myri_sbus.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179
  1. /* myri_sbus.c: MyriCOM MyriNET SBUS card driver.
  2. *
  3. * Copyright (C) 1996, 1999, 2006 David S. Miller (davem@davemloft.net)
  4. */
  5. static char version[] =
  6. "myri_sbus.c:v2.0 June 23, 2006 David S. Miller (davem@davemloft.net)\n";
  7. #include <linux/module.h>
  8. #include <linux/errno.h>
  9. #include <linux/kernel.h>
  10. #include <linux/types.h>
  11. #include <linux/fcntl.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/ioport.h>
  14. #include <linux/in.h>
  15. #include <linux/slab.h>
  16. #include <linux/string.h>
  17. #include <linux/delay.h>
  18. #include <linux/init.h>
  19. #include <linux/netdevice.h>
  20. #include <linux/etherdevice.h>
  21. #include <linux/skbuff.h>
  22. #include <linux/bitops.h>
  23. #include <net/dst.h>
  24. #include <net/arp.h>
  25. #include <net/sock.h>
  26. #include <net/ipv6.h>
  27. #include <asm/system.h>
  28. #include <asm/io.h>
  29. #include <asm/dma.h>
  30. #include <asm/byteorder.h>
  31. #include <asm/idprom.h>
  32. #include <asm/sbus.h>
  33. #include <asm/openprom.h>
  34. #include <asm/oplib.h>
  35. #include <asm/auxio.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/irq.h>
  38. #include <asm/checksum.h>
  39. #include "myri_sbus.h"
  40. #include "myri_code.h"
  41. /* #define DEBUG_DETECT */
  42. /* #define DEBUG_IRQ */
  43. /* #define DEBUG_TRANSMIT */
  44. /* #define DEBUG_RECEIVE */
  45. /* #define DEBUG_HEADER */
  46. #ifdef DEBUG_DETECT
  47. #define DET(x) printk x
  48. #else
  49. #define DET(x)
  50. #endif
  51. #ifdef DEBUG_IRQ
  52. #define DIRQ(x) printk x
  53. #else
  54. #define DIRQ(x)
  55. #endif
  56. #ifdef DEBUG_TRANSMIT
  57. #define DTX(x) printk x
  58. #else
  59. #define DTX(x)
  60. #endif
  61. #ifdef DEBUG_RECEIVE
  62. #define DRX(x) printk x
  63. #else
  64. #define DRX(x)
  65. #endif
  66. #ifdef DEBUG_HEADER
  67. #define DHDR(x) printk x
  68. #else
  69. #define DHDR(x)
  70. #endif
  71. static void myri_reset_off(void __iomem *lp, void __iomem *cregs)
  72. {
  73. /* Clear IRQ mask. */
  74. sbus_writel(0, lp + LANAI_EIMASK);
  75. /* Turn RESET function off. */
  76. sbus_writel(CONTROL_ROFF, cregs + MYRICTRL_CTRL);
  77. }
  78. static void myri_reset_on(void __iomem *cregs)
  79. {
  80. /* Enable RESET function. */
  81. sbus_writel(CONTROL_RON, cregs + MYRICTRL_CTRL);
  82. /* Disable IRQ's. */
  83. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  84. }
  85. static void myri_disable_irq(void __iomem *lp, void __iomem *cregs)
  86. {
  87. sbus_writel(CONTROL_DIRQ, cregs + MYRICTRL_CTRL);
  88. sbus_writel(0, lp + LANAI_EIMASK);
  89. sbus_writel(ISTAT_HOST, lp + LANAI_ISTAT);
  90. }
  91. static void myri_enable_irq(void __iomem *lp, void __iomem *cregs)
  92. {
  93. sbus_writel(CONTROL_EIRQ, cregs + MYRICTRL_CTRL);
  94. sbus_writel(ISTAT_HOST, lp + LANAI_EIMASK);
  95. }
  96. static inline void bang_the_chip(struct myri_eth *mp)
  97. {
  98. struct myri_shmem __iomem *shmem = mp->shmem;
  99. void __iomem *cregs = mp->cregs;
  100. sbus_writel(1, &shmem->send);
  101. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  102. }
  103. static int myri_do_handshake(struct myri_eth *mp)
  104. {
  105. struct myri_shmem __iomem *shmem = mp->shmem;
  106. void __iomem *cregs = mp->cregs;
  107. struct myri_channel __iomem *chan = &shmem->channel;
  108. int tick = 0;
  109. DET(("myri_do_handshake: "));
  110. if (sbus_readl(&chan->state) == STATE_READY) {
  111. DET(("Already STATE_READY, failed.\n"));
  112. return -1; /* We're hosed... */
  113. }
  114. myri_disable_irq(mp->lregs, cregs);
  115. while (tick++ <= 25) {
  116. u32 softstate;
  117. /* Wake it up. */
  118. DET(("shakedown, CONTROL_WON, "));
  119. sbus_writel(1, &shmem->shakedown);
  120. sbus_writel(CONTROL_WON, cregs + MYRICTRL_CTRL);
  121. softstate = sbus_readl(&chan->state);
  122. DET(("chanstate[%08x] ", softstate));
  123. if (softstate == STATE_READY) {
  124. DET(("wakeup successful, "));
  125. break;
  126. }
  127. if (softstate != STATE_WFN) {
  128. DET(("not WFN setting that, "));
  129. sbus_writel(STATE_WFN, &chan->state);
  130. }
  131. udelay(20);
  132. }
  133. myri_enable_irq(mp->lregs, cregs);
  134. if (tick > 25) {
  135. DET(("25 ticks we lose, failure.\n"));
  136. return -1;
  137. }
  138. DET(("success\n"));
  139. return 0;
  140. }
  141. static int __devinit myri_load_lanai(struct myri_eth *mp)
  142. {
  143. struct net_device *dev = mp->dev;
  144. struct myri_shmem __iomem *shmem = mp->shmem;
  145. void __iomem *rptr;
  146. int i;
  147. myri_disable_irq(mp->lregs, mp->cregs);
  148. myri_reset_on(mp->cregs);
  149. rptr = mp->lanai;
  150. for (i = 0; i < mp->eeprom.ramsz; i++)
  151. sbus_writeb(0, rptr + i);
  152. if (mp->eeprom.cpuvers >= CPUVERS_3_0)
  153. sbus_writel(mp->eeprom.cval, mp->lregs + LANAI_CVAL);
  154. /* Load executable code. */
  155. for (i = 0; i < sizeof(lanai4_code); i++)
  156. sbus_writeb(lanai4_code[i], rptr + (lanai4_code_off * 2) + i);
  157. /* Load data segment. */
  158. for (i = 0; i < sizeof(lanai4_data); i++)
  159. sbus_writeb(lanai4_data[i], rptr + (lanai4_data_off * 2) + i);
  160. /* Set device address. */
  161. sbus_writeb(0, &shmem->addr[0]);
  162. sbus_writeb(0, &shmem->addr[1]);
  163. for (i = 0; i < 6; i++)
