forcedeth.c 140 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey. It's neither supported nor endorsed
  7. * by NVIDIA Corp. Use at your own risk.
  8. *
  9. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  10. * trademarks of NVIDIA Corporation in the United States and other
  11. * countries.
  12. *
  13. * Copyright (C) 2003,4,5 Manfred Spraul
  14. * Copyright (C) 2004 Andrew de Quincey (wol support)
  15. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  16. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  17. * Copyright (c) 2004 NVIDIA Corporation
  18. *
  19. * This program is free software; you can redistribute it and/or modify
  20. * it under the terms of the GNU General Public License as published by
  21. * the Free Software Foundation; either version 2 of the License, or
  22. * (at your option) any later version.
  23. *
  24. * This program is distributed in the hope that it will be useful,
  25. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  26. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  27. * GNU General Public License for more details.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * along with this program; if not, write to the Free Software
  31. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  32. *
  33. * Changelog:
  34. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  35. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  36. * Check all PCI BARs for the register window.
  37. * udelay added to mii_rw.
  38. * 0.03: 06 Oct 2003: Initialize dev->irq.
  39. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  40. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  41. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  42. * irq mask updated
  43. * 0.07: 14 Oct 2003: Further irq mask updates.
  44. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  45. * added into irq handler, NULL check for drain_ring.
  46. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  47. * requested interrupt sources.
  48. * 0.10: 20 Oct 2003: First cleanup for release.
  49. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  50. * MAC Address init fix, set_multicast cleanup.
  51. * 0.12: 23 Oct 2003: Cleanups for release.
  52. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  53. * Set link speed correctly. start rx before starting
  54. * tx (nv_start_rx sets the link speed).
  55. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  56. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  57. * open.
  58. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  59. * increased to 1628 bytes.
  60. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  61. * the tx length.
  62. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  63. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  64. * addresses, really stop rx if already running
  65. * in nv_start_rx, clean up a bit.
  66. * 0.20: 07 Dec 2003: alloc fixes
  67. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  68. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  69. * on close.
  70. * 0.23: 26 Jan 2004: various small cleanups
  71. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  72. * 0.25: 09 Mar 2004: wol support
  73. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  74. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  75. * added CK804/MCP04 device IDs, code fixes
  76. * for registers, link status and other minor fixes.
  77. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  78. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  79. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  80. * into nv_close, otherwise reenabling for wol can
  81. * cause DMA to kfree'd memory.
  82. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  83. * capabilities.
  84. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  85. * 0.33: 16 May 2005: Support for MCP51 added.
  86. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  87. * 0.35: 26 Jun 2005: Support for MCP55 added.
  88. * 0.36: 28 Jun 2005: Add jumbo frame support.
  89. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  90. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  91. * per-packet flags.
  92. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  93. * 0.40: 19 Jul 2005: Add support for mac address change.
  94. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  95. * of nv_remove
  96. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  97. * in the second (and later) nv_open call
  98. * 0.43: 10 Aug 2005: Add support for tx checksum.
  99. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  100. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  101. * 0.46: 20 Oct 2005: Add irq optimization modes.
  102. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  103. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  104. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  105. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  106. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  107. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  108. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  109. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  110. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  111. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  112. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  113. *
  114. * Known bugs:
  115. * We suspect that on some hardware no TX done interrupts are generated.
  116. * This means recovery from netif_stop_queue only happens if the hw timer
  117. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  118. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  119. * If your hardware reliably generates tx done interrupts, then you can remove
  120. * DEV_NEED_TIMERIRQ from the driver_data flags.
  121. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  122. * superfluous timer interrupts from the nic.
  123. */
  124. #ifdef CONFIG_FORCEDETH_NAPI
  125. #define DRIVERNAPI "-NAPI"
  126. #else
  127. #define DRIVERNAPI
  128. #endif
  129. #define FORCEDETH_VERSION "0.57"
  130. #define DRV_NAME "forcedeth"
  131. #include <linux/module.h>
  132. #include <linux/types.h>
  133. #include <linux/pci.h>
  134. #include <linux/interrupt.h>
  135. #include <linux/netdevice.h>
  136. #include <linux/etherdevice.h>
  137. #include <linux/delay.h>
  138. #include <linux/spinlock.h>
  139. #include <linux/ethtool.h>
  140. #include <linux/timer.h>
  141. #include <linux/skbuff.h>
  142. #include <linux/mii.h>
  143. #include <linux/random.h>
  144. #include <linux/init.h>
  145. #include <linux/if_vlan.h>
  146. #include <linux/dma-mapping.h>
  147. #include <asm/irq.h>
  148. #include <asm/io.h>
  149. #include <asm/uaccess.h>
  150. #include <asm/system.h>
  151. #if 0
  152. #define dprintk printk
  153. #else
  154. #define dprintk(x...) do { } while (0)
  155. #endif
  156. /*
  157. * Hardware access:
  158. */
  159. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  160. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  161. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  162. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  163. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  164. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  165. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  166. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  167. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  168. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  169. #define DEV_HAS_STATISTICS 0x0400 /* device supports hw statistics */
  170. #define DEV_HAS_TEST_EXTENDED 0x0800 /* device supports extended diagnostic test */
  171. enum {
  172. NvRegIrqStatus = 0x000,
  173. #define NVREG_IRQSTAT_MIIEVENT 0x040
  174. #define NVREG_IRQSTAT_MASK 0x1ff
  175. NvRegIrqMask = 0x004,
  176. #define NVREG_IRQ_RX_ERROR 0x0001
  177. #define NVREG_IRQ_RX 0x0002
  178. #define NVREG_IRQ_RX_NOBUF 0x0004
  179. #define NVREG_IRQ_TX_ERR 0x0008
  180. #define NVREG_IRQ_TX_OK 0x0010
  181. #define NVREG_IRQ_TIMER 0x0020
  182. #define NVREG_IRQ_LINK 0x0040
  183. #define NVREG_IRQ_RX_FORCED 0x0080
  184. #define NVREG_IRQ_TX_FORCED 0x0100
  185. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  186. #define NVREG_IRQMASK_CPU 0x0040
  187. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  188. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  189. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK)
  190. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  191. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  192. NVREG_IRQ_TX_FORCED))
  193. NvRegUnknownSetupReg6 = 0x008,
  194. #define NVREG_UNKSETUP6_VAL 3
  195. /*
  196. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  197. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  198. */
  199. NvRegPollingInterval = 0x00c,
  200. #define NVREG_POLL_DEFAULT_THROUGHPUT 970
  201. #define NVREG_POLL_DEFAULT_CPU 13
  202. NvRegMSIMap0 = 0x020,
  203. NvRegMSIMap1 = 0x024,
  204. NvRegMSIIrqMask = 0x030,
  205. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  206. NvRegMisc1 = 0x080,
  207. #define NVREG_MISC1_PAUSE_TX 0x01
  208. #define NVREG_MISC1_HD 0x02
  209. #define NVREG_MISC1_FORCE 0x3b0f3c
  210. NvRegMacReset = 0x3c,
  211. #define NVREG_MAC_RESET_ASSERT 0x0F3
  212. NvRegTransmitterControl = 0x084,
  213. #define NVREG_XMITCTL_START 0x01
  214. NvRegTransmitterStatus = 0x088,
  215. #define NVREG_XMITSTAT_BUSY 0x01
  216. NvRegPacketFilterFlags = 0x8c,
  217. #define NVREG_PFF_PAUSE_RX 0x08
  218. #define NVREG_PFF_ALWAYS 0x7F0000
  219. #define NVREG_PFF_PROMISC 0x80
  220. #define NVREG_PFF_MYADDR 0x20
  221. #define NVREG_PFF_LOOPBACK 0x10
  222. NvRegOffloadConfig = 0x90,
  223. #define NVREG_OFFLOAD_HOMEPHY 0x601
  224. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  225. NvRegReceiverControl = 0x094,
  226. #define NVREG_RCVCTL_START 0x01
  227. NvRegReceiverStatus = 0x98,
  228. #define NVREG_RCVSTAT_BUSY 0x01
  229. NvRegRandomSeed = 0x9c,
  230. #define NVREG_RNDSEED_MASK 0x00ff
  231. #define NVREG_RNDSEED_FORCE 0x7f00
  232. #define NVREG_RNDSEED_FORCE2 0x2d00
  233. #define NVREG_RNDSEED_FORCE3 0x7400
  234. NvRegTxDeferral = 0xA0,
