mac-fcc.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. /*
  2. * FCC driver for Motorola MPC82xx (PQ2).
  3. *
  4. * Copyright (c) 2003 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * This file is licensed under the terms of the GNU General Public License
  11. * version 2. This program is licensed "as is" without any warranty of any
  12. * kind, whether express or implied.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/kernel.h>
  16. #include <linux/types.h>
  17. #include <linux/sched.h>
  18. #include <linux/string.h>
  19. #include <linux/ptrace.h>
  20. #include <linux/errno.h>
  21. #include <linux/ioport.h>
  22. #include <linux/slab.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/pci.h>
  25. #include <linux/init.h>
  26. #include <linux/delay.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/skbuff.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/mii.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/bitops.h>
  34. #include <linux/fs.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/phy.h>
  37. #include <asm/immap_cpm2.h>
  38. #include <asm/mpc8260.h>
  39. #include <asm/cpm2.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/irq.h>
  42. #include <asm/uaccess.h>
  43. #include "fs_enet.h"
  44. /*************************************************/
  45. /* FCC access macros */
  46. #define __fcc_out32(addr, x) out_be32((unsigned *)addr, x)
  47. #define __fcc_out16(addr, x) out_be16((unsigned short *)addr, x)
  48. #define __fcc_out8(addr, x) out_8((unsigned char *)addr, x)
  49. #define __fcc_in32(addr) in_be32((unsigned *)addr)
  50. #define __fcc_in16(addr) in_be16((unsigned short *)addr)
  51. #define __fcc_in8(addr) in_8((unsigned char *)addr)
  52. /* parameter space */
  53. /* write, read, set bits, clear bits */
  54. #define W32(_p, _m, _v) __fcc_out32(&(_p)->_m, (_v))
  55. #define R32(_p, _m) __fcc_in32(&(_p)->_m)
  56. #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
  57. #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
  58. #define W16(_p, _m, _v) __fcc_out16(&(_p)->_m, (_v))
  59. #define R16(_p, _m) __fcc_in16(&(_p)->_m)
  60. #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
  61. #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
  62. #define W8(_p, _m, _v) __fcc_out8(&(_p)->_m, (_v))
  63. #define R8(_p, _m) __fcc_in8(&(_p)->_m)
  64. #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
  65. #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
  66. /*************************************************/
  67. #define FCC_MAX_MULTICAST_ADDRS 64
  68. #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
  69. #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
  70. #define mk_mii_end 0
  71. #define MAX_CR_CMD_LOOPS 10000
  72. static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 mcn, u32 op)
  73. {
  74. const struct fs_platform_info *fpi = fep->fpi;
  75. cpm2_map_t *immap = fs_enet_immap;
  76. cpm_cpm2_t *cpmp = &immap->im_cpm;
  77. u32 v;
  78. int i;
  79. /* Currently I don't know what feature call will look like. But
  80. I guess there'd be something like do_cpm_cmd() which will require page & sblock */
  81. v = mk_cr_cmd(fpi->cp_page, fpi->cp_block, mcn, op);
  82. W32(cpmp, cp_cpcr, v | CPM_CR_FLG);
  83. for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
  84. if ((R32(cpmp, cp_cpcr) & CPM_CR_FLG) == 0)
  85. break;
  86. if (i >= MAX_CR_CMD_LOOPS) {
  87. printk(KERN_ERR "%s(): Not able to issue CPM command\n",
  88. __FUNCTION__);
  89. return 1;
  90. }
  91. return 0;
  92. }
  93. static int do_pd_setup(struct fs_enet_private *fep)