  164. sbus_writeb(dev->dev_addr[i],
  165. &shmem->addr[i + 2]);
  166. /* Set SBUS bursts and interrupt mask. */
  167. sbus_writel(((mp->myri_bursts & 0xf8) >> 3), &shmem->burst);
  168. sbus_writel(SHMEM_IMASK_RX, &shmem->imask);
  169. /* Release the LANAI. */
  170. myri_disable_irq(mp->lregs, mp->cregs);
  171. myri_reset_off(mp->lregs, mp->cregs);
  172. myri_disable_irq(mp->lregs, mp->cregs);
  173. /* Wait for the reset to complete. */
  174. for (i = 0; i < 5000; i++) {
  175. if (sbus_readl(&shmem->channel.state) != STATE_READY)
  176. break;
  177. else
  178. udelay(10);
  179. }
  180. if (i == 5000)
  181. printk(KERN_ERR "myricom: Chip would not reset after firmware load.\n");
  182. i = myri_do_handshake(mp);
  183. if (i)
  184. printk(KERN_ERR "myricom: Handshake with LANAI failed.\n");
  185. if (mp->eeprom.cpuvers == CPUVERS_4_0)
  186. sbus_writel(0, mp->lregs + LANAI_VERS);
  187. return i;
  188. }
  189. static void myri_clean_rings(struct myri_eth *mp)
  190. {
  191. struct sendq __iomem *sq = mp->sq;
  192. struct recvq __iomem *rq = mp->rq;
  193. int i;
  194. sbus_writel(0, &rq->tail);
  195. sbus_writel(0, &rq->head);
  196. for (i = 0; i < (RX_RING_SIZE+1); i++) {
  197. if (mp->rx_skbs[i] != NULL) {
  198. struct myri_rxd __iomem *rxd = &rq->myri_rxd[i];
  199. u32 dma_addr;
  200. dma_addr = sbus_readl(&rxd->myri_scatters[0].addr);
  201. sbus_unmap_single(mp->myri_sdev, dma_addr, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  202. dev_kfree_skb(mp->rx_skbs[i]);
  203. mp->rx_skbs[i] = NULL;
  204. }
  205. }
  206. mp->tx_old = 0;
  207. sbus_writel(0, &sq->tail);
  208. sbus_writel(0, &sq->head);
  209. for (i = 0; i < TX_RING_SIZE; i++) {
  210. if (mp->tx_skbs[i] != NULL) {
  211. struct sk_buff *skb = mp->tx_skbs[i];
  212. struct myri_txd __iomem *txd = &sq->myri_txd[i];
  213. u32 dma_addr;
  214. dma_addr = sbus_readl(&txd->myri_gathers[0].addr);
  215. sbus_unmap_single(mp->myri_sdev, dma_addr, (skb->len + 3) & ~3, SBUS_DMA_TODEVICE);
  216. dev_kfree_skb(mp->tx_skbs[i]);
  217. mp->tx_skbs[i] = NULL;
  218. }
  219. }
  220. }
  221. static void myri_init_rings(struct myri_eth *mp, int from_irq)
  222. {
  223. struct recvq __iomem *rq = mp->rq;
  224. struct myri_rxd __iomem *rxd = &rq->myri_rxd[0];
  225. struct net_device *dev = mp->dev;
  226. gfp_t gfp_flags = GFP_KERNEL;
  227. int i;
  228. if (from_irq || in_interrupt())
  229. gfp_flags = GFP_ATOMIC;
  230. myri_clean_rings(mp);
  231. for (i = 0; i < RX_RING_SIZE; i++) {
  232. struct sk_buff *skb = myri_alloc_skb(RX_ALLOC_SIZE, gfp_flags);
  233. u32 dma_addr;
  234. if (!skb)
  235. continue;
  236. mp->rx_skbs[i] = skb;
  237. skb->dev = dev;
  238. skb_put(skb, RX_ALLOC_SIZE);
  239. dma_addr = sbus_map_single(mp->myri_sdev, skb->data, RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  240. sbus_writel(dma_addr, &rxd[i].myri_scatters[0].addr);
  241. sbus_writel(RX_ALLOC_SIZE, &rxd[i].myri_scatters[0].len);
  242. sbus_writel(i, &rxd[i].ctx);
  243. sbus_writel(1, &rxd[i].num_sg);
  244. }
  245. sbus_writel(0, &rq->head);
  246. sbus_writel(RX_RING_SIZE, &rq->tail);
  247. }
  248. static int myri_init(struct myri_eth *mp, int from_irq)
  249. {
  250. myri_init_rings(mp, from_irq);
  251. return 0;
  252. }
  253. static void myri_is_not_so_happy(struct myri_eth *mp)
  254. {
  255. }
  256. #ifdef DEBUG_HEADER
  257. static void dump_ehdr(struct ethhdr *ehdr)
  258. {
  259. printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
  260. "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
  261. ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2],
  262. ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4],
  263. ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2],
  264. ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4],
  265. ehdr->h_proto);
  266. }
  267. static void dump_ehdr_and_myripad(unsigned char *stuff)
  268. {
  269. struct ethhdr *ehdr = (struct ethhdr *) (stuff + 2);
  270. printk("pad[%02x:%02x]", stuff[0], stuff[1]);
  271. printk("ehdr[h_dst(%02x:%02x:%02x:%02x:%02x:%02x)"
  272. "h_source(%02x:%02x:%02x:%02x:%02x:%02x)h_proto(%04x)]\n",
  273. ehdr->h_dest[0], ehdr->h_dest[1], ehdr->h_dest[2],
  274. ehdr->h_dest[3], ehdr->h_dest[4], ehdr->h_dest[4],
  275. ehdr->h_source[0], ehdr->h_source[1], ehdr->h_source[2],
  276. ehdr->h_source[3], ehdr->h_source[4], ehdr->h_source[4],
  277. ehdr->h_proto);
  278. }
  279. #endif
  280. static void myri_tx(struct myri_eth *mp, struct net_device *dev)
  281. {
  282. struct sendq __iomem *sq= mp->sq;
  283. int entry = mp->tx_old;
  284. int limit = sbus_readl(&sq->head);
  285. DTX(("entry[%d] limit[%d] ", entry, limit));
  286. if (entry == limit)
  287. return;
  288. while (entry != limit) {
  289. struct sk_buff *skb = mp->tx_skbs[entry];
  290. u32 dma_addr;
  291. DTX(("SKB[%d] ", entry));
  292. dma_addr = sbus_readl(&sq->myri_txd[entry].myri_gathers[0].addr);
  293. sbus_unmap_single(mp->myri_sdev, dma_addr, skb->len, SBUS_DMA_TODEVICE);
  294. dev_kfree_skb(skb);
  295. mp->tx_skbs[entry] = NULL;
  296. mp->enet_stats.tx_packets++;
  297. entry = NEXT_TX(entry);
  298. }
  299. mp->tx_old = entry;
  300. }
  301. /* Determine the packet's protocol ID. The rule here is that we
  302. * assume 802.3 if the type field is short enough to be a length.