  235. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  236. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  237. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  238. NvRegRxDeferral = 0xA4,
  239. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  240. NvRegMacAddrA = 0xA8,
  241. NvRegMacAddrB = 0xAC,
  242. NvRegMulticastAddrA = 0xB0,
  243. #define NVREG_MCASTADDRA_FORCE 0x01
  244. NvRegMulticastAddrB = 0xB4,
  245. NvRegMulticastMaskA = 0xB8,
  246. NvRegMulticastMaskB = 0xBC,
  247. NvRegPhyInterface = 0xC0,
  248. #define PHY_RGMII 0x10000000
  249. NvRegTxRingPhysAddr = 0x100,
  250. NvRegRxRingPhysAddr = 0x104,
  251. NvRegRingSizes = 0x108,
  252. #define NVREG_RINGSZ_TXSHIFT 0
  253. #define NVREG_RINGSZ_RXSHIFT 16
  254. NvRegTransmitPoll = 0x10c,
  255. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  256. NvRegLinkSpeed = 0x110,
  257. #define NVREG_LINKSPEED_FORCE 0x10000
  258. #define NVREG_LINKSPEED_10 1000
  259. #define NVREG_LINKSPEED_100 100
  260. #define NVREG_LINKSPEED_1000 50
  261. #define NVREG_LINKSPEED_MASK (0xFFF)
  262. NvRegUnknownSetupReg5 = 0x130,
  263. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  264. NvRegTxWatermark = 0x13c,
  265. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  266. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  267. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  268. NvRegTxRxControl = 0x144,
  269. #define NVREG_TXRXCTL_KICK 0x0001
  270. #define NVREG_TXRXCTL_BIT1 0x0002
  271. #define NVREG_TXRXCTL_BIT2 0x0004
  272. #define NVREG_TXRXCTL_IDLE 0x0008
  273. #define NVREG_TXRXCTL_RESET 0x0010
  274. #define NVREG_TXRXCTL_RXCHECK 0x0400
  275. #define NVREG_TXRXCTL_DESC_1 0
  276. #define NVREG_TXRXCTL_DESC_2 0x02100
  277. #define NVREG_TXRXCTL_DESC_3 0x02200
  278. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  279. #define NVREG_TXRXCTL_VLANINS 0x00080
  280. NvRegTxRingPhysAddrHigh = 0x148,
  281. NvRegRxRingPhysAddrHigh = 0x14C,
  282. NvRegTxPauseFrame = 0x170,
  283. #define NVREG_TX_PAUSEFRAME_DISABLE 0x1ff0080
  284. #define NVREG_TX_PAUSEFRAME_ENABLE 0x0c00030
  285. NvRegMIIStatus = 0x180,
  286. #define NVREG_MIISTAT_ERROR 0x0001
  287. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  288. #define NVREG_MIISTAT_MASK 0x000f
  289. #define NVREG_MIISTAT_MASK2 0x000f
  290. NvRegUnknownSetupReg4 = 0x184,
  291. #define NVREG_UNKSETUP4_VAL 8
  292. NvRegAdapterControl = 0x188,
  293. #define NVREG_ADAPTCTL_START 0x02
  294. #define NVREG_ADAPTCTL_LINKUP 0x04
  295. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  296. #define NVREG_ADAPTCTL_RUNNING 0x100000
  297. #define NVREG_ADAPTCTL_PHYSHIFT 24
  298. NvRegMIISpeed = 0x18c,
  299. #define NVREG_MIISPEED_BIT8 (1<<8)
  300. #define NVREG_MIIDELAY 5
  301. NvRegMIIControl = 0x190,
  302. #define NVREG_MIICTL_INUSE 0x08000
  303. #define NVREG_MIICTL_WRITE 0x00400
  304. #define NVREG_MIICTL_ADDRSHIFT 5
  305. NvRegMIIData = 0x194,
  306. NvRegWakeUpFlags = 0x200,
  307. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  308. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  309. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  310. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  311. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  312. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  313. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  314. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  315. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  316. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  317. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  318. NvRegPatternCRC = 0x204,
  319. NvRegPatternMask = 0x208,
  320. NvRegPowerCap = 0x268,
  321. #define NVREG_POWERCAP_D3SUPP (1<<30)
  322. #define NVREG_POWERCAP_D2SUPP (1<<26)
  323. #define NVREG_POWERCAP_D1SUPP (1<<25)
  324. NvRegPowerState = 0x26c,
  325. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  326. #define NVREG_POWERSTATE_VALID 0x0100
  327. #define NVREG_POWERSTATE_MASK 0x0003
  328. #define NVREG_POWERSTATE_D0 0x0000
  329. #define NVREG_POWERSTATE_D1 0x0001
  330. #define NVREG_POWERSTATE_D2 0x0002
  331. #define NVREG_POWERSTATE_D3 0x0003
  332. NvRegTxCnt = 0x280,
  333. NvRegTxZeroReXmt = 0x284,
  334. NvRegTxOneReXmt = 0x288,
  335. NvRegTxManyReXmt = 0x28c,
  336. NvRegTxLateCol = 0x290,
  337. NvRegTxUnderflow = 0x294,
  338. NvRegTxLossCarrier = 0x298,
  339. NvRegTxExcessDef = 0x29c,
  340. NvRegTxRetryErr = 0x2a0,
  341. NvRegRxFrameErr = 0x2a4,
  342. NvRegRxExtraByte = 0x2a8,
  343. NvRegRxLateCol = 0x2ac,
  344. NvRegRxRunt = 0x2b0,
  345. NvRegRxFrameTooLong = 0x2b4,
  346. NvRegRxOverflow = 0x2b8,
  347. NvRegRxFCSErr = 0x2bc,
  348. NvRegRxFrameAlignErr = 0x2c0,
  349. NvRegRxLenErr = 0x2c4,
  350. NvRegRxUnicast = 0x2c8,
  351. NvRegRxMulticast = 0x2cc,
  352. NvRegRxBroadcast = 0x2d0,
  353. NvRegTxDef = 0x2d4,
  354. NvRegTxFrame = 0x2d8,
  355. NvRegRxCnt = 0x2dc,
  356. NvRegTxPause = 0x2e0,
  357. NvRegRxPause = 0x2e4,
  358. NvRegRxDropFrame = 0x2e8,
  359. NvRegVlanControl = 0x300,
  360. #define NVREG_VLANCONTROL_ENABLE 0x2000
  361. NvRegMSIXMap0 = 0x3e0,
  362. NvRegMSIXMap1 = 0x3e4,
  363. NvRegMSIXIrqStatus = 0x3f0,
  364. NvRegPowerState2 = 0x600,
  365. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  366. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  367. };
  368. /* Big endian: should work, but is untested */
  369. struct ring_desc {
  370. __le32 buf;
  371. __le32 flaglen;
  372. };
  373. struct ring_desc_ex {
  374. __le32 bufhigh;
  375. __le32 buflow;
  376. __le32 txvlan;
  377. __le32 flaglen;
  378. };
  379. union ring_type {
  380. struct ring_desc* orig;
  381. struct ring_desc_ex* ex;
  382. };
  383. #define FLAG_MASK_V1 0xffff0000
  384. #define FLAG_MASK_V2 0xffffc000
  385. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  386. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  387. #define NV_TX_LASTPACKET (1<<16)
  388. #define NV_TX_RETRYERROR (1<<19)
  389. #define NV_TX_FORCED_INTERRUPT (1<<24)
  390. #define NV_TX_DEFERRED (1<<26)
  391. #define NV_TX_CARRIERLOST (1<<27)
  392. #define NV_TX_LATECOLLISION (1<<28)
  393. #define NV_TX_UNDERFLOW (1<<29)
  394. #define NV_TX_ERROR (1<<30)
  395. #define NV_TX_VALID (1<<31)
  396. #define NV_TX2_LASTPACKET (1<<29)
  397. #define NV_TX2_RETRYERROR (1<<18)
  398. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  399. #define NV_TX2_DEFERRED (1<<25)
  400. #define NV_TX2_CARRIERLOST (1<<26)
  401. #define NV_TX2_LATECOLLISION (1<<27)
  402. #define NV_TX2_UNDERFLOW (1<<28)
  403. /* error and valid are the same for both */
  404. #define NV_TX2_ERROR (1<<30)
  405. #define NV_TX2_VALID (1<<31)
  406. #define NV_TX2_TSO (1<<28)
  407. #define NV_TX2_TSO_SHIFT 14
  408. #define NV_TX2_TSO_MAX_SHIFT 14
  409. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  410. #define NV_TX2_CHECKSUM_L3 (1<<27)
  411. #define NV_TX2_CHECKSUM_L4 (1<<26)
  412. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  413. #define NV_RX_DESCRIPTORVALID (1<<16)
  414. #define NV_RX_MISSEDFRAME (1<<17)
  415. #define NV_RX_SUBSTRACT1 (1<<18)
  416. #define NV_RX_ERROR1 (1<<23)
  417. #define NV_RX_ERROR2 (1<<24)
  418. #define NV_RX_ERROR3 (1<<25)
  419. #define NV_RX_ERROR4 (1<<26)
  420. #define NV_RX_CRCERR (1<<27)
  421. #define NV_RX_OVERFLOW (1<<28)
  422. #define NV_RX_FRAMINGERR (1<<29)
  423. #define NV_RX_ERROR (1<<30)
  424. #define NV_RX_AVAIL (1<<31)
  425. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  426. #define NV_RX2_CHECKSUMOK1 (0x10000000)
  427. #define NV_RX2_CHECKSUMOK2 (0x14000000)
  428. #define NV_RX2_CHECKSUMOK3 (0x18000000)
  429. #define NV_RX2_DESCRIPTORVALID (1<<29)
  430. #define NV_RX2_SUBSTRACT1 (1<<25)
  431. #define NV_RX2_ERROR1 (1<<18)
  432. #define NV_RX2_ERROR2 (1<<19)
  433. #define NV_RX2_ERROR3 (1<<20)
  434. #define NV_RX2_ERROR4 (1<<21)
  435. #define NV_RX2_CRCERR (1<<22)
  436. #define NV_RX2_OVERFLOW (1<<23)
  437. #define NV_RX2_FRAMINGERR (1<<24)
  438. /* error and avail are the same for both */
  439. #define NV_RX2_ERROR (1<<30)
  440. #define NV_RX2_AVAIL (1<<31)
  441. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  442. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  443. /* Miscelaneous hardware related defines: */
  444. #define NV_PCI_REGSZ_VER1 0x270
  445. #define NV_PCI_REGSZ_VER2 0x604
  446. /* various timeout delays: all in usec */
  447. #define NV_TXRX_RESET_DELAY 4
  448. #define NV_TXSTOP_DELAY1 10
  449. #define NV_TXSTOP_DELAY1MAX 500000
  450. #define NV_TXSTOP_DELAY2 100
  451. #define NV_RXSTOP_DELAY1 10
  452. #define NV_RXSTOP_DELAY1MAX 500000
  453. #define NV_RXSTOP_DELAY2 100
  454. #define NV_SETUP5_DELAY 5
  455. #define NV_SETUP5_DELAYMAX 50000
  456. #define NV_POWERUP_DELAY 5
  457. #define NV_POWERUP_DELAYMAX 5000
  458. #define NV_MIIBUSY_DELAY 50
  459. #define NV_MIIPHY_DELAY 10
  460. #define NV_MIIPHY_DELAYMAX 10000
  461. #define NV_MAC_RESET_DELAY 64
  462. #define NV_WAKEUPPATTERNS 5
  463. #define NV_WAKEUPMASKENTRIES 4
  464. /* General driver defaults */
  465. #define NV_WATCHDOG_TIMEO (5*HZ)
  466. #define RX_RING_DEFAULT 128
  467. #define TX_RING_DEFAULT 256
  468. #define RX_RING_MIN 128
  469. #define TX_RING_MIN 64
  470. #define RING_MAX_DESC_VER_1 1024
  471. #define RING_MAX_DESC_VER_2_3 16384
  472. /*
  473. * Difference between the get and put pointers for the tx ring.
  474. * This is used to throttle the amount of data outstanding in the
  475. * tx ring.
  476. */
  477. #define TX_LIMIT_DIFFERENCE 1
  478. /* rx/tx mac addr + type + vlan + align + slack*/
  479. #define NV_RX_HEADERS (64)
  480. /* even more slack. */
  481. #define NV_RX_ALLOC_PAD (64)
  482. /* maximum mtu size */
  483. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  484. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  485. #define OOM_REFILL (1+HZ/20)
  486. #define POLL_WAIT (1+HZ/100)
  487. #define LINK_TIMEOUT (3*HZ)
  488. #define STATS_INTERVAL (10*HZ)
  489. /*
  490. * desc_ver values:
  491. * The nic supports three different descriptor types:
  492. * - DESC_VER_1: Original
  493. * - DESC_VER_2: support for jumbo frames.
  494. * - DESC_VER_3: 64-bit format.