  94. {
  95. struct platform_device *pdev = to_platform_device(fep->dev);
  96. struct resource *r;
  97. /* Fill out IRQ field */
  98. fep->interrupt = platform_get_irq(pdev, 0);
  99. if (fep->interrupt < 0)
  100. return -EINVAL;
  101. /* Attach the memory for the FCC Parameter RAM */
  102. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_pram");
  103. fep->fcc.ep = (void *)ioremap(r->start, r->end - r->start + 1);
  104. if (fep->fcc.ep == NULL)
  105. return -EINVAL;
  106. r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fcc_regs");
  107. fep->fcc.fccp = (void *)ioremap(r->start, r->end - r->start + 1);
  108. if (fep->fcc.fccp == NULL)
  109. return -EINVAL;
  110. if (fep->fpi->fcc_regs_c) {
  111. fep->fcc.fcccp = (void *)fep->fpi->fcc_regs_c;
  112. } else {
  113. r = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  114. "fcc_regs_c");
  115. fep->fcc.fcccp = (void *)ioremap(r->start,
  116. r->end - r->start + 1);
  117. }
  118. if (fep->fcc.fcccp == NULL)
  119. return -EINVAL;
  120. fep->fcc.mem = (void *)fep->fpi->mem_offset;
  121. if (fep->fcc.mem == NULL)
  122. return -EINVAL;
  123. return 0;
  124. }
  125. #define FCC_NAPI_RX_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB)
  126. #define FCC_RX_EVENT (FCC_ENET_RXF)
  127. #define FCC_TX_EVENT (FCC_ENET_TXB)
  128. #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE | FCC_ENET_BSY)
  129. static int setup_data(struct net_device *dev)
  130. {
  131. struct fs_enet_private *fep = netdev_priv(dev);
  132. const struct fs_platform_info *fpi = fep->fpi;
  133. fep->fcc.idx = fs_get_fcc_index(fpi->fs_no);
  134. if ((unsigned int)fep->fcc.idx >= 3) /* max 3 FCCs */
  135. return -EINVAL;
  136. if (do_pd_setup(fep) != 0)
  137. return -EINVAL;
  138. fep->ev_napi_rx = FCC_NAPI_RX_EVENT_MSK;
  139. fep->ev_rx = FCC_RX_EVENT;
  140. fep->ev_tx = FCC_TX_EVENT;
  141. fep->ev_err = FCC_ERR_EVENT_MSK;
  142. return 0;
  143. }
  144. static int allocate_bd(struct net_device *dev)
  145. {
  146. struct fs_enet_private *fep = netdev_priv(dev);
  147. const struct fs_platform_info *fpi = fep->fpi;
  148. fep->ring_base = dma_alloc_coherent(fep->dev,
  149. (fpi->tx_ring + fpi->rx_ring) *
  150. sizeof(cbd_t), &fep->ring_mem_addr,
  151. GFP_KERNEL);
  152. if (fep->ring_base == NULL)
  153. return -ENOMEM;
  154. return 0;
  155. }
  156. static void free_bd(struct net_device *dev)
  157. {
  158. struct fs_enet_private *fep = netdev_priv(dev);
  159. const struct fs_platform_info *fpi = fep->fpi;
  160. if (fep->ring_base)
  161. dma_free_coherent(fep->dev,
  162. (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
  163. fep->ring_base, fep->ring_mem_addr);
  164. }
  165. static void cleanup_data(struct net_device *dev)
  166. {
  167. /* nothing */
  168. }
  169. static void set_promiscuous_mode(struct net_device *dev)
  170. {
  171. struct fs_enet_private *fep = netdev_priv(dev);
  172. fcc_t *fccp = fep->fcc.fccp;
  173. S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
  174. }
  175. static void set_multicast_start(struct net_device *dev)
  176. {
  177. struct fs_enet_private *fep = netdev_priv(dev);
  178. fcc_enet_t *ep = fep->fcc.ep;
  179. W32(ep, fen_gaddrh, 0);
  180. W32(ep, fen_gaddrl, 0);
  181. }
  182. static void set_multicast_one(struct net_device *dev, const u8 *mac)
  183. {
  184. struct fs_enet_private *fep = netdev_priv(dev);
  185. fcc_enet_t *ep = fep->fcc.ep;
  186. u16 taddrh, taddrm, taddrl;
  187. taddrh = ((u16)mac[5] << 8) | mac[4];
  188. taddrm = ((u16)mac[3] << 8) | mac[2];
  189. taddrl = ((u16)mac[1] << 8) | mac[0];