  303. * This is normal practice and works for any 'now in use' protocol.
  304. */
  305. static __be16 myri_type_trans(struct sk_buff *skb, struct net_device *dev)
  306. {
  307. struct ethhdr *eth;
  308. unsigned char *rawp;
  309. skb->mac.raw = (((unsigned char *)skb->data) + MYRI_PAD_LEN);
  310. skb_pull(skb, dev->hard_header_len);
  311. eth = eth_hdr(skb);
  312. #ifdef DEBUG_HEADER
  313. DHDR(("myri_type_trans: "));
  314. dump_ehdr(eth);
  315. #endif
  316. if (*eth->h_dest & 1) {
  317. if (memcmp(eth->h_dest, dev->broadcast, ETH_ALEN)==0)
  318. skb->pkt_type = PACKET_BROADCAST;
  319. else
  320. skb->pkt_type = PACKET_MULTICAST;
  321. } else if (dev->flags & (IFF_PROMISC|IFF_ALLMULTI)) {
  322. if (memcmp(eth->h_dest, dev->dev_addr, ETH_ALEN))
  323. skb->pkt_type = PACKET_OTHERHOST;
  324. }
  325. if (ntohs(eth->h_proto) >= 1536)
  326. return eth->h_proto;
  327. rawp = skb->data;
  328. /* This is a magic hack to spot IPX packets. Older Novell breaks
  329. * the protocol design and runs IPX over 802.3 without an 802.2 LLC
  330. * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
  331. * won't work for fault tolerant netware but does for the rest.
  332. */
  333. if (*(unsigned short *)rawp == 0xFFFF)
  334. return htons(ETH_P_802_3);
  335. /* Real 802.2 LLC */
  336. return htons(ETH_P_802_2);
  337. }
  338. static void myri_rx(struct myri_eth *mp, struct net_device *dev)
  339. {
  340. struct recvq __iomem *rq = mp->rq;
  341. struct recvq __iomem *rqa = mp->rqack;
  342. int entry = sbus_readl(&rqa->head);
  343. int limit = sbus_readl(&rqa->tail);
  344. int drops;
  345. DRX(("entry[%d] limit[%d] ", entry, limit));
  346. if (entry == limit)
  347. return;
  348. drops = 0;
  349. DRX(("\n"));
  350. while (entry != limit) {
  351. struct myri_rxd __iomem *rxdack = &rqa->myri_rxd[entry];
  352. u32 csum = sbus_readl(&rxdack->csum);
  353. int len = sbus_readl(&rxdack->myri_scatters[0].len);
  354. int index = sbus_readl(&rxdack->ctx);
  355. struct myri_rxd __iomem *rxd = &rq->myri_rxd[sbus_readl(&rq->tail)];
  356. struct sk_buff *skb = mp->rx_skbs[index];
  357. /* Ack it. */
  358. sbus_writel(NEXT_RX(entry), &rqa->head);
  359. /* Check for errors. */
  360. DRX(("rxd[%d]: %p len[%d] csum[%08x] ", entry, rxd, len, csum));
  361. sbus_dma_sync_single_for_cpu(mp->myri_sdev,
  362. sbus_readl(&rxd->myri_scatters[0].addr),
  363. RX_ALLOC_SIZE, SBUS_DMA_FROMDEVICE);
  364. if (len < (ETH_HLEN + MYRI_PAD_LEN) || (skb->data[0] != MYRI_PAD_LEN)) {
  365. DRX(("ERROR["));
  366. mp->enet_stats.rx_errors++;
  367. if (len < (ETH_HLEN + MYRI_PAD_LEN)) {
  368. DRX(("BAD_LENGTH] "));
  369. mp->enet_stats.rx_length_errors++;
  370. } else {
  371. DRX(("NO_PADDING] "));
  372. mp->enet_stats.rx_frame_errors++;
  373. }
  374. /* Return it to the LANAI. */
  375. drop_it:
  376. drops++;
  377. DRX(("DROP "));
  378. mp->enet_stats.rx_dropped++;
  379. sbus_dma_sync_single_for_device(mp->myri_sdev,
  380. sbus_readl(&rxd->myri_scatters[0].addr),
  381. RX_ALLOC_SIZE,
  382. SBUS_DMA_FROMDEVICE);
  383. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  384. sbus_writel(index, &rxd->ctx);
  385. sbus_writel(1, &rxd->num_sg);
  386. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  387. goto next;
  388. }
  389. DRX(("len[%d] ", len));
  390. if (len > RX_COPY_THRESHOLD) {
  391. struct sk_buff *new_skb;
  392. u32 dma_addr;
  393. DRX(("BIGBUFF "));
  394. new_skb = myri_alloc_skb(RX_ALLOC_SIZE, GFP_ATOMIC);
  395. if (new_skb == NULL) {
  396. DRX(("skb_alloc(FAILED) "));
  397. goto drop_it;
  398. }
  399. sbus_unmap_single(mp->myri_sdev,
  400. sbus_readl(&rxd->myri_scatters[0].addr),
  401. RX_ALLOC_SIZE,
  402. SBUS_DMA_FROMDEVICE);
  403. mp->rx_skbs[index] = new_skb;
  404. new_skb->dev = dev;
  405. skb_put(new_skb, RX_ALLOC_SIZE);
  406. dma_addr = sbus_map_single(mp->myri_sdev,
  407. new_skb->data,
  408. RX_ALLOC_SIZE,
  409. SBUS_DMA_FROMDEVICE);
  410. sbus_writel(dma_addr, &rxd->myri_scatters[0].addr);
  411. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  412. sbus_writel(index, &rxd->ctx);
  413. sbus_writel(1, &rxd->num_sg);
  414. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  415. /* Trim the original skb for the netif. */
  416. DRX(("trim(%d) ", len));
  417. skb_trim(skb, len);
  418. } else {
  419. struct sk_buff *copy_skb = dev_alloc_skb(len);
  420. DRX(("SMALLBUFF "));
  421. if (copy_skb == NULL) {
  422. DRX(("dev_alloc_skb(FAILED) "));
  423. goto drop_it;
  424. }
  425. /* DMA sync already done above. */
  426. copy_skb->dev = dev;
  427. DRX(("resv_and_put "));
  428. skb_put(copy_skb, len);
  429. memcpy(copy_skb->data, skb->data, len);
  430. /* Reuse original ring buffer. */