  495. */
  496. #define DESC_VER_1 1
  497. #define DESC_VER_2 2
  498. #define DESC_VER_3 3
  499. /* PHY defines */
  500. #define PHY_OUI_MARVELL 0x5043
  501. #define PHY_OUI_CICADA 0x03f1
  502. #define PHYID1_OUI_MASK 0x03ff
  503. #define PHYID1_OUI_SHFT 6
  504. #define PHYID2_OUI_MASK 0xfc00
  505. #define PHYID2_OUI_SHFT 10
  506. #define PHYID2_MODEL_MASK 0x03f0
  507. #define PHY_MODEL_MARVELL_E3016 0x220
  508. #define PHY_MARVELL_E3016_INITMASK 0x0300
  509. #define PHY_INIT1 0x0f000
  510. #define PHY_INIT2 0x0e00
  511. #define PHY_INIT3 0x01000
  512. #define PHY_INIT4 0x0200
  513. #define PHY_INIT5 0x0004
  514. #define PHY_INIT6 0x02000
  515. #define PHY_GIGABIT 0x0100
  516. #define PHY_TIMEOUT 0x1
  517. #define PHY_ERROR 0x2
  518. #define PHY_100 0x1
  519. #define PHY_1000 0x2
  520. #define PHY_HALF 0x100
  521. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  522. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  523. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  524. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  525. #define NV_PAUSEFRAME_RX_REQ 0x0010
  526. #define NV_PAUSEFRAME_TX_REQ 0x0020
  527. #define NV_PAUSEFRAME_AUTONEG 0x0040
  528. /* MSI/MSI-X defines */
  529. #define NV_MSI_X_MAX_VECTORS 8
  530. #define NV_MSI_X_VECTORS_MASK 0x000f
  531. #define NV_MSI_CAPABLE 0x0010
  532. #define NV_MSI_X_CAPABLE 0x0020
  533. #define NV_MSI_ENABLED 0x0040
  534. #define NV_MSI_X_ENABLED 0x0080
  535. #define NV_MSI_X_VECTOR_ALL 0x0
  536. #define NV_MSI_X_VECTOR_RX 0x0
  537. #define NV_MSI_X_VECTOR_TX 0x1
  538. #define NV_MSI_X_VECTOR_OTHER 0x2
  539. /* statistics */
  540. struct nv_ethtool_str {
  541. char name[ETH_GSTRING_LEN];
  542. };
  543. static const struct nv_ethtool_str nv_estats_str[] = {
  544. { "tx_bytes" },
  545. { "tx_zero_rexmt" },
  546. { "tx_one_rexmt" },
  547. { "tx_many_rexmt" },
  548. { "tx_late_collision" },
  549. { "tx_fifo_errors" },
  550. { "tx_carrier_errors" },
  551. { "tx_excess_deferral" },
  552. { "tx_retry_error" },
  553. { "tx_deferral" },
  554. { "tx_packets" },
  555. { "tx_pause" },
  556. { "rx_frame_error" },
  557. { "rx_extra_byte" },
  558. { "rx_late_collision" },
  559. { "rx_runt" },
  560. { "rx_frame_too_long" },
  561. { "rx_over_errors" },
  562. { "rx_crc_errors" },
  563. { "rx_frame_align_error" },
  564. { "rx_length_error" },
  565. { "rx_unicast" },
  566. { "rx_multicast" },
  567. { "rx_broadcast" },
  568. { "rx_bytes" },
  569. { "rx_pause" },
  570. { "rx_drop_frame" },
  571. { "rx_packets" },
  572. { "rx_errors_total" }
  573. };
  574. struct nv_ethtool_stats {
  575. u64 tx_bytes;
  576. u64 tx_zero_rexmt;
  577. u64 tx_one_rexmt;
  578. u64 tx_many_rexmt;
  579. u64 tx_late_collision;
  580. u64 tx_fifo_errors;
  581. u64 tx_carrier_errors;
  582. u64 tx_excess_deferral;
  583. u64 tx_retry_error;
  584. u64 tx_deferral;
  585. u64 tx_packets;
  586. u64 tx_pause;
  587. u64 rx_frame_error;
  588. u64 rx_extra_byte;
  589. u64 rx_late_collision;
  590. u64 rx_runt;
  591. u64 rx_frame_too_long;
  592. u64 rx_over_errors;
  593. u64 rx_crc_errors;
  594. u64 rx_frame_align_error;
  595. u64 rx_length_error;
  596. u64 rx_unicast;
  597. u64 rx_multicast;
  598. u64 rx_broadcast;
  599. u64 rx_bytes;
  600. u64 rx_pause;
  601. u64 rx_drop_frame;
  602. u64 rx_packets;
  603. u64 rx_errors_total;
  604. };
  605. /* diagnostics */
  606. #define NV_TEST_COUNT_BASE 3
  607. #define NV_TEST_COUNT_EXTENDED 4
  608. static const struct nv_ethtool_str nv_etests_str[] = {
  609. { "link (online/offline)" },
  610. { "register (offline) " },
  611. { "interrupt (offline) " },
  612. { "loopback (offline) " }
  613. };
  614. struct register_test {
  615. __le32 reg;
  616. __le32 mask;
  617. };
  618. static const struct register_test nv_registers_test[] = {
  619. { NvRegUnknownSetupReg6, 0x01 },
  620. { NvRegMisc1, 0x03c },
  621. { NvRegOffloadConfig, 0x03ff },
  622. { NvRegMulticastAddrA, 0xffffffff },
  623. { NvRegTxWatermark, 0x0ff },
  624. { NvRegWakeUpFlags, 0x07777 },
  625. { 0,0 }
  626. };
  627. /*
  628. * SMP locking:
  629. * All hardware access under dev->priv->lock, except the performance
  630. * critical parts:
  631. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  632. * by the arch code for interrupts.
  633. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  634. * needs dev->priv->lock :-(
  635. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  636. */
  637. /* in dev: base, irq */
  638. struct fe_priv {
  639. spinlock_t lock;
  640. /* General data:
  641. * Locking: spin_lock(&np->lock); */
  642. struct net_device_stats stats;
  643. struct nv_ethtool_stats estats;
  644. int in_shutdown;
  645. u32 linkspeed;
  646. int duplex;
  647. int autoneg;
  648. int fixed_mode;
  649. int phyaddr;
  650. int wolenabled;
  651. unsigned int phy_oui;
  652. unsigned int phy_model;
  653. u16 gigabit;
  654. int intr_test;
  655. /* General data: RO fields */
  656. dma_addr_t ring_addr;
  657. struct pci_dev *pci_dev;
  658. u32 orig_mac[2];
  659. u32 irqmask;
  660. u32 desc_ver;
  661. u32 txrxctl_bits;
  662. u32 vlanctl_bits;
  663. u32 driver_data;
  664. u32 register_size;
  665. int rx_csum;
  666. void __iomem *base;
  667. /* rx specific fields.
  668. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  669. */
  670. union ring_type rx_ring;
  671. unsigned int cur_rx, refill_rx;
  672. struct sk_buff **rx_skbuff;
  673. dma_addr_t *rx_dma;
  674. unsigned int rx_buf_sz;
  675. unsigned int pkt_limit;
  676. struct timer_list oom_kick;
  677. struct timer_list nic_poll;
  678. struct timer_list stats_poll;
  679. u32 nic_poll_irq;
  680. int rx_ring_size;
  681. /* media detection workaround.
  682. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  683. */
  684. int need_linktimer;
  685. unsigned long link_timeout;
  686. /*
  687. * tx specific fields.
  688. */
  689. union ring_type tx_ring;
  690. unsigned int next_tx, nic_tx;
  691. struct sk_buff **tx_skbuff;
  692. dma_addr_t *tx_dma;
  693. unsigned int *tx_dma_len;
  694. u32 tx_flags;
  695. int tx_ring_size;
  696. int tx_limit_start;
  697. int tx_limit_stop;
  698. /* vlan fields */
  699. struct vlan_group *vlangrp;
  700. /* msi/msi-x fields */
  701. u32 msi_flags;
  702. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  703. /* flow control */
  704. u32 pause_flags;
  705. };
  706. /*
  707. * Maximum number of loops until we assume that a bit in the irq mask
  708. * is stuck. Overridable with module param.
  709. */
  710. static int max_interrupt_work = 5;
  711. /*
  712. * Optimization can be either throuput mode or cpu mode
  713. *
  714. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  715. * CPU Mode: Interrupts are controlled by a timer.
  716. */
  717. enum {
  718. NV_OPTIMIZATION_MODE_THROUGHPUT,
  719. NV_OPTIMIZATION_MODE_CPU
  720. };
  721. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  722. /*
  723. * Poll interval for timer irq
  724. *
  725. * This interval determines how frequent an interrupt is generated.
