
  1720. * revision of the chip does not properly accept IP fragments
  1721. * at least for UDP.
  1722. */
  1723. /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
  1724. * the MAC it calculates the packetsize AFTER stripping the VLAN
  1725. * header, and if a VLAN Tagged packet of 64 bytes is received (like
  1726. * a ping with a VLAN header) then the card, strips the 4 byte VLAN
  1727. * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
  1728. * it discrards it!. These guys......
  1729. * also turn on tag stripping if hardware acceleration is enabled
  1730. */
  1731. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1732. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
  1733. #else
  1734. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
  1735. #endif
  1736. writel(VRCR_INIT_VALUE, dev->base + VRCR);
  1737. /* Enable per-packet TCP/UDP/IP checksumming
  1738. * and per packet vlan tag insertion if
  1739. * vlan hardware acceleration is enabled
  1740. */
  1741. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1742. #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
  1743. #else
  1744. #define VTCR_INIT_VALUE VTCR_PPCHK
  1745. #endif
  1746. writel(VTCR_INIT_VALUE, dev->base + VTCR);
  1747. /* Ramit : Enable async and sync pause frames */
  1748. /* writel(0, dev->base + PCR); */
  1749. writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
  1750. PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
  1751. dev->base + PCR);
  1752. /* Disable Wake On Lan */
  1753. writel(0, dev->base + WCSR);
  1754. ns83820_getmac(dev, ndev->dev_addr);
  1755. /* Yes, we support dumb IP checksum on transmit */
  1756. ndev->features |= NETIF_F_SG;
  1757. ndev->features |= NETIF_F_IP_CSUM;
  1758. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1759. /* We also support hardware vlan acceleration */
  1760. ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  1761. ndev->vlan_rx_register = ns83820_vlan_rx_register;
  1762. ndev->vlan_rx_kill_vid = ns83820_vlan_rx_kill_vid;
  1763. #endif
  1764. if (using_dac) {
  1765. printk(KERN_INFO "%s: using 64 bit addressing.\n",
  1766. ndev->name);
  1767. ndev->features |= NETIF_F_HIGHDMA;
  1768. }
  1769. printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
  1770. ndev->name,
  1771. (unsigned)readl(dev->base + SRR) >> 8,
  1772. (unsigned)readl(dev->base + SRR) & 0xff,
  1773. ndev->dev_addr[0], ndev->dev_addr[1],
  1774. ndev->dev_addr[2], ndev->dev_addr[3],
  1775. ndev->dev_addr[4], ndev->dev_addr[5],
  1776. addr, pci_dev->irq,
  1777. (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
  1778. );
  1779. #ifdef PHY_CODE_IS_FINISHED
  1780. ns83820_probe_phy(ndev);
  1781. #endif
  1782. err = register_netdevice(ndev);
  1783. if (err) {
  1784. printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
  1785. goto out_cleanup;
  1786. }
  1787. rtnl_unlock();
  1788. return 0;
  1789. out_cleanup:
  1790. writel(0, dev->base + IMR); /* paranoia */
  1791. writel(0, dev->base + IER);
  1792. readl(dev->base + IER);
  1793. out_free_irq:
  1794. rtnl_unlock();
  1795. free_irq(pci_dev->irq, ndev);
  1796. out_disable:
  1797. if (dev->base)
  1798. iounmap(dev->base);
  1799. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
  1800. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
  1801. pci_disable_device(pci_dev);
  1802. out_free:
  1803. free_netdev(ndev);
  1804. pci_set_drvdata(pci_dev, NULL);
  1805. out:
  1806. return err;
  1807. }
  1808. static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
  1809. {
  1810. struct net_device *ndev = pci_get_drvdata(pci_dev);
  1811. struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
  1812. if (!ndev) /* paranoia */
  1813. return;
  1814. writel(0, dev->base + IMR); /* paranoia */
  1815. writel(0, dev->base + IER);
  1816. readl(dev->base + IER);
  1817. unregister_netdev(ndev);
  1818. free_irq(dev->pci_dev->irq, ndev);
  1819. iounmap(dev->base);
  1820. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
  1821. dev->tx_descs, dev->tx_phy_descs);
  1822. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
  1823. dev->rx_info.descs, dev->rx_info.phy_descs);
  1824. pci_disable_device(dev->pci_dev);
  1825. free_netdev(ndev);
  1826. pci_set_drvdata(pci_dev, NULL);
  1827. }
  1828. static struct pci_device_id ns83820_pci_tbl[] = {
  1829. { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
  1830. { 0, },
  1831. };
  1832. static struct pci_driver driver = {
  1833. .name = "ns83820",
  1834. .id_table = ns83820_pci_tbl,
  1835. .probe = ns83820_init_one,
  1836. .remove = __devexit_p(ns83820_remove_one),
  1837. #if 0 /* FIXME: implement */
  1838. .suspend = ,
  1839. .resume = ,
  1840. #endif
  1841. };
  1842. static int __init ns83820_init(void)
  1843. {
  1844. printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
  1845. return pci_register_driver(&driver);
  1846. }
  1847. static void __exit ns83820_exit(void)
  1848. {
  1849. pci_unregister_driver(&driver);
  1850. }
  1851. MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
  1852. MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
  1853. MODULE_LICENSE("GPL");
  1854. MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
  1855. module_param(lnksts, int, 0);
  1856. MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
  1857. module_param(ihr, int, 0);
  1858. MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
  1859. module_param(reset_phy, int, 0);
  1860. MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
  1861. module_init(ns83820_init);
  1862. module_exit(ns83820_exit);