  431. DRX(("reuse "));
  432. sbus_dma_sync_single_for_device(mp->myri_sdev,
  433. sbus_readl(&rxd->myri_scatters[0].addr),
  434. RX_ALLOC_SIZE,
  435. SBUS_DMA_FROMDEVICE);
  436. sbus_writel(RX_ALLOC_SIZE, &rxd->myri_scatters[0].len);
  437. sbus_writel(index, &rxd->ctx);
  438. sbus_writel(1, &rxd->num_sg);
  439. sbus_writel(NEXT_RX(sbus_readl(&rq->tail)), &rq->tail);
  440. skb = copy_skb;
  441. }
  442. /* Just like the happy meal we get checksums from this card. */
  443. skb->csum = csum;
  444. skb->ip_summed = CHECKSUM_UNNECESSARY; /* XXX */
  445. skb->protocol = myri_type_trans(skb, dev);
  446. DRX(("prot[%04x] netif_rx ", skb->protocol));
  447. netif_rx(skb);
  448. dev->last_rx = jiffies;
  449. mp->enet_stats.rx_packets++;
  450. mp->enet_stats.rx_bytes += len;
  451. next:
  452. DRX(("NEXT\n"));
  453. entry = NEXT_RX(entry);
  454. }
  455. }
  456. static irqreturn_t myri_interrupt(int irq, void *dev_id)
  457. {
  458. struct net_device *dev = (struct net_device *) dev_id;
  459. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  460. void __iomem *lregs = mp->lregs;
  461. struct myri_channel __iomem *chan = &mp->shmem->channel;
  462. unsigned long flags;
  463. u32 status;
  464. int handled = 0;
  465. spin_lock_irqsave(&mp->irq_lock, flags);
  466. status = sbus_readl(lregs + LANAI_ISTAT);
  467. DIRQ(("myri_interrupt: status[%08x] ", status));
  468. if (status & ISTAT_HOST) {
  469. u32 softstate;
  470. handled = 1;
  471. DIRQ(("IRQ_DISAB "));
  472. myri_disable_irq(lregs, mp->cregs);
  473. softstate = sbus_readl(&chan->state);
  474. DIRQ(("state[%08x] ", softstate));
  475. if (softstate != STATE_READY) {
  476. DIRQ(("myri_not_so_happy "));
  477. myri_is_not_so_happy(mp);
  478. }
  479. DIRQ(("\nmyri_rx: "));
  480. myri_rx(mp, dev);
  481. DIRQ(("\nistat=ISTAT_HOST "));
  482. sbus_writel(ISTAT_HOST, lregs + LANAI_ISTAT);
  483. DIRQ(("IRQ_ENAB "));
  484. myri_enable_irq(lregs, mp->cregs);
  485. }
  486. DIRQ(("\n"));
  487. spin_unlock_irqrestore(&mp->irq_lock, flags);
  488. return IRQ_RETVAL(handled);
  489. }
  490. static int myri_open(struct net_device *dev)
  491. {
  492. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  493. return myri_init(mp, in_interrupt());
  494. }
  495. static int myri_close(struct net_device *dev)
  496. {
  497. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  498. myri_clean_rings(mp);
  499. return 0;
  500. }
  501. static void myri_tx_timeout(struct net_device *dev)
  502. {
  503. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  504. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  505. mp->enet_stats.tx_errors++;
  506. myri_init(mp, 0);
  507. netif_wake_queue(dev);
  508. }
  509. static int myri_start_xmit(struct sk_buff *skb, struct net_device *dev)
  510. {
  511. struct myri_eth *mp = (struct myri_eth *) dev->priv;
  512. struct sendq __iomem *sq = mp->sq;
  513. struct myri_txd __iomem *txd;
  514. unsigned long flags;
  515. unsigned int head, tail;
  516. int len, entry;
  517. u32 dma_addr;
  518. DTX(("myri_start_xmit: "));
  519. myri_tx(mp, dev);
  520. netif_stop_queue(dev);
  521. /* This is just to prevent multiple PIO reads for TX_BUFFS_AVAIL. */
  522. head = sbus_readl(&sq->head);
  523. tail = sbus_readl(&sq->tail);
  524. if (!TX_BUFFS_AVAIL(head, tail)) {
  525. DTX(("no buffs available, returning 1\n"));
  526. return 1;
  527. }
  528. spin_lock_irqsave(&mp->irq_lock, flags);
  529. DHDR(("xmit[skbdata(%p)]\n", skb->data));
  530. #ifdef DEBUG_HEADER
  531. dump_ehdr_and_myripad(((unsigned char *) skb->data));
  532. #endif
  533. /* XXX Maybe this can go as well. */
  534. len = skb->len;
  535. if (len & 3) {
  536. DTX(("len&3 "));
  537. len = (len + 4) & (~3);
  538. }
  539. entry = sbus_readl(&sq->tail);
  540. txd = &sq->myri_txd[entry];
  541. mp->tx_skbs[entry] = skb;
  542. /* Must do this before we sbus map it. */
  543. if (skb->data[MYRI_PAD_LEN] & 0x1) {
  544. sbus_writew(0xffff, &txd->addr[0]);
  545. sbus_writew(0xffff, &txd->addr[1]);
  546. sbus_writew(0xffff, &txd->addr[2]);
  547. sbus_writew(0xffff, &txd->addr[3]);
  548. } else {
  549. sbus_writew(0xffff, &txd->addr[0]);
  550. sbus_writew((skb->data[0] << 8) | skb->data[1], &txd->addr[1]);
  551. sbus_writew((skb->data[2] << 8) | skb->data[3], &txd->addr[2]);
  552. sbus_writew((skb->data[4] << 8) | skb->data[5], &txd->addr[3]);
  553. }
  554. dma_addr = sbus_map_single(mp->myri_sdev, skb->data, len, SBUS_DMA_TODEVICE);
  555. sbus_writel(dma_addr, &txd->myri_gathers[0].addr);
  556. sbus_writel(len, &txd->myri_gathers[0].len);
  557. sbus_writel(1, &txd->num_sg);
  558. sbus_writel(KERNEL_CHANNEL, &txd->chan);