  726. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  727. * Min = 0, and Max = 65535
  728. */
  729. static int poll_interval = -1;
  730. /*
  731. * MSI interrupts
  732. */
  733. enum {
  734. NV_MSI_INT_DISABLED,
  735. NV_MSI_INT_ENABLED
  736. };
  737. static int msi = NV_MSI_INT_ENABLED;
  738. /*
  739. * MSIX interrupts
  740. */
  741. enum {
  742. NV_MSIX_INT_DISABLED,
  743. NV_MSIX_INT_ENABLED
  744. };
  745. static int msix = NV_MSIX_INT_ENABLED;
  746. /*
  747. * DMA 64bit
  748. */
  749. enum {
  750. NV_DMA_64BIT_DISABLED,
  751. NV_DMA_64BIT_ENABLED
  752. };
  753. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  754. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  755. {
  756. return netdev_priv(dev);
  757. }
  758. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  759. {
  760. return ((struct fe_priv *)netdev_priv(dev))->base;
  761. }
  762. static inline void pci_push(u8 __iomem *base)
  763. {
  764. /* force out pending posted writes */
  765. readl(base);
  766. }
  767. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  768. {
  769. return le32_to_cpu(prd->flaglen)
  770. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  771. }
  772. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  773. {
  774. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  775. }
  776. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  777. int delay, int delaymax, const char *msg)
  778. {
  779. u8 __iomem *base = get_hwbase(dev);
  780. pci_push(base);
  781. do {
  782. udelay(delay);
  783. delaymax -= delay;
  784. if (delaymax < 0) {
  785. if (msg)
  786. printk(msg);
  787. return 1;
  788. }
  789. } while ((readl(base + offset) & mask) != target);
  790. return 0;
  791. }
  792. #define NV_SETUP_RX_RING 0x01
  793. #define NV_SETUP_TX_RING 0x02
  794. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  795. {
  796. struct fe_priv *np = get_nvpriv(dev);
  797. u8 __iomem *base = get_hwbase(dev);
  798. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  799. if (rxtx_flags & NV_SETUP_RX_RING) {
  800. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  801. }
  802. if (rxtx_flags & NV_SETUP_TX_RING) {
  803. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  804. }
  805. } else {
  806. if (rxtx_flags & NV_SETUP_RX_RING) {
  807. writel((u32) cpu_to_le64(np->ring_addr), base + NvRegRxRingPhysAddr);
  808. writel((u32) (cpu_to_le64(np->ring_addr) >> 32), base + NvRegRxRingPhysAddrHigh);
  809. }
  810. if (rxtx_flags & NV_SETUP_TX_RING) {
  811. writel((u32) cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  812. writel((u32) (cpu_to_le64(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)) >> 32), base + NvRegTxRingPhysAddrHigh);
  813. }
  814. }
  815. }
  816. static void free_rings(struct net_device *dev)
  817. {
  818. struct fe_priv *np = get_nvpriv(dev);
  819. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  820. if (np->rx_ring.orig)
  821. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  822. np->rx_ring.orig, np->ring_addr);
  823. } else {
  824. if (np->rx_ring.ex)
  825. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  826. np->rx_ring.ex, np->ring_addr);
  827. }
  828. if (np->rx_skbuff)
  829. kfree(np->rx_skbuff);
  830. if (np->rx_dma)
  831. kfree(np->rx_dma);
  832. if (np->tx_skbuff)
  833. kfree(np->tx_skbuff);
  834. if (np->tx_dma)
  835. kfree(np->tx_dma);
  836. if (np->tx_dma_len)
  837. kfree(np->tx_dma_len);
  838. }
  839. static int using_multi_irqs(struct net_device *dev)
  840. {
  841. struct fe_priv *np = get_nvpriv(dev);
  842. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  843. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  844. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  845. return 0;
  846. else
  847. return 1;
  848. }
  849. static void nv_enable_irq(struct net_device *dev)
  850. {
  851. struct fe_priv *np = get_nvpriv(dev);
  852. if (!using_multi_irqs(dev)) {
  853. if (np->msi_flags & NV_MSI_X_ENABLED)
  854. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  855. else
  856. enable_irq(dev->irq);
  857. } else {
  858. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  859. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  860. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  861. }
  862. }
  863. static void nv_disable_irq(struct net_device *dev)
  864. {
  865. struct fe_priv *np = get_nvpriv(dev);
  866. if (!using_multi_irqs(dev)) {
  867. if (np->msi_flags & NV_MSI_X_ENABLED)
  868. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  869. else
  870. disable_irq(dev->irq);
  871. } else {
  872. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  873. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  874. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  875. }
  876. }
  877. /* In MSIX mode, a write to irqmask behaves as XOR */
  878. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  879. {
  880. u8 __iomem *base = get_hwbase(dev);
  881. writel(mask, base + NvRegIrqMask);
  882. }
  883. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  884. {
  885. struct fe_priv *np = get_nvpriv(dev);
  886. u8 __iomem *base = get_hwbase(dev);
  887. if (np->msi_flags & NV_MSI_X_ENABLED) {
  888. writel(mask, base + NvRegIrqMask);
  889. } else {
  890. if (np->msi_flags & NV_MSI_ENABLED)
  891. writel(0, base + NvRegMSIIrqMask);
  892. writel(0, base + NvRegIrqMask);
  893. }
  894. }
  895. #define MII_READ (-1)
  896. /* mii_rw: read/write a register on the PHY.
  897. *
  898. * Caller must guarantee serialization
  899. */
  900. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  901. {
  902. u8 __iomem *base = get_hwbase(dev);
  903. u32 reg;
  904. int retval;
  905. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  906. reg = readl(base + NvRegMIIControl);
  907. if (reg & NVREG_MIICTL_INUSE) {
  908. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  909. udelay(NV_MIIBUSY_DELAY);
  910. }
  911. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  912. if (value != MII_READ) {
  913. writel(value, base + NvRegMIIData);
  914. reg |= NVREG_MIICTL_WRITE;
  915. }
  916. writel(reg, base + NvRegMIIControl);
  917. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  918. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  919. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  920. dev->name, miireg, addr);
  921. retval = -1;
  922. } else if (value != MII_READ) {
  923. /* it was a write operation - fewer failures are detectable */
  924. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  925. dev->name, value, miireg, addr);
  926. retval = 0;
  927. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  928. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  929. dev->name, miireg, addr);
  930. retval = -1;
  931. } else {
  932. retval = readl(base + NvRegMIIData);
  933. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  934. dev->name, miireg, addr, retval);
  935. }
  936. return retval;
  937. }
  938. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  939. {
  940. struct fe_priv *np = netdev_priv(dev);
  941. u32 miicontrol;
  942. unsigned int tries = 0;
  943. miicontrol = BMCR_RESET | bmcr_setup;
  944. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  945. return -1;
  946. }
  947. /* wait for 500ms */
  948. msleep(500);
  949. /* must wait till reset is deasserted */
  950. while (miicontrol & BMCR_RESET) {
  951. msleep(10);
  952. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  953. /* FIXME: 100 tries seem excessive */
  954. if (tries++ > 100)
  955. return -1;
  956. }
  957. return 0;
  958. }
  959. static int phy_init(struct net_device *dev)
  960. {
  961. struct fe_priv *np = get_nvpriv(dev);
  962. u8 __iomem *base = get_hwbase(dev);
  963. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  964. /* phy errata for E3016 phy */
  965. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  966. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  967. reg &= ~PHY_MARVELL_E3016_INITMASK;
  968. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  969. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  970. return PHY_ERROR;
  971. }
  972. }
  973. /* set advertise register */
  974. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  975. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  976. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  977. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  978. return PHY_ERROR;
  979. }
  980. /* get phy interface type */
  981. phyinterface = readl(base + NvRegPhyInterface);
  982. /* see if gigabit phy */
  983. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  984. if (mii_status & PHY_GIGABIT) {
  985. np->gigabit = PHY_GIGABIT;
  986. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  987. mii_control_1000 &= ~ADVERTISE_1000HALF;
  988. if (phyinterface & PHY_RGMII)
  989. mii_control_1000 |= ADVERTISE_1000FULL;
  990. else
  991. mii_control_1000 &= ~ADVERTISE_1000FULL;
  992. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  993. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  994. return PHY_ERROR;
  995. }
  996. }
  997. else
  998. np->gigabit = 0;
  999. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1000. mii_control |= BMCR_ANENABLE;
  1001. /* reset the phy
  1002. * (certain phys need bmcr to be setup with reset)
  1003. */
  1004. if (phy_reset(dev, mii_control)) {
  1005. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1006. return PHY_ERROR;
  1007. }
  1008. /* phy vendor specific configuration */
  1009. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1010. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1011. phy_reserved &= ~(PHY_INIT1 | PHY_INIT2);
  1012. phy_reserved |= (PHY_INIT3 | PHY_INIT4);
  1013. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1014. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1015. return PHY_ERROR;
  1016. }
  1017. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1018. phy_reserved |= PHY_INIT5;
  1019. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1020. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1021. return PHY_ERROR;
  1022. }
  1023. }
  1024. if (np->phy_oui == PHY_OUI_CICADA) {
  1025. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1026. phy_reserved |= PHY_INIT6;
  1027. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1028. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1029. return PHY_ERROR;
  1030. }
  1031. }
  1032. /* some phys clear out pause advertisment on reset, set it back */
  1033. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1034. /* restart auto negotiation */
  1035. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1036. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1037. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1038. return PHY_ERROR;
  1039. }
  1040. return 0;
  1041. }
  1042. static void nv_start_rx(struct net_device *dev)
  1043. {
  1044. struct fe_priv *np = netdev_priv(dev);
  1045. u8 __iomem *base = get_hwbase(dev);
  1046. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1047. /* Already running? Stop it. */
  1048. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  1049. writel(0, base + NvRegReceiverControl);
  1050. pci_push(base);
  1051. }
  1052. writel(np->linkspeed, base + NvRegLinkSpeed);
  1053. pci_push(base);
  1054. writel(NVREG_RCVCTL_START, base + NvRegReceiverControl);
  1055. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1056. dev->name, np->duplex, np->linkspeed);
  1057. pci_push(base);
  1058. }
  1059. static void nv_stop_rx(struct net_device *dev)
  1060. {
  1061. u8 __iomem *base = get_hwbase(dev);
  1062. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1063. writel(0, base + NvRegReceiverControl);
  1064. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1065. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1066. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1067. udelay(NV_RXSTOP_DELAY2);
  1068. writel(0, base + NvRegLinkSpeed);
  1069. }
  1070. static void nv_start_tx(struct net_device *dev)
  1071. {
  1072. u8 __iomem *base = get_hwbase(dev);
  1073. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1074. writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl);
  1075. pci_push(base);
  1076. }
  1077. static void nv_stop_tx(struct net_device *dev)
  1078. {
  1079. u8 __iomem *base = get_hwbase(dev);
  1080. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1081. writel(0, base + NvRegTransmitterControl);
  1082. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1083. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1084. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1085. udelay(NV_TXSTOP_DELAY2);
  1086. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  1087. }
  1088. static void nv_txrx_reset(struct net_device *dev)
  1089. {
  1090. struct fe_priv *np = netdev_priv(dev);
  1091. u8 __iomem *base = get_hwbase(dev);
  1092. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1093. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1094. pci_push(base);
  1095. udelay(NV_TXRX_RESET_DELAY);
  1096. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1097. pci_push(base);
  1098. }
  1099. static void nv_mac_reset(struct net_device *dev)
  1100. {
  1101. struct fe_priv *np = netdev_priv(dev);
  1102. u8 __iomem *base = get_hwbase(dev);
  1103. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1104. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1105. pci_push(base);
  1106. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1107. pci_push(base);
  1108. udelay(NV_MAC_RESET_DELAY);
  1109. writel(0, base + NvRegMacReset);
  1110. pci_push(base);
  1111. udelay(NV_MAC_RESET_DELAY);
  1112. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1113. pci_push(base);
  1114. }
  1115. /*
  1116. * nv_get_stats: dev->get_stats function
  1117. * Get latest stats value from the nic.
  1118. * Called with read_lock(&dev_base_lock) held for read -
  1119. * only synchronized against unregister_netdevice.
  1120. */
  1121. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1122. {
  1123. struct fe_priv *np = netdev_priv(dev);
  1124. /* It seems that the nic always generates interrupts and doesn't
  1125. * accumulate errors internally. Thus the current values in np->stats
  1126. * are already up to date.
  1127. */
  1128. return &np->stats;
  1129. }
  1130. /*
  1131. * nv_alloc_rx: fill rx ring entries.