  190. W16(ep, fen_taddrh, taddrh);
  191. W16(ep, fen_taddrm, taddrm);
  192. W16(ep, fen_taddrl, taddrl);
  193. fcc_cr_cmd(fep, 0x0C, CPM_CR_SET_GADDR);
  194. }
  195. static void set_multicast_finish(struct net_device *dev)
  196. {
  197. struct fs_enet_private *fep = netdev_priv(dev);
  198. fcc_t *fccp = fep->fcc.fccp;
  199. fcc_enet_t *ep = fep->fcc.ep;
  200. /* clear promiscuous always */
  201. C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
  202. /* if all multi or too many multicasts; just enable all */
  203. if ((dev->flags & IFF_ALLMULTI) != 0 ||
  204. dev->mc_count > FCC_MAX_MULTICAST_ADDRS) {
  205. W32(ep, fen_gaddrh, 0xffffffff);
  206. W32(ep, fen_gaddrl, 0xffffffff);
  207. }
  208. /* read back */
  209. fep->fcc.gaddrh = R32(ep, fen_gaddrh);
  210. fep->fcc.gaddrl = R32(ep, fen_gaddrl);
  211. }
  212. static void set_multicast_list(struct net_device *dev)
  213. {
  214. struct dev_mc_list *pmc;
  215. if ((dev->flags & IFF_PROMISC) == 0) {
  216. set_multicast_start(dev);
  217. for (pmc = dev->mc_list; pmc != NULL; pmc = pmc->next)
  218. set_multicast_one(dev, pmc->dmi_addr);
  219. set_multicast_finish(dev);
  220. } else
  221. set_promiscuous_mode(dev);
  222. }
  223. static void restart(struct net_device *dev)
  224. {
  225. struct fs_enet_private *fep = netdev_priv(dev);
  226. const struct fs_platform_info *fpi = fep->fpi;
  227. fcc_t *fccp = fep->fcc.fccp;
  228. fcc_c_t *fcccp = fep->fcc.fcccp;
  229. fcc_enet_t *ep = fep->fcc.ep;
  230. dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
  231. u16 paddrh, paddrm, paddrl;
  232. u16 mem_addr;
  233. const unsigned char *mac;
  234. int i;
  235. C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
  236. /* clear everything (slow & steady does it) */
  237. for (i = 0; i < sizeof(*ep); i++)
  238. __fcc_out8((char *)ep + i, 0);
  239. /* get physical address */
  240. rx_bd_base_phys = fep->ring_mem_addr;
  241. tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
  242. /* point to bds */
  243. W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
  244. W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
  245. /* Set maximum bytes per receive buffer.
  246. * It must be a multiple of 32.
  247. */
  248. W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
  249. W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
  250. W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
  251. /* Allocate space in the reserved FCC area of DPRAM for the
  252. * internal buffers. No one uses this space (yet), so we
  253. * can do this. Later, we will add resource management for
  254. * this area.
  255. */
  256. mem_addr = (u32) fep->fcc.mem; /* de-fixup dpram offset */
  257. W16(ep, fen_genfcc.fcc_riptr, (mem_addr & 0xffff));
  258. W16(ep, fen_genfcc.fcc_tiptr, ((mem_addr + 32) & 0xffff));
  259. W16(ep, fen_padptr, mem_addr + 64);
  260. /* fill with special symbol... */
  261. memset(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
  262. W32(ep, fen_genfcc.fcc_rbptr, 0);
  263. W32(ep, fen_genfcc.fcc_tbptr, 0);
  264. W32(ep, fen_genfcc.fcc_rcrc, 0);
  265. W32(ep, fen_genfcc.fcc_tcrc, 0);
  266. W16(ep, fen_genfcc.fcc_res1, 0);
  267. W32(ep, fen_genfcc.fcc_res2, 0);
  268. /* no CAM */
  269. W32(ep, fen_camptr, 0);
  270. /* Set CRC preset and mask */
  271. W32(ep, fen_cmask, 0xdebb20e3);
  272. W32(ep, fen_cpres, 0xffffffff);
  273. W32(ep, fen_crcec, 0); /* CRC Error counter */
  274. W32(ep, fen_alec, 0); /* alignment error counter */
  275. W32(ep, fen_disfc, 0); /* discard frame counter */
  276. W16(ep, fen_retlim, 15); /* Retry limit threshold */