  559. sbus_writel(len, &txd->len);
  560. sbus_writel((u32)-1, &txd->csum_off);
  561. sbus_writel(0, &txd->csum_field);
  562. sbus_writel(NEXT_TX(entry), &sq->tail);
  563. DTX(("BangTheChip "));
  564. bang_the_chip(mp);
  565. DTX(("tbusy=0, returning 0\n"));
  566. netif_start_queue(dev);
  567. spin_unlock_irqrestore(&mp->irq_lock, flags);
  568. return 0;
  569. }
  570. /* Create the MyriNet MAC header for an arbitrary protocol layer
  571. *
  572. * saddr=NULL means use device source address
  573. * daddr=NULL means leave destination address (eg unresolved arp)
  574. */
  575. static int myri_header(struct sk_buff *skb, struct net_device *dev, unsigned short type,
  576. void *daddr, void *saddr, unsigned len)
  577. {
  578. struct ethhdr *eth = (struct ethhdr *) skb_push(skb, ETH_HLEN);
  579. unsigned char *pad = (unsigned char *) skb_push(skb, MYRI_PAD_LEN);
  580. #ifdef DEBUG_HEADER
  581. DHDR(("myri_header: pad[%02x,%02x] ", pad[0], pad[1]));
  582. dump_ehdr(eth);
  583. #endif
  584. /* Set the MyriNET padding identifier. */
  585. pad[0] = MYRI_PAD_LEN;
  586. pad[1] = 0xab;
  587. /* Set the protocol type. For a packet of type ETH_P_802_3 we put the length
  588. * in here instead. It is up to the 802.2 layer to carry protocol information.
  589. */
  590. if (type != ETH_P_802_3)
  591. eth->h_proto = htons(type);
  592. else
  593. eth->h_proto = htons(len);
  594. /* Set the source hardware address. */
  595. if (saddr)
  596. memcpy(eth->h_source, saddr, dev->addr_len);
  597. else
  598. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  599. /* Anyway, the loopback-device should never use this function... */
  600. if (dev->flags & IFF_LOOPBACK) {
  601. int i;
  602. for (i = 0; i < dev->addr_len; i++)
  603. eth->h_dest[i] = 0;
  604. return(dev->hard_header_len);
  605. }
  606. if (daddr) {
  607. memcpy(eth->h_dest, daddr, dev->addr_len);
  608. return dev->hard_header_len;
  609. }
  610. return -dev->hard_header_len;
  611. }
  612. /* Rebuild the MyriNet MAC header. This is called after an ARP
  613. * (or in future other address resolution) has completed on this
  614. * sk_buff. We now let ARP fill in the other fields.
  615. */
  616. static int myri_rebuild_header(struct sk_buff *skb)
  617. {
  618. unsigned char *pad = (unsigned char *) skb->data;
  619. struct ethhdr *eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  620. struct net_device *dev = skb->dev;
  621. #ifdef DEBUG_HEADER
  622. DHDR(("myri_rebuild_header: pad[%02x,%02x] ", pad[0], pad[1]));
  623. dump_ehdr(eth);
  624. #endif
  625. /* Refill MyriNet padding identifiers, this is just being anal. */
  626. pad[0] = MYRI_PAD_LEN;
  627. pad[1] = 0xab;
  628. switch (eth->h_proto)
  629. {
  630. #ifdef CONFIG_INET
  631. case __constant_htons(ETH_P_IP):
  632. return arp_find(eth->h_dest, skb);
  633. #endif
  634. default:
  635. printk(KERN_DEBUG
  636. "%s: unable to resolve type %X addresses.\n",
  637. dev->name, (int)eth->h_proto);
  638. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  639. return 0;
  640. break;
  641. }
  642. return 0;
  643. }
  644. int myri_header_cache(struct neighbour *neigh, struct hh_cache *hh)
  645. {
  646. unsigned short type = hh->hh_type;
  647. unsigned char *pad;
  648. struct ethhdr *eth;
  649. struct net_device *dev = neigh->dev;
  650. pad = ((unsigned char *) hh->hh_data) +
  651. HH_DATA_OFF(sizeof(*eth) + MYRI_PAD_LEN);
  652. eth = (struct ethhdr *) (pad + MYRI_PAD_LEN);
  653. if (type == __constant_htons(ETH_P_802_3))
  654. return -1;
  655. /* Refill MyriNet padding identifiers, this is just being anal. */
  656. pad[0] = MYRI_PAD_LEN;
  657. pad[1] = 0xab;
  658. eth->h_proto = type;
  659. memcpy(eth->h_source, dev->dev_addr, dev->addr_len);
  660. memcpy(eth->h_dest, neigh->ha, dev->addr_len);
  661. hh->hh_len = 16;
  662. return 0;
  663. }
  664. /* Called by Address Resolution module to notify changes in address. */
  665. void myri_header_cache_update(struct hh_cache *hh, struct net_device *dev, unsigned char * haddr)
  666. {
  667. memcpy(((u8*)hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
  668. haddr, dev->addr_len);
  669. }
  670. static int myri_change_mtu(struct net_device *dev, int new_mtu)
  671. {
  672. if ((new_mtu < (ETH_HLEN + MYRI_PAD_LEN)) || (new_mtu > MYRINET_MTU))
  673. return -EINVAL;
  674. dev->mtu = new_mtu;
  675. return 0;
  676. }
  677. static struct net_device_stats *myri_get_stats(struct net_device *dev)
  678. { return &(((struct myri_eth *)dev->priv)->enet_stats); }
  679. static void myri_set_multicast(struct net_device *dev)
  680. {
  681. /* Do nothing, all MyriCOM nodes transmit multicast frames
  682. * as broadcast packets...