  1132. * Return 1 if the allocations for the skbs failed and the
  1133. * rx engine is without Available descriptors
  1134. */
  1135. static int nv_alloc_rx(struct net_device *dev)
  1136. {
  1137. struct fe_priv *np = netdev_priv(dev);
  1138. unsigned int refill_rx = np->refill_rx;
  1139. int nr;
  1140. while (np->cur_rx != refill_rx) {
  1141. struct sk_buff *skb;
  1142. nr = refill_rx % np->rx_ring_size;
  1143. if (np->rx_skbuff[nr] == NULL) {
  1144. skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1145. if (!skb)
  1146. break;
  1147. skb->dev = dev;
  1148. np->rx_skbuff[nr] = skb;
  1149. } else {
  1150. skb = np->rx_skbuff[nr];
  1151. }
  1152. np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data,
  1153. skb->end-skb->data, PCI_DMA_FROMDEVICE);
  1154. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1155. np->rx_ring.orig[nr].buf = cpu_to_le32(np->rx_dma[nr]);
  1156. wmb();
  1157. np->rx_ring.orig[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1158. } else {
  1159. np->rx_ring.ex[nr].bufhigh = cpu_to_le64(np->rx_dma[nr]) >> 32;
  1160. np->rx_ring.ex[nr].buflow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF;
  1161. wmb();
  1162. np->rx_ring.ex[nr].flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1163. }
  1164. dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n",
  1165. dev->name, refill_rx);
  1166. refill_rx++;
  1167. }
  1168. np->refill_rx = refill_rx;
  1169. if (np->cur_rx - refill_rx == np->rx_ring_size)
  1170. return 1;
  1171. return 0;
  1172. }
  1173. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1174. #ifdef CONFIG_FORCEDETH_NAPI
  1175. static void nv_do_rx_refill(unsigned long data)
  1176. {
  1177. struct net_device *dev = (struct net_device *) data;
  1178. /* Just reschedule NAPI rx processing */
  1179. netif_rx_schedule(dev);
  1180. }
  1181. #else
  1182. static void nv_do_rx_refill(unsigned long data)
  1183. {
  1184. struct net_device *dev = (struct net_device *) data;
  1185. struct fe_priv *np = netdev_priv(dev);
  1186. if (!using_multi_irqs(dev)) {
  1187. if (np->msi_flags & NV_MSI_X_ENABLED)
  1188. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1189. else
  1190. disable_irq(dev->irq);
  1191. } else {
  1192. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1193. }
  1194. if (nv_alloc_rx(dev)) {
  1195. spin_lock_irq(&np->lock);
  1196. if (!np->in_shutdown)
  1197. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1198. spin_unlock_irq(&np->lock);
  1199. }
  1200. if (!using_multi_irqs(dev)) {
  1201. if (np->msi_flags & NV_MSI_X_ENABLED)
  1202. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1203. else
  1204. enable_irq(dev->irq);
  1205. } else {
  1206. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1207. }
  1208. }
  1209. #endif
  1210. static void nv_init_rx(struct net_device *dev)
  1211. {
  1212. struct fe_priv *np = netdev_priv(dev);
  1213. int i;
  1214. np->cur_rx = np->rx_ring_size;
  1215. np->refill_rx = 0;
  1216. for (i = 0; i < np->rx_ring_size; i++)
  1217. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1218. np->rx_ring.orig[i].flaglen = 0;
  1219. else
  1220. np->rx_ring.ex[i].flaglen = 0;
  1221. }
  1222. static void nv_init_tx(struct net_device *dev)
  1223. {
  1224. struct fe_priv *np = netdev_priv(dev);
  1225. int i;
  1226. np->next_tx = np->nic_tx = 0;
  1227. for (i = 0; i < np->tx_ring_size; i++) {
  1228. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1229. np->tx_ring.orig[i].flaglen = 0;
  1230. else
  1231. np->tx_ring.ex[i].flaglen = 0;
  1232. np->tx_skbuff[i] = NULL;
  1233. np->tx_dma[i] = 0;
  1234. }
  1235. }
  1236. static int nv_init_ring(struct net_device *dev)
  1237. {
  1238. nv_init_tx(dev);
  1239. nv_init_rx(dev);
  1240. return nv_alloc_rx(dev);
  1241. }
  1242. static int nv_release_txskb(struct net_device *dev, unsigned int skbnr)
  1243. {
  1244. struct fe_priv *np = netdev_priv(dev);
  1245. dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d\n",
  1246. dev->name, skbnr);
  1247. if (np->tx_dma[skbnr]) {
  1248. pci_unmap_page(np->pci_dev, np->tx_dma[skbnr],
  1249. np->tx_dma_len[skbnr],
  1250. PCI_DMA_TODEVICE);
  1251. np->tx_dma[skbnr] = 0;
  1252. }
  1253. if (np->tx_skbuff[skbnr]) {
  1254. dev_kfree_skb_any(np->tx_skbuff[skbnr]);
  1255. np->tx_skbuff[skbnr] = NULL;
  1256. return 1;
  1257. } else {
  1258. return 0;
  1259. }
  1260. }
  1261. static void nv_drain_tx(struct net_device *dev)
  1262. {
  1263. struct fe_priv *np = netdev_priv(dev);
  1264. unsigned int i;
  1265. for (i = 0; i < np->tx_ring_size; i++) {
  1266. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1267. np->tx_ring.orig[i].flaglen = 0;
  1268. else
  1269. np->tx_ring.ex[i].flaglen = 0;
  1270. if (nv_release_txskb(dev, i))
  1271. np->stats.tx_dropped++;
  1272. }
  1273. }
  1274. static void nv_drain_rx(struct net_device *dev)
  1275. {
  1276. struct fe_priv *np = netdev_priv(dev);
  1277. int i;
  1278. for (i = 0; i < np->rx_ring_size; i++) {
  1279. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1280. np->rx_ring.orig[i].flaglen = 0;
  1281. else
  1282. np->rx_ring.ex[i].flaglen = 0;
  1283. wmb();
  1284. if (np->rx_skbuff[i]) {
  1285. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1286. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1287. PCI_DMA_FROMDEVICE);
  1288. dev_kfree_skb(np->rx_skbuff[i]);
  1289. np->rx_skbuff[i] = NULL;
  1290. }
  1291. }
  1292. }
  1293. static void drain_ring(struct net_device *dev)
  1294. {
  1295. nv_drain_tx(dev);
  1296. nv_drain_rx(dev);
  1297. }
  1298. /*
  1299. * nv_start_xmit: dev->hard_start_xmit function
  1300. * Called with netif_tx_lock held.
  1301. */
  1302. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1303. {
  1304. struct fe_priv *np = netdev_priv(dev);
  1305. u32 tx_flags = 0;
  1306. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1307. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1308. unsigned int nr = (np->next_tx - 1) % np->tx_ring_size;
  1309. unsigned int start_nr = np->next_tx % np->tx_ring_size;
  1310. unsigned int i;
  1311. u32 offset = 0;
  1312. u32 bcnt;
  1313. u32 size = skb->len-skb->data_len;
  1314. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1315. u32 tx_flags_vlan = 0;
  1316. /* add fragments to entries count */
  1317. for (i = 0; i < fragments; i++) {
  1318. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1319. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1320. }
  1321. spin_lock_irq(&np->lock);
  1322. if ((np->next_tx - np->nic_tx + entries - 1) > np->tx_limit_stop) {
  1323. spin_unlock_irq(&np->lock);
  1324. netif_stop_queue(dev);
  1325. return NETDEV_TX_BUSY;
  1326. }
  1327. /* setup the header buffer */
  1328. do {
  1329. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1330. nr = (nr + 1) % np->tx_ring_size;
  1331. np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1332. PCI_DMA_TODEVICE);
  1333. np->tx_dma_len[nr] = bcnt;
  1334. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1335. np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
  1336. np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1337. } else {
  1338. np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1339. np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1340. np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1341. }
  1342. tx_flags = np->tx_flags;
  1343. offset += bcnt;
  1344. size -= bcnt;
  1345. } while (size);
  1346. /* setup the fragments */
  1347. for (i = 0; i < fragments; i++) {
  1348. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1349. u32 size = frag->size;
  1350. offset = 0;
  1351. do {
  1352. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1353. nr = (nr + 1) % np->tx_ring_size;
  1354. np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1355. PCI_DMA_TODEVICE);
  1356. np->tx_dma_len[nr] = bcnt;
  1357. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1358. np->tx_ring.orig[nr].buf = cpu_to_le32(np->tx_dma[nr]);
  1359. np->tx_ring.orig[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1360. } else {
  1361. np->tx_ring.ex[nr].bufhigh = cpu_to_le64(np->tx_dma[nr]) >> 32;
  1362. np->tx_ring.ex[nr].buflow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF;
  1363. np->tx_ring.ex[nr].flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1364. }
  1365. offset += bcnt;
  1366. size -= bcnt;
  1367. } while (size);
  1368. }
  1369. /* set last fragment flag */
  1370. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1371. np->tx_ring.orig[nr].flaglen |= cpu_to_le32(tx_flags_extra);
  1372. } else {
  1373. np->tx_ring.ex[nr].flaglen |= cpu_to_le32(tx_flags_extra);
  1374. }
  1375. np->tx_skbuff[nr] = skb;
  1376. #ifdef NETIF_F_TSO
  1377. if (skb_is_gso(skb))
  1378. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1379. else
  1380. #endif
  1381. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1382. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1383. /* vlan tag */
  1384. if (np->vlangrp && vlan_tx_tag_present(skb)) {
  1385. tx_flags_vlan = NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb);
  1386. }
  1387. /* set tx flags */
  1388. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1389. np->tx_ring.orig[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1390. } else {
  1391. np->tx_ring.ex[start_nr].txvlan = cpu_to_le32(tx_flags_vlan);
  1392. np->tx_ring.ex[start_nr].flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1393. }
  1394. dprintk(KERN_DEBUG "%s: nv_start_xmit: packet %d (entries %d) queued for transmission. tx_flags_extra: %x\n",
  1395. dev->name, np->next_tx, entries, tx_flags_extra);
  1396. {
  1397. int j;
  1398. for (j=0; j<64; j++) {
  1399. if ((j%16) == 0)
  1400. dprintk("\n%03x:", j);
  1401. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1402. }
  1403. dprintk("\n");
  1404. }
  1405. np->next_tx += entries;
  1406. dev->trans_start = jiffies;
  1407. spin_unlock_irq(&np->lock);
  1408. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1409. pci_push(get_hwbase(dev));
  1410. return NETDEV_TX_OK;
  1411. }
  1412. /*
  1413. * nv_tx_done: check for completed packets, release the skbs.
  1414. *
  1415. * Caller must own np->lock.