  277. W16(ep, fen_pper, 0); /* Normal persistence */
  278. /* set group address */
  279. W32(ep, fen_gaddrh, fep->fcc.gaddrh);
  280. W32(ep, fen_gaddrl, fep->fcc.gaddrh);
  281. /* Clear hash filter tables */
  282. W32(ep, fen_iaddrh, 0);
  283. W32(ep, fen_iaddrl, 0);
  284. /* Clear the Out-of-sequence TxBD */
  285. W16(ep, fen_tfcstat, 0);
  286. W16(ep, fen_tfclen, 0);
  287. W32(ep, fen_tfcptr, 0);
  288. W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
  289. W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
  290. /* set address */
  291. mac = dev->dev_addr;
  292. paddrh = ((u16)mac[5] << 8) | mac[4];
  293. paddrm = ((u16)mac[3] << 8) | mac[2];
  294. paddrl = ((u16)mac[1] << 8) | mac[0];
  295. W16(ep, fen_paddrh, paddrh);
  296. W16(ep, fen_paddrm, paddrm);
  297. W16(ep, fen_paddrl, paddrl);
  298. W16(ep, fen_taddrh, 0);
  299. W16(ep, fen_taddrm, 0);
  300. W16(ep, fen_taddrl, 0);
  301. W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
  302. W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
  303. /* Clear stat counters, in case we ever enable RMON */
  304. W32(ep, fen_octc, 0);
  305. W32(ep, fen_colc, 0);
  306. W32(ep, fen_broc, 0);
  307. W32(ep, fen_mulc, 0);
  308. W32(ep, fen_uspc, 0);
  309. W32(ep, fen_frgc, 0);
  310. W32(ep, fen_ospc, 0);
  311. W32(ep, fen_jbrc, 0);
  312. W32(ep, fen_p64c, 0);
  313. W32(ep, fen_p65c, 0);
  314. W32(ep, fen_p128c, 0);
  315. W32(ep, fen_p256c, 0);
  316. W32(ep, fen_p512c, 0);
  317. W32(ep, fen_p1024c, 0);
  318. W16(ep, fen_rfthr, 0); /* Suggested by manual */
  319. W16(ep, fen_rfcnt, 0);
  320. W16(ep, fen_cftype, 0);
  321. fs_init_bds(dev);
  322. /* adjust to speed (for RMII mode) */
  323. if (fpi->use_rmii) {
  324. if (fep->phydev->speed == 100)
  325. C8(fcccp, fcc_gfemr, 0x20);
  326. else
  327. S8(fcccp, fcc_gfemr, 0x20);
  328. }
  329. fcc_cr_cmd(fep, 0x0c, CPM_CR_INIT_TRX);
  330. /* clear events */
  331. W16(fccp, fcc_fcce, 0xffff);
  332. /* Enable interrupts we wish to service */
  333. W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
  334. /* Set GFMR to enable Ethernet operating mode */
  335. W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
  336. /* set sync/delimiters */
  337. W16(fccp, fcc_fdsr, 0xd555);
  338. W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
  339. if (fpi->use_rmii)
  340. S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
  341. /* adjust to duplex mode */
  342. if (fep->phydev->duplex)
  343. S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
  344. else
  345. C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
  346. S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
  347. }
  348. static void stop(struct net_device *dev)
  349. {
  350. struct fs_enet_private *fep = netdev_priv(dev);
  351. fcc_t *fccp = fep->fcc.fccp;
  352. /* stop ethernet */
  353. C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
  354. /* clear events */
  355. W16(fccp, fcc_fcce, 0xffff);
  356. /* clear interrupt mask */
  357. W16(fccp, fcc_fccm, 0);
  358. fs_cleanup_bds(dev);
  359. }
  360. static void pre_request_irq(struct net_device *dev, int irq)
  361. {
  362. /* nothing */
  363. }
  364. static void post_free_irq(struct net_device *dev, int irq)
  365. {
  366. /* nothing */
  367. }
  368. static void napi_clear_rx_event(struct net_device *dev)
  369. {
  370. struct fs_enet_private *fep = netdev_priv(dev);
  371. fcc_t *fccp = fep->fcc.fccp;
  372. W16(fccp, fcc_fcce, FCC_NAPI_RX_EVENT_MSK);
  373. }
  374. static void napi_enable_rx(struct net_device *dev)
  375. {