  683. */
  684. }
  685. static inline void set_boardid_from_idprom(struct myri_eth *mp, int num)
  686. {
  687. mp->eeprom.id[0] = 0;
  688. mp->eeprom.id[1] = idprom->id_machtype;
  689. mp->eeprom.id[2] = (idprom->id_sernum >> 16) & 0xff;
  690. mp->eeprom.id[3] = (idprom->id_sernum >> 8) & 0xff;
  691. mp->eeprom.id[4] = (idprom->id_sernum >> 0) & 0xff;
  692. mp->eeprom.id[5] = num;
  693. }
  694. static inline void determine_reg_space_size(struct myri_eth *mp)
  695. {
  696. switch(mp->eeprom.cpuvers) {
  697. case CPUVERS_2_3:
  698. case CPUVERS_3_0:
  699. case CPUVERS_3_1:
  700. case CPUVERS_3_2:
  701. mp->reg_size = (3 * 128 * 1024) + 4096;
  702. break;
  703. case CPUVERS_4_0:
  704. case CPUVERS_4_1:
  705. mp->reg_size = ((4096<<1) + mp->eeprom.ramsz);
  706. break;
  707. case CPUVERS_4_2:
  708. case CPUVERS_5_0:
  709. default:
  710. printk("myricom: AIEEE weird cpu version %04x assuming pre4.0\n",
  711. mp->eeprom.cpuvers);
  712. mp->reg_size = (3 * 128 * 1024) + 4096;
  713. };
  714. }
  715. #ifdef DEBUG_DETECT
  716. static void dump_eeprom(struct myri_eth *mp)
  717. {
  718. printk("EEPROM: clockval[%08x] cpuvers[%04x] "
  719. "id[%02x,%02x,%02x,%02x,%02x,%02x]\n",
  720. mp->eeprom.cval, mp->eeprom.cpuvers,
  721. mp->eeprom.id[0], mp->eeprom.id[1], mp->eeprom.id[2],
  722. mp->eeprom.id[3], mp->eeprom.id[4], mp->eeprom.id[5]);
  723. printk("EEPROM: ramsz[%08x]\n", mp->eeprom.ramsz);
  724. printk("EEPROM: fvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  725. mp->eeprom.fvers[0], mp->eeprom.fvers[1], mp->eeprom.fvers[2],
  726. mp->eeprom.fvers[3], mp->eeprom.fvers[4], mp->eeprom.fvers[5],
  727. mp->eeprom.fvers[6], mp->eeprom.fvers[7]);
  728. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  729. mp->eeprom.fvers[8], mp->eeprom.fvers[9], mp->eeprom.fvers[10],
  730. mp->eeprom.fvers[11], mp->eeprom.fvers[12], mp->eeprom.fvers[13],
  731. mp->eeprom.fvers[14], mp->eeprom.fvers[15]);
  732. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  733. mp->eeprom.fvers[16], mp->eeprom.fvers[17], mp->eeprom.fvers[18],
  734. mp->eeprom.fvers[19], mp->eeprom.fvers[20], mp->eeprom.fvers[21],
  735. mp->eeprom.fvers[22], mp->eeprom.fvers[23]);
  736. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  737. mp->eeprom.fvers[24], mp->eeprom.fvers[25], mp->eeprom.fvers[26],
  738. mp->eeprom.fvers[27], mp->eeprom.fvers[28], mp->eeprom.fvers[29],
  739. mp->eeprom.fvers[30], mp->eeprom.fvers[31]);
  740. printk("EEPROM: mvers[%02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x\n",
  741. mp->eeprom.mvers[0], mp->eeprom.mvers[1], mp->eeprom.mvers[2],
  742. mp->eeprom.mvers[3], mp->eeprom.mvers[4], mp->eeprom.mvers[5],
  743. mp->eeprom.mvers[6], mp->eeprom.mvers[7]);
  744. printk("EEPROM: %02x,%02x,%02x,%02x,%02x,%02x,%02x,%02x]\n",
  745. mp->eeprom.mvers[8], mp->eeprom.mvers[9], mp->eeprom.mvers[10],
  746. mp->eeprom.mvers[11], mp->eeprom.mvers[12], mp->eeprom.mvers[13],
  747. mp->eeprom.mvers[14], mp->eeprom.mvers[15]);
  748. printk("EEPROM: dlval[%04x] brd_type[%04x] bus_type[%04x] prod_code[%04x]\n",
  749. mp->eeprom.dlval, mp->eeprom.brd_type, mp->eeprom.bus_type,
  750. mp->eeprom.prod_code);
  751. printk("EEPROM: serial_num[%08x]\n", mp->eeprom.serial_num);
  752. }
  753. #endif
  754. static int __devinit myri_ether_init(struct sbus_dev *sdev)
  755. {
  756. static int num;