  1416. */
  1417. static void nv_tx_done(struct net_device *dev)
  1418. {
  1419. struct fe_priv *np = netdev_priv(dev);
  1420. u32 flags;
  1421. unsigned int i;
  1422. struct sk_buff *skb;
  1423. while (np->nic_tx != np->next_tx) {
  1424. i = np->nic_tx % np->tx_ring_size;
  1425. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1426. flags = le32_to_cpu(np->tx_ring.orig[i].flaglen);
  1427. else
  1428. flags = le32_to_cpu(np->tx_ring.ex[i].flaglen);
  1429. dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, flags 0x%x.\n",
  1430. dev->name, np->nic_tx, flags);
  1431. if (flags & NV_TX_VALID)
  1432. break;
  1433. if (np->desc_ver == DESC_VER_1) {
  1434. if (flags & NV_TX_LASTPACKET) {
  1435. skb = np->tx_skbuff[i];
  1436. if (flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION|
  1437. NV_TX_UNDERFLOW|NV_TX_ERROR)) {
  1438. if (flags & NV_TX_UNDERFLOW)
  1439. np->stats.tx_fifo_errors++;
  1440. if (flags & NV_TX_CARRIERLOST)
  1441. np->stats.tx_carrier_errors++;
  1442. np->stats.tx_errors++;
  1443. } else {
  1444. np->stats.tx_packets++;
  1445. np->stats.tx_bytes += skb->len;
  1446. }
  1447. }
  1448. } else {
  1449. if (flags & NV_TX2_LASTPACKET) {
  1450. skb = np->tx_skbuff[i];
  1451. if (flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION|
  1452. NV_TX2_UNDERFLOW|NV_TX2_ERROR)) {
  1453. if (flags & NV_TX2_UNDERFLOW)
  1454. np->stats.tx_fifo_errors++;
  1455. if (flags & NV_TX2_CARRIERLOST)
  1456. np->stats.tx_carrier_errors++;
  1457. np->stats.tx_errors++;
  1458. } else {
  1459. np->stats.tx_packets++;
  1460. np->stats.tx_bytes += skb->len;
  1461. }
  1462. }
  1463. }
  1464. nv_release_txskb(dev, i);
  1465. np->nic_tx++;
  1466. }
  1467. if (np->next_tx - np->nic_tx < np->tx_limit_start)
  1468. netif_wake_queue(dev);
  1469. }
  1470. /*
  1471. * nv_tx_timeout: dev->tx_timeout function
  1472. * Called with netif_tx_lock held.
  1473. */
  1474. static void nv_tx_timeout(struct net_device *dev)
  1475. {
  1476. struct fe_priv *np = netdev_priv(dev);
  1477. u8 __iomem *base = get_hwbase(dev);
  1478. u32 status;
  1479. if (np->msi_flags & NV_MSI_X_ENABLED)
  1480. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1481. else
  1482. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1483. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1484. {
  1485. int i;
  1486. printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n",
  1487. dev->name, (unsigned long)np->ring_addr,
  1488. np->next_tx, np->nic_tx);
  1489. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1490. for (i=0;i<=np->register_size;i+= 32) {
  1491. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1492. i,
  1493. readl(base + i + 0), readl(base + i + 4),
  1494. readl(base + i + 8), readl(base + i + 12),
  1495. readl(base + i + 16), readl(base + i + 20),
  1496. readl(base + i + 24), readl(base + i + 28));
  1497. }
  1498. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1499. for (i=0;i<np->tx_ring_size;i+= 4) {
  1500. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1501. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1502. i,
  1503. le32_to_cpu(np->tx_ring.orig[i].buf),
  1504. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1505. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1506. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1507. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1508. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1509. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1510. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1511. } else {
  1512. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1513. i,
  1514. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1515. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1516. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1517. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1518. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1519. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1520. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1521. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1522. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1523. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1524. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1525. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1526. }
  1527. }
  1528. }
  1529. spin_lock_irq(&np->lock);
  1530. /* 1) stop tx engine */
  1531. nv_stop_tx(dev);
  1532. /* 2) check that the packets were not sent already: */
  1533. nv_tx_done(dev);
  1534. /* 3) if there are dead entries: clear everything */
  1535. if (np->next_tx != np->nic_tx) {
  1536. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1537. nv_drain_tx(dev);
  1538. np->next_tx = np->nic_tx = 0;
  1539. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1540. netif_wake_queue(dev);
  1541. }
  1542. /* 4) restart tx engine */
  1543. nv_start_tx(dev);
  1544. spin_unlock_irq(&np->lock);
  1545. }
  1546. /*
  1547. * Called when the nic notices a mismatch between the actual data len on the
  1548. * wire and the len indicated in the 802 header
  1549. */
  1550. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  1551. {
  1552. int hdrlen; /* length of the 802 header */
  1553. int protolen; /* length as stored in the proto field */
  1554. /* 1) calculate len according to header */
  1555. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  1556. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  1557. hdrlen = VLAN_HLEN;
  1558. } else {
  1559. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  1560. hdrlen = ETH_HLEN;
  1561. }
  1562. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  1563. dev->name, datalen, protolen, hdrlen);
  1564. if (protolen > ETH_DATA_LEN)
  1565. return datalen; /* Value in proto field not a len, no checks possible */
  1566. protolen += hdrlen;
  1567. /* consistency checks: */
  1568. if (datalen > ETH_ZLEN) {
  1569. if (datalen >= protolen) {
  1570. /* more data on wire than in 802 header, trim of
  1571. * additional data.
  1572. */
  1573. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1574. dev->name, protolen);
  1575. return protolen;
  1576. } else {
  1577. /* less data on wire than mentioned in header.
  1578. * Discard the packet.
  1579. */
  1580. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  1581. dev->name);
  1582. return -1;
  1583. }
  1584. } else {
  1585. /* short packet. Accept only if 802 values are also short */
  1586. if (protolen > ETH_ZLEN) {
  1587. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  1588. dev->name);
  1589. return -1;
  1590. }
  1591. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  1592. dev->name, datalen);
  1593. return datalen;
  1594. }
  1595. }
  1596. static int nv_rx_process(struct net_device *dev, int limit)
  1597. {
  1598. struct fe_priv *np = netdev_priv(dev);
  1599. u32 flags;
  1600. u32 vlanflags = 0;
  1601. int count;
  1602. for (count = 0; count < limit; ++count) {
  1603. struct sk_buff *skb;
  1604. int len;
  1605. int i;
  1606. if (np->cur_rx - np->refill_rx >= np->rx_ring_size)
  1607. break; /* we scanned the whole ring - do not continue */
  1608. i = np->cur_rx % np->rx_ring_size;
  1609. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1610. flags = le32_to_cpu(np->rx_ring.orig[i].flaglen);
  1611. len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver);
  1612. } else {
  1613. flags = le32_to_cpu(np->rx_ring.ex[i].flaglen);
  1614. len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver);
  1615. vlanflags = le32_to_cpu(np->rx_ring.ex[i].buflow);
  1616. }
  1617. dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, flags 0x%x.\n",
  1618. dev->name, np->cur_rx, flags);
  1619. if (flags & NV_RX_AVAIL)
  1620. break; /* still owned by hardware, */
  1621. /*
  1622. * the packet is for us - immediately tear down the pci mapping.
  1623. * TODO: check if a prefetch of the first cacheline improves
  1624. * the performance.
  1625. */
  1626. pci_unmap_single(np->pci_dev, np->rx_dma[i],
  1627. np->rx_skbuff[i]->end-np->rx_skbuff[i]->data,
  1628. PCI_DMA_FROMDEVICE);
  1629. {
  1630. int j;
  1631. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  1632. for (j=0; j<64; j++) {
  1633. if ((j%16) == 0)
  1634. dprintk("\n%03x:", j);
  1635. dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]);
  1636. }
  1637. dprintk("\n");
  1638. }
  1639. /* look at what we actually got: */
  1640. if (np->desc_ver == DESC_VER_1) {
  1641. if (!(flags & NV_RX_DESCRIPTORVALID))
  1642. goto next_pkt;
  1643. if (flags & NV_RX_ERROR) {
  1644. if (flags & NV_RX_MISSEDFRAME) {
  1645. np->stats.rx_missed_errors++;
  1646. np->stats.rx_errors++;
  1647. goto next_pkt;
  1648. }
  1649. if (flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) {
  1650. np->stats.rx_errors++;
  1651. goto next_pkt;
  1652. }
  1653. if (flags & NV_RX_CRCERR) {
  1654. np->stats.rx_crc_errors++;
  1655. np->stats.rx_errors++;
  1656. goto next_pkt;
  1657. }
  1658. if (flags & NV_RX_OVERFLOW) {
  1659. np->stats.rx_over_errors++;
  1660. np->stats.rx_errors++;
  1661. goto next_pkt;
  1662. }
  1663. if (flags & NV_RX_ERROR4) {
  1664. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1665. if (len < 0) {
  1666. np->stats.rx_errors++;
  1667. goto next_pkt;
  1668. }
  1669. }
  1670. /* framing errors are soft errors. */
  1671. if (flags & NV_RX_FRAMINGERR) {
  1672. if (flags & NV_RX_SUBSTRACT1) {
  1673. len--;
  1674. }
  1675. }
  1676. }
  1677. } else {
  1678. if (!(flags & NV_RX2_DESCRIPTORVALID))
  1679. goto next_pkt;
  1680. if (flags & NV_RX2_ERROR) {
  1681. if (flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) {
  1682. np->stats.rx_errors++;
  1683. goto next_pkt;
  1684. }
  1685. if (flags & NV_RX2_CRCERR) {
  1686. np->stats.rx_crc_errors++;
  1687. np->stats.rx_errors++;
  1688. goto next_pkt;
  1689. }
  1690. if (flags & NV_RX2_OVERFLOW) {
  1691. np->stats.rx_over_errors++;
  1692. np->stats.rx_errors++;
  1693. goto next_pkt;
  1694. }
  1695. if (flags & NV_RX2_ERROR4) {
  1696. len = nv_getlen(dev, np->rx_skbuff[i]->data, len);
  1697. if (len < 0) {
  1698. np->stats.rx_errors++;
  1699. goto next_pkt;
  1700. }
  1701. }
  1702. /* framing errors are soft errors */
  1703. if (flags & NV_RX2_FRAMINGERR) {
  1704. if (flags & NV_RX2_SUBSTRACT1) {
  1705. len--;
  1706. }
  1707. }
  1708. }
  1709. if (np->rx_csum) {
  1710. flags &= NV_RX2_CHECKSUMMASK;
  1711. if (flags == NV_RX2_CHECKSUMOK1 ||
  1712. flags == NV_RX2_CHECKSUMOK2 ||
  1713. flags == NV_RX2_CHECKSUMOK3) {
  1714. dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name);
  1715. np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY;
  1716. } else {
  1717. dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name);
  1718. }
  1719. }
  1720. }
  1721. /* got a valid packet - forward it to the network core */
  1722. skb = np->rx_skbuff[i];
  1723. np->rx_skbuff[i] = NULL;
  1724. skb_put(skb, len);
  1725. skb->protocol = eth_type_trans(skb, dev);
  1726. dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n",
  1727. dev->name, np->cur_rx, len, skb->protocol);
  1728. #ifdef CONFIG_FORCEDETH_NAPI
  1729. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1730. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  1731. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1732. else
  1733. netif_receive_skb(skb);
  1734. #else
  1735. if (np->vlangrp && (vlanflags & NV_RX3_VLAN_TAG_PRESENT))
  1736. vlan_hwaccel_rx(skb, np->vlangrp,
  1737. vlanflags & NV_RX3_VLAN_TAG_MASK);
  1738. else
  1739. netif_rx(skb);
  1740. #endif
  1741. dev->last_rx = jiffies;
  1742. np->stats.rx_packets++;
  1743. np->stats.rx_bytes += len;
  1744. next_pkt:
  1745. np->cur_rx++;
  1746. }
  1747. return count;
  1748. }
  1749. static void set_bufsize(struct net_device *dev)
  1750. {
  1751. struct fe_priv *np = netdev_priv(dev);
  1752. if (dev->mtu <= ETH_DATA_LEN)
  1753. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  1754. else
  1755. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  1756. }
  1757. /*
  1758. * nv_change_mtu: dev->change_mtu function
  1759. * Called with dev_base_lock held for read.