  376. struct fs_enet_private *fep = netdev_priv(dev);
  377. fcc_t *fccp = fep->fcc.fccp;
  378. S16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
  379. }
  380. static void napi_disable_rx(struct net_device *dev)
  381. {
  382. struct fs_enet_private *fep = netdev_priv(dev);
  383. fcc_t *fccp = fep->fcc.fccp;
  384. C16(fccp, fcc_fccm, FCC_NAPI_RX_EVENT_MSK);
  385. }
  386. static void rx_bd_done(struct net_device *dev)
  387. {
  388. /* nothing */
  389. }
  390. static void tx_kickstart(struct net_device *dev)
  391. {
  392. struct fs_enet_private *fep = netdev_priv(dev);
  393. fcc_t *fccp = fep->fcc.fccp;
  394. S32(fccp, fcc_ftodr, 0x80);
  395. }
  396. static u32 get_int_events(struct net_device *dev)
  397. {
  398. struct fs_enet_private *fep = netdev_priv(dev);
  399. fcc_t *fccp = fep->fcc.fccp;
  400. return (u32)R16(fccp, fcc_fcce);
  401. }
  402. static void clear_int_events(struct net_device *dev, u32 int_events)
  403. {
  404. struct fs_enet_private *fep = netdev_priv(dev);
  405. fcc_t *fccp = fep->fcc.fccp;
  406. W16(fccp, fcc_fcce, int_events & 0xffff);
  407. }
  408. static void ev_error(struct net_device *dev, u32 int_events)
  409. {
  410. printk(KERN_WARNING DRV_MODULE_NAME
  411. ": %s FS_ENET ERROR(s) 0x%x\n", dev->name, int_events);
  412. }
  413. int get_regs(struct net_device *dev, void *p, int *sizep)
  414. {
  415. struct fs_enet_private *fep = netdev_priv(dev);
  416. if (*sizep < sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t))
  417. return -EINVAL;
  418. memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
  419. p = (char *)p + sizeof(fcc_t);
  420. memcpy_fromio(p, fep->fcc.fcccp, sizeof(fcc_c_t));
  421. p = (char *)p + sizeof(fcc_c_t);
  422. memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
  423. return 0;
  424. }
  425. int get_regs_len(struct net_device *dev)
  426. {
  427. return sizeof(fcc_t) + sizeof(fcc_c_t) + sizeof(fcc_enet_t);
  428. }
  429. /* Some transmit errors cause the transmitter to shut
  430. * down. We now issue a restart transmit. Since the
  431. * errors close the BD and update the pointers, the restart
  432. * _should_ pick up without having to reset any of our
  433. * pointers either. Also, To workaround 8260 device erratum
  434. * CPM37, we must disable and then re-enable the transmitter
  435. * following a Late Collision, Underrun, or Retry Limit error.
  436. */
  437. void tx_restart(struct net_device *dev)
  438. {
  439. struct fs_enet_private *fep = netdev_priv(dev);
  440. fcc_t *fccp = fep->fcc.fccp;
  441. C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
  442. udelay(10);
  443. S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
  444. fcc_cr_cmd(fep, 0x0C, CPM_CR_RESTART_TX);
  445. }
  446. /*************************************************************************/
  447. const struct fs_ops fs_fcc_ops = {
  448. .setup_data = setup_data,
  449. .cleanup_data = cleanup_data,
  450. .set_multicast_list = set_multicast_list,
  451. .restart = restart,
  452. .stop = stop,
  453. .pre_request_irq = pre_request_irq,
  454. .post_free_irq = post_free_irq,
  455. .napi_clear_rx_event = napi_clear_rx_event,
  456. .napi_enable_rx = napi_enable_rx,
  457. .napi_disable_rx = napi_disable_rx,
  458. .rx_bd_done = rx_bd_done,
  459. .tx_kickstart = tx_kickstart,
  460. .get_int_events = get_int_events,
  461. .clear_int_events = clear_int_events,
  462. .ev_error = ev_error,
  463. .get_regs = get_regs,
  464. .get_regs_len = get_regs_len,
  465. .tx_restart = tx_restart,
  466. .allocate_bd = allocate_bd,
  467. .free_bd = free_bd,
  468. };