  757. static unsigned version_printed;
  758. struct net_device *dev;
  759. struct myri_eth *mp;
  760. unsigned char prop_buf[32];
  761. int i;
  762. DET(("myri_ether_init(%p,%d):\n", sdev, num));
  763. dev = alloc_etherdev(sizeof(struct myri_eth));
  764. if (!dev)
  765. return -ENOMEM;
  766. if (version_printed++ == 0)
  767. printk(version);
  768. SET_MODULE_OWNER(dev);
  769. SET_NETDEV_DEV(dev, &sdev->ofdev.dev);
  770. mp = (struct myri_eth *) dev->priv;
  771. spin_lock_init(&mp->irq_lock);
  772. mp->myri_sdev = sdev;
  773. /* Clean out skb arrays. */
  774. for (i = 0; i < (RX_RING_SIZE + 1); i++)
  775. mp->rx_skbs[i] = NULL;
  776. for (i = 0; i < TX_RING_SIZE; i++)
  777. mp->tx_skbs[i] = NULL;
  778. /* First check for EEPROM information. */
  779. i = prom_getproperty(sdev->prom_node, "myrinet-eeprom-info",
  780. (char *)&mp->eeprom, sizeof(struct myri_eeprom));
  781. DET(("prom_getprop(myrinet-eeprom-info) returns %d\n", i));
  782. if (i == 0 || i == -1) {
  783. /* No eeprom property, must cook up the values ourselves. */
  784. DET(("No EEPROM: "));
  785. mp->eeprom.bus_type = BUS_TYPE_SBUS;
  786. mp->eeprom.cpuvers = prom_getintdefault(sdev->prom_node,"cpu_version",0);
  787. mp->eeprom.cval = prom_getintdefault(sdev->prom_node,"clock_value",0);
  788. mp->eeprom.ramsz = prom_getintdefault(sdev->prom_node,"sram_size",0);
  789. DET(("cpuvers[%d] cval[%d] ramsz[%d]\n", mp->eeprom.cpuvers,
  790. mp->eeprom.cval, mp->eeprom.ramsz));
  791. if (mp->eeprom.cpuvers == 0) {
  792. DET(("EEPROM: cpuvers was zero, setting to %04x\n",CPUVERS_2_3));
  793. mp->eeprom.cpuvers = CPUVERS_2_3;
  794. }
  795. if (mp->eeprom.cpuvers < CPUVERS_3_0) {
  796. DET(("EEPROM: cpuvers < CPUVERS_3_0, clockval set to zero.\n"));
  797. mp->eeprom.cval = 0;
  798. }
  799. if (mp->eeprom.ramsz == 0) {
  800. DET(("EEPROM: ramsz == 0, setting to 128k\n"));
  801. mp->eeprom.ramsz = (128 * 1024);
  802. }
  803. i = prom_getproperty(sdev->prom_node, "myrinet-board-id",
  804. &prop_buf[0], 10);
  805. DET(("EEPROM: prom_getprop(myrinet-board-id) returns %d\n", i));
  806. if ((i != 0) && (i != -1))
  807. memcpy(&mp->eeprom.id[0], &prop_buf[0], 6);
  808. else
  809. set_boardid_from_idprom(mp, num);
  810. i = prom_getproperty(sdev->prom_node, "fpga_version",
  811. &mp->eeprom.fvers[0], 32);
  812. DET(("EEPROM: prom_getprop(fpga_version) returns %d\n", i));
  813. if (i == 0 || i == -1)
  814. memset(&mp->eeprom.fvers[0], 0, 32);
  815. if (mp->eeprom.cpuvers == CPUVERS_4_1) {
  816. DET(("EEPROM: cpuvers CPUVERS_4_1, "));
  817. if (mp->eeprom.ramsz == (128 * 1024)) {
  818. DET(("ramsize 128k, setting to 256k, "));
  819. mp->eeprom.ramsz = (256 * 1024);
  820. }
  821. if ((mp->eeprom.cval==0x40414041)||(mp->eeprom.cval==0x90449044)){
  822. DET(("changing cval from %08x to %08x ",
  823. mp->eeprom.cval, 0x50e450e4));
  824. mp->eeprom.cval = 0x50e450e4;
  825. }
  826. DET(("\n"));
  827. }
  828. }
  829. #ifdef DEBUG_DETECT
  830. dump_eeprom(mp);
  831. #endif
  832. for (i = 0; i < 6; i++)
  833. dev->dev_addr[i] = mp->eeprom.id[i];
  834. determine_reg_space_size(mp);
  835. /* Map in the MyriCOM register/localram set. */
  836. if (mp->eeprom.cpuvers < CPUVERS_4_0) {
  837. /* XXX Makes no sense, if control reg is non-existant this
  838. * XXX driver cannot function at all... maybe pre-4.0 is
  839. * XXX only a valid version for PCI cards? Ask feldy...