  1760. */
  1761. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  1762. {
  1763. struct fe_priv *np = netdev_priv(dev);
  1764. int old_mtu;
  1765. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  1766. return -EINVAL;
  1767. old_mtu = dev->mtu;
  1768. dev->mtu = new_mtu;
  1769. /* return early if the buffer sizes will not change */
  1770. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  1771. return 0;
  1772. if (old_mtu == new_mtu)
  1773. return 0;
  1774. /* synchronized against open : rtnl_lock() held by caller */
  1775. if (netif_running(dev)) {
  1776. u8 __iomem *base = get_hwbase(dev);
  1777. /*
  1778. * It seems that the nic preloads valid ring entries into an
  1779. * internal buffer. The procedure for flushing everything is
  1780. * guessed, there is probably a simpler approach.
  1781. * Changing the MTU is a rare event, it shouldn't matter.
  1782. */
  1783. nv_disable_irq(dev);
  1784. netif_tx_lock_bh(dev);
  1785. spin_lock(&np->lock);
  1786. /* stop engines */
  1787. nv_stop_rx(dev);
  1788. nv_stop_tx(dev);
  1789. nv_txrx_reset(dev);
  1790. /* drain rx queue */
  1791. nv_drain_rx(dev);
  1792. nv_drain_tx(dev);
  1793. /* reinit driver view of the rx queue */
  1794. set_bufsize(dev);
  1795. if (nv_init_ring(dev)) {
  1796. if (!np->in_shutdown)
  1797. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1798. }
  1799. /* reinit nic view of the rx queue */
  1800. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  1801. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  1802. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  1803. base + NvRegRingSizes);
  1804. pci_push(base);
  1805. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1806. pci_push(base);
  1807. /* restart rx engine */
  1808. nv_start_rx(dev);
  1809. nv_start_tx(dev);
  1810. spin_unlock(&np->lock);
  1811. netif_tx_unlock_bh(dev);
  1812. nv_enable_irq(dev);
  1813. }
  1814. return 0;
  1815. }
  1816. static void nv_copy_mac_to_hw(struct net_device *dev)
  1817. {
  1818. u8 __iomem *base = get_hwbase(dev);
  1819. u32 mac[2];
  1820. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  1821. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  1822. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  1823. writel(mac[0], base + NvRegMacAddrA);
  1824. writel(mac[1], base + NvRegMacAddrB);
  1825. }
  1826. /*
  1827. * nv_set_mac_address: dev->set_mac_address function
  1828. * Called with rtnl_lock() held.
  1829. */
  1830. static int nv_set_mac_address(struct net_device *dev, void *addr)
  1831. {
  1832. struct fe_priv *np = netdev_priv(dev);
  1833. struct sockaddr *macaddr = (struct sockaddr*)addr;
  1834. if (!is_valid_ether_addr(macaddr->sa_data))
  1835. return -EADDRNOTAVAIL;
  1836. /* synchronized against open : rtnl_lock() held by caller */
  1837. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  1838. if (netif_running(dev)) {
  1839. netif_tx_lock_bh(dev);
  1840. spin_lock_irq(&np->lock);
  1841. /* stop rx engine */
  1842. nv_stop_rx(dev);
  1843. /* set mac address */
  1844. nv_copy_mac_to_hw(dev);
  1845. /* restart rx engine */
  1846. nv_start_rx(dev);
  1847. spin_unlock_irq(&np->lock);
  1848. netif_tx_unlock_bh(dev);
  1849. } else {
  1850. nv_copy_mac_to_hw(dev);
  1851. }
  1852. return 0;
  1853. }
  1854. /*
  1855. * nv_set_multicast: dev->set_multicast function
  1856. * Called with netif_tx_lock held.
  1857. */
  1858. static void nv_set_multicast(struct net_device *dev)
  1859. {
  1860. struct fe_priv *np = netdev_priv(dev);
  1861. u8 __iomem *base = get_hwbase(dev);
  1862. u32 addr[2];
  1863. u32 mask[2];
  1864. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  1865. memset(addr, 0, sizeof(addr));
  1866. memset(mask, 0, sizeof(mask));
  1867. if (dev->flags & IFF_PROMISC) {
  1868. pff |= NVREG_PFF_PROMISC;
  1869. } else {
  1870. pff |= NVREG_PFF_MYADDR;
  1871. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  1872. u32 alwaysOff[2];
  1873. u32 alwaysOn[2];
  1874. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  1875. if (dev->flags & IFF_ALLMULTI) {
  1876. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  1877. } else {
  1878. struct dev_mc_list *walk;
  1879. walk = dev->mc_list;
  1880. while (walk != NULL) {
  1881. u32 a, b;
  1882. a = le32_to_cpu(*(u32 *) walk->dmi_addr);
  1883. b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4]));
  1884. alwaysOn[0] &= a;
  1885. alwaysOff[0] &= ~a;
  1886. alwaysOn[1] &= b;
  1887. alwaysOff[1] &= ~b;
  1888. walk = walk->next;
  1889. }
  1890. }
  1891. addr[0] = alwaysOn[0];
  1892. addr[1] = alwaysOn[1];
  1893. mask[0] = alwaysOn[0] | alwaysOff[0];
  1894. mask[1] = alwaysOn[1] | alwaysOff[1];
  1895. }
  1896. }
  1897. addr[0] |= NVREG_MCASTADDRA_FORCE;
  1898. pff |= NVREG_PFF_ALWAYS;
  1899. spin_lock_irq(&np->lock);
  1900. nv_stop_rx(dev);
  1901. writel(addr[0], base + NvRegMulticastAddrA);
  1902. writel(addr[1], base + NvRegMulticastAddrB);
  1903. writel(mask[0], base + NvRegMulticastMaskA);
  1904. writel(mask[1], base + NvRegMulticastMaskB);
  1905. writel(pff, base + NvRegPacketFilterFlags);
  1906. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  1907. dev->name);
  1908. nv_start_rx(dev);
  1909. spin_unlock_irq(&np->lock);
  1910. }
  1911. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  1912. {
  1913. struct fe_priv *np = netdev_priv(dev);
  1914. u8 __iomem *base = get_hwbase(dev);
  1915. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  1916. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  1917. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  1918. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  1919. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  1920. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  1921. } else {
  1922. writel(pff, base + NvRegPacketFilterFlags);
  1923. }
  1924. }
  1925. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  1926. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  1927. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  1928. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  1929. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  1930. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  1931. } else {
  1932. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  1933. writel(regmisc, base + NvRegMisc1);
  1934. }
  1935. }
  1936. }
  1937. /**
  1938. * nv_update_linkspeed: Setup the MAC according to the link partner
  1939. * @dev: Network device to be configured
  1940. *
  1941. * The function queries the PHY and checks if there is a link partner.
  1942. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  1943. * set to 10 MBit HD.
  1944. *
  1945. * The function returns 0 if there is no link partner and 1 if there is
  1946. * a good link partner.
  1947. */
  1948. static int nv_update_linkspeed(struct net_device *dev)
  1949. {
  1950. struct fe_priv *np = netdev_priv(dev);
  1951. u8 __iomem *base = get_hwbase(dev);
  1952. int adv = 0;
  1953. int lpa = 0;
  1954. int adv_lpa, adv_pause, lpa_pause;
  1955. int newls = np->linkspeed;
  1956. int newdup = np->duplex;
  1957. int mii_status;
  1958. int retval = 0;
  1959. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  1960. /* BMSR_LSTATUS is latched, read it twice:
  1961. * we want the current value.