  840. */
  841. DET(("Mapping regs for cpuvers < CPUVERS_4_0\n"));
  842. mp->regs = sbus_ioremap(&sdev->resource[0], 0,
  843. mp->reg_size, "MyriCOM Regs");
  844. if (!mp->regs) {
  845. printk("MyriCOM: Cannot map MyriCOM registers.\n");
  846. goto err;
  847. }
  848. mp->lanai = mp->regs + (256 * 1024);
  849. mp->lregs = mp->lanai + (0x10000 * 2);
  850. } else {
  851. DET(("Mapping regs for cpuvers >= CPUVERS_4_0\n"));
  852. mp->cregs = sbus_ioremap(&sdev->resource[0], 0,
  853. PAGE_SIZE, "MyriCOM Control Regs");
  854. mp->lregs = sbus_ioremap(&sdev->resource[0], (256 * 1024),
  855. PAGE_SIZE, "MyriCOM LANAI Regs");
  856. mp->lanai =
  857. sbus_ioremap(&sdev->resource[0], (512 * 1024),
  858. mp->eeprom.ramsz, "MyriCOM SRAM");
  859. }
  860. DET(("Registers mapped: cregs[%p] lregs[%p] lanai[%p]\n",
  861. mp->cregs, mp->lregs, mp->lanai));
  862. if (mp->eeprom.cpuvers >= CPUVERS_4_0)
  863. mp->shmem_base = 0xf000;
  864. else
  865. mp->shmem_base = 0x8000;
  866. DET(("Shared memory base is %04x, ", mp->shmem_base));
  867. mp->shmem = (struct myri_shmem __iomem *)
  868. (mp->lanai + (mp->shmem_base * 2));
  869. DET(("shmem mapped at %p\n", mp->shmem));
  870. mp->rqack = &mp->shmem->channel.recvqa;
  871. mp->rq = &mp->shmem->channel.recvq;
  872. mp->sq = &mp->shmem->channel.sendq;
  873. /* Reset the board. */
  874. DET(("Resetting LANAI\n"));
  875. myri_reset_off(mp->lregs, mp->cregs);
  876. myri_reset_on(mp->cregs);
  877. /* Turn IRQ's off. */
  878. myri_disable_irq(mp->lregs, mp->cregs);
  879. /* Reset once more. */
  880. myri_reset_on(mp->cregs);
  881. /* Get the supported DVMA burst sizes from our SBUS. */
  882. mp->myri_bursts = prom_getintdefault(mp->myri_sdev->bus->prom_node,
  883. "burst-sizes", 0x00);
  884. if (!sbus_can_burst64(sdev))
  885. mp->myri_bursts &= ~(DMA_BURST64);
  886. DET(("MYRI bursts %02x\n", mp->myri_bursts));
  887. /* Encode SBUS interrupt level in second control register. */
  888. i = prom_getint(sdev->prom_node, "interrupts");
  889. if (i == 0)
  890. i = 4;
  891. DET(("prom_getint(interrupts)==%d, irqlvl set to %04x\n",
  892. i, (1 << i)));
  893. sbus_writel((1 << i), mp->cregs + MYRICTRL_IRQLVL);
  894. mp->dev = dev;
  895. dev->open = &myri_open;
  896. dev->stop = &myri_close;
  897. dev->hard_start_xmit = &myri_start_xmit;
  898. dev->tx_timeout = &myri_tx_timeout;
  899. dev->watchdog_timeo = 5*HZ;
  900. dev->get_stats = &myri_get_stats;
  901. dev->set_multicast_list = &myri_set_multicast;
  902. dev->irq = sdev->irqs[0];
  903. /* Register interrupt handler now. */
  904. DET(("Requesting MYRIcom IRQ line.\n"));
  905. if (request_irq(dev->irq, &myri_interrupt,
  906. IRQF_SHARED, "MyriCOM Ethernet", (void *) dev)) {
  907. printk("MyriCOM: Cannot register interrupt handler.\n");
  908. goto err;
  909. }
  910. dev->mtu = MYRINET_MTU;
  911. dev->change_mtu = myri_change_mtu;
  912. dev->hard_header = myri_header;
  913. dev->rebuild_header = myri_rebuild_header;
  914. dev->hard_header_len = (ETH_HLEN + MYRI_PAD_LEN);
  915. dev->hard_header_cache = myri_header_cache;
  916. dev->header_cache_update= myri_header_cache_update;
  917. /* Load code onto the LANai. */
  918. DET(("Loading LANAI firmware\n"));
  919. myri_load_lanai(mp);
  920. if (register_netdev(dev)) {
  921. printk("MyriCOM: Cannot register device.\n");
  922. goto err_free_irq;
  923. }
  924. dev_set_drvdata(&sdev->ofdev.dev, mp);
  925. num++;
  926. printk("%s: MyriCOM MyriNET Ethernet ", dev->name);
  927. for (i = 0; i < 6; i++)
  928. printk("%2.2x%c", dev->dev_addr[i],
  929. i == 5 ? ' ' : ':');
  930. printk("\n");
  931. return 0;
  932. err_free_irq:
  933. free_irq(dev->irq, dev);
  934. err:
  935. /* This will also free the co-allocated 'dev->priv' */
  936. free_netdev(dev);
  937. return -ENODEV;
  938. }
  939. static int __devinit myri_sbus_probe(struct of_device *dev, const struct of_device_id *match)
  940. {
  941. struct sbus_dev *sdev = to_sbus_device(&dev->dev);
  942. return myri_ether_init(sdev);
  943. }
  944. static int __devexit myri_sbus_remove(struct of_device *dev)
  945. {
  946. struct myri_eth *mp = dev_get_drvdata(&dev->dev);
  947. struct net_device *net_dev = mp->dev;
  948. unregister_netdevice(net_dev);
  949. free_irq(net_dev->irq, net_dev);
  950. if (mp->eeprom.cpuvers < CPUVERS_4_0) {
  951. sbus_iounmap(mp->regs, mp->reg_size);
  952. } else {
  953. sbus_iounmap(mp->cregs, PAGE_SIZE);
  954. sbus_iounmap(mp->lregs, (256 * 1024));
  955. sbus_iounmap(mp->lanai, (512 * 1024));
  956. }
  957. free_netdev(net_dev);
  958. dev_set_drvdata(&dev->dev, NULL);
  959. return 0;
  960. }
  961. static struct of_device_id myri_sbus_match[] = {
  962. {
  963. .name = "MYRICOM,mlanai",
  964. },
  965. {
  966. .name = "myri",
  967. },
  968. {},
  969. };
  970. MODULE_DEVICE_TABLE(of, myri_sbus_match);
  971. static struct of_platform_driver myri_sbus_driver = {
  972. .name = "myri",
  973. .match_table = myri_sbus_match,
  974. .probe = myri_sbus_probe,
  975. .remove = __devexit_p(myri_sbus_remove),
  976. };
  977. static int __init myri_sbus_init(void)
  978. {
  979. return of_register_driver(&myri_sbus_driver, &sbus_bus_type);
  980. }
  981. static void __exit myri_sbus_exit(void)
  982. {
  983. of_unregister_driver(&myri_sbus_driver);
  984. }
  985. module_init(myri_sbus_init);
  986. module_exit(myri_sbus_exit);
  987. MODULE_LICENSE("GPL");