  1962. */
  1963. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1964. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1965. if (!(mii_status & BMSR_LSTATUS)) {
  1966. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  1967. dev->name);
  1968. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1969. newdup = 0;
  1970. retval = 0;
  1971. goto set_speed;
  1972. }
  1973. if (np->autoneg == 0) {
  1974. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  1975. dev->name, np->fixed_mode);
  1976. if (np->fixed_mode & LPA_100FULL) {
  1977. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1978. newdup = 1;
  1979. } else if (np->fixed_mode & LPA_100HALF) {
  1980. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  1981. newdup = 0;
  1982. } else if (np->fixed_mode & LPA_10FULL) {
  1983. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1984. newdup = 1;
  1985. } else {
  1986. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1987. newdup = 0;
  1988. }
  1989. retval = 1;
  1990. goto set_speed;
  1991. }
  1992. /* check auto negotiation is complete */
  1993. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  1994. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  1995. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  1996. newdup = 0;
  1997. retval = 0;
  1998. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  1999. goto set_speed;
  2000. }
  2001. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2002. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2003. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2004. dev->name, adv, lpa);
  2005. retval = 1;
  2006. if (np->gigabit == PHY_GIGABIT) {
  2007. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2008. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2009. if ((control_1000 & ADVERTISE_1000FULL) &&
  2010. (status_1000 & LPA_1000FULL)) {
  2011. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2012. dev->name);
  2013. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2014. newdup = 1;
  2015. goto set_speed;
  2016. }
  2017. }
  2018. /* FIXME: handle parallel detection properly */
  2019. adv_lpa = lpa & adv;
  2020. if (adv_lpa & LPA_100FULL) {
  2021. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2022. newdup = 1;
  2023. } else if (adv_lpa & LPA_100HALF) {
  2024. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2025. newdup = 0;
  2026. } else if (adv_lpa & LPA_10FULL) {
  2027. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2028. newdup = 1;
  2029. } else if (adv_lpa & LPA_10HALF) {
  2030. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2031. newdup = 0;
  2032. } else {
  2033. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2034. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2035. newdup = 0;
  2036. }
  2037. set_speed:
  2038. if (np->duplex == newdup && np->linkspeed == newls)
  2039. return retval;
  2040. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2041. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2042. np->duplex = newdup;
  2043. np->linkspeed = newls;
  2044. if (np->gigabit == PHY_GIGABIT) {
  2045. phyreg = readl(base + NvRegRandomSeed);
  2046. phyreg &= ~(0x3FF00);
  2047. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2048. phyreg |= NVREG_RNDSEED_FORCE3;
  2049. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2050. phyreg |= NVREG_RNDSEED_FORCE2;
  2051. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2052. phyreg |= NVREG_RNDSEED_FORCE;
  2053. writel(phyreg, base + NvRegRandomSeed);
  2054. }
  2055. phyreg = readl(base + NvRegPhyInterface);
  2056. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2057. if (np->duplex == 0)
  2058. phyreg |= PHY_HALF;
  2059. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2060. phyreg |= PHY_100;
  2061. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2062. phyreg |= PHY_1000;
  2063. writel(phyreg, base + NvRegPhyInterface);
  2064. if (phyreg & PHY_RGMII) {
  2065. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2066. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2067. else
  2068. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2069. } else {
  2070. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2071. }
  2072. writel(txreg, base + NvRegTxDeferral);
  2073. if (np->desc_ver == DESC_VER_1) {
  2074. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2075. } else {
  2076. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2077. txreg = NVREG_TX_WM_DESC2_3_1000;
  2078. else
  2079. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2080. }
  2081. writel(txreg, base + NvRegTxWatermark);
  2082. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2083. base + NvRegMisc1);
  2084. pci_push(base);
  2085. writel(np->linkspeed, base + NvRegLinkSpeed);
  2086. pci_push(base);
  2087. pause_flags = 0;
  2088. /* setup pause frame */
  2089. if (np->duplex != 0) {
  2090. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2091. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2092. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2093. switch (adv_pause) {
  2094. case ADVERTISE_PAUSE_CAP:
  2095. if (lpa_pause & LPA_PAUSE_CAP) {
  2096. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2097. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2098. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2099. }
  2100. break;
  2101. case ADVERTISE_PAUSE_ASYM:
  2102. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2103. {
  2104. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2105. }
  2106. break;
  2107. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2108. if (lpa_pause & LPA_PAUSE_CAP)
  2109. {
  2110. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2111. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2112. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2113. }
  2114. if (lpa_pause == LPA_PAUSE_ASYM)
  2115. {
  2116. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2117. }
  2118. break;
  2119. }
  2120. } else {
  2121. pause_flags = np->pause_flags;
  2122. }
  2123. }
  2124. nv_update_pause(dev, pause_flags);
  2125. return retval;
  2126. }
  2127. static void nv_linkchange(struct net_device *dev)
  2128. {
  2129. if (nv_update_linkspeed(dev)) {
  2130. if (!netif_carrier_ok(dev)) {
  2131. netif_carrier_on(dev);
  2132. printk(KERN_INFO "%s: link up.\n", dev->name);
  2133. nv_start_rx(dev);
  2134. }
  2135. } else {
  2136. if (netif_carrier_ok(dev)) {
  2137. netif_carrier_off(dev);
  2138. printk(KERN_INFO "%s: link down.\n", dev->name);
  2139. nv_stop_rx(dev);
  2140. }
  2141. }
  2142. }
  2143. static void nv_link_irq(struct net_device *dev)
  2144. {
  2145. u8 __iomem *base = get_hwbase(dev);
  2146. u32 miistat;
  2147. miistat = readl(base + NvRegMIIStatus);
  2148. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2149. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2150. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2151. nv_linkchange(dev);
  2152. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2153. }
  2154. static irqreturn_t nv_nic_irq(int foo, void *data)
  2155. {
  2156. struct net_device *dev = (struct net_device *) data;
  2157. struct fe_priv *np = netdev_priv(dev);
  2158. u8 __iomem *base = get_hwbase(dev);
  2159. u32 events;
  2160. int i;
  2161. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2162. for (i=0; ; i++) {
  2163. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2164. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2165. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2166. } else {
  2167. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2168. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2169. }
  2170. pci_push(base);
  2171. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2172. if (!(events & np->irqmask))
  2173. break;
  2174. spin_lock(&np->lock);
  2175. nv_tx_done(dev);
  2176. spin_unlock(&np->lock);
  2177. if (events & NVREG_IRQ_LINK) {
  2178. spin_lock(&np->lock);
  2179. nv_link_irq(dev);
  2180. spin_unlock(&np->lock);
  2181. }
  2182. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2183. spin_lock(&np->lock);
  2184. nv_linkchange(dev);
  2185. spin_unlock(&np->lock);
  2186. np->link_timeout = jiffies + LINK_TIMEOUT;
  2187. }
  2188. if (events & (NVREG_IRQ_TX_ERR)) {
  2189. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2190. dev->name, events);
  2191. }
  2192. if (events & (NVREG_IRQ_UNKNOWN)) {
  2193. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2194. dev->name, events);
  2195. }
  2196. #ifdef CONFIG_FORCEDETH_NAPI
  2197. if (events & NVREG_IRQ_RX_ALL) {
  2198. netif_rx_schedule(dev);
  2199. /* Disable furthur receive irq's */
  2200. spin_lock(&np->lock);
  2201. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2202. if (np->msi_flags & NV_MSI_X_ENABLED)
  2203. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2204. else
  2205. writel(np->irqmask, base + NvRegIrqMask);
  2206. spin_unlock(&np->lock);
  2207. }
  2208. #else
  2209. nv_rx_process(dev, dev->weight);
  2210. if (nv_alloc_rx(dev)) {
  2211. spin_lock(&np->lock);
  2212. if (!np->in_shutdown)
  2213. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2214. spin_unlock(&np->lock);
  2215. }
  2216. #endif
  2217. if (i > max_interrupt_work) {
  2218. spin_lock(&np->lock);
  2219. /* disable interrupts on the nic */
  2220. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2221. writel(0, base + NvRegIrqMask);
  2222. else
  2223. writel(np->irqmask, base + NvRegIrqMask);
  2224. pci_push(base);
  2225. if (!np->in_shutdown) {
  2226. np->nic_poll_irq = np->irqmask;
  2227. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2228. }
  2229. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2230. spin_unlock(&np->lock);
  2231. break;
  2232. }
  2233. }
  2234. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2235. return IRQ_RETVAL(i);
  2236. }
  2237. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2238. {
  2239. struct net_device *dev = (struct net_device *) data;
  2240. struct fe_priv *np = netdev_priv(dev);
  2241. u8 __iomem *base = get_hwbase(dev);
  2242. u32 events;
  2243. int i;
  2244. unsigned long flags;
  2245. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2246. for (i=0; ; i++) {
  2247. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2248. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2249. pci_push(base);
  2250. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2251. if (!(events & np->irqmask))
  2252. break;
  2253. spin_lock_irqsave(&np->lock, flags);
  2254. nv_tx_done(dev);
  2255. spin_unlock_irqrestore(&np->lock, flags);
  2256. if (events & (NVREG_IRQ_TX_ERR)) {
  2257. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2258. dev->name, events);
  2259. }
  2260. if (i > max_interrupt_work) {
  2261. spin_lock_irqsave(&np->lock, flags);
  2262. /* disable interrupts on the nic */
  2263. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2264. pci_push(base);
  2265. if (!np->in_shutdown) {
  2266. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2267. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2268. }
  2269. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2270. spin_unlock_irqrestore(&np->lock, flags);
  2271. break;
  2272. }
  2273. }
  2274. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2275. return IRQ_RETVAL(i);
  2276. }
  2277. #ifdef CONFIG_FORCEDETH_NAPI
  2278. static int nv_napi_poll(struct net_device *dev, int *budget)
  2279. {
  2280. int pkts, limit = min(*budget, dev->quota);
  2281. struct fe_priv *np = netdev_priv(dev);
  2282. u8 __iomem *base = get_hwbase(dev);
  2283. pkts = nv_rx_process(dev, limit);
  2284. if (nv_alloc_rx(dev)) {
  2285. spin_lock_irq(&np->lock);
  2286. if (!np->in_shutdown)
  2287. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2288. spin_unlock_irq(&np->lock);
  2289. }
  2290. if (pkts < limit) {
  2291. /* all done, no more packets present */
  2292. netif_rx_complete(dev);
  2293. /* re-enable receive interrupts */
  2294. spin_lock_irq(&np->lock);
  2295. np->irqmask |= NVREG_IRQ_RX_ALL;
  2296. if (np->msi_flags & NV_MSI_X_ENABLED)
  2297. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2298. else
  2299. writel(np->irqmask, base + NvRegIrqMask);
  2300. spin_unlock_irq(&np->lock);
  2301. return 0;
  2302. } else {
  2303. /* used up our quantum, so reschedule */
  2304. dev->quota -= pkts;
  2305. *budget -= pkts;
  2306. return 1;
  2307. }
  2308. }
  2309. #endif
  2310. #ifdef CONFIG_FORCEDETH_NAPI
  2311. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2312. {
  2313. struct net_device *dev = (struct net_device *) data;
  2314. u8 __iomem *base = get_hwbase(dev);
  2315. u32 events;
  2316. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2317. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2318. if (events) {
  2319. netif_rx_schedule(dev);
  2320. /* disable receive interrupts on the nic */
  2321. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2322. pci_push(base);
  2323. }
  2324. return IRQ_HANDLED;
  2325. }
  2326. #else
  2327. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2328. {
  2329. struct net_device *dev = (struct net_device *) data;
  2330. struct fe_priv *np = netdev_priv(dev);
  2331. u8 __iomem *base = get_hwbase(dev);
  2332. u32 events;
  2333. int i;
  2334. unsigned long flags;
  2335. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2336. for (i=0; ; i++) {
  2337. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2338. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2339. pci_push(base);
  2340. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  2341. if (!(events & np->irqmask))
  2342. break;
  2343. nv_rx_process(dev, dev->weight);
  2344. if (nv_alloc_rx(dev)) {
  2345. spin_lock_irqsave(&np->lock, flags);
  2346. if (!np->in_shutdown)
  2347. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2348. spin_unlock_irqrestore(&np->lock, flags);
  2349. }
  2350. if (i > max_interrupt_work) {
  2351. spin_lock_irqsave(&np->lock, flags);
  2352. /* disable interrupts on the nic */
  2353. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2354. pci_push(base);
  2355. if (!np->in_shutdown) {
  2356. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  2357. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2358. }
  2359. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  2360. spin_unlock_irqrestore(&np->lock, flags);
  2361. break;
  2362. }
  2363. }
  2364. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  2365. return IRQ_RETVAL(i);
  2366. }
  2367. #endif
  2368. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  2369. {
  2370. struct net_device *dev = (struct net_device *) data;
  2371. struct fe_priv *np = netdev_priv(dev);
  2372. u8 __iomem *base = get_hwbase(dev);
  2373. u32 events;
  2374. int i;
  2375. unsigned long flags;
  2376. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  2377. for (i=0; ; i++) {
  2378. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  2379. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  2380. pci_push(base);
  2381. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2382. if (!(events & np->irqmask))
  2383. break;
  2384. if (events & NVREG_IRQ_LINK) {
  2385. spin_lock_irqsave(&np->lock, flags);
  2386. nv_link_irq(dev);
  2387. spin_unlock_irqrestore(&np->lock, flags);
  2388. }
  2389. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  2390. spin_lock_irqsave(&np->lock, flags);
  2391. nv_linkchange(dev);
  2392. spin_unlock_irqrestore(&np->lock, flags);
  2393. np->link_timeout = jiffies + LINK_TIMEOUT;
  2394. }
  2395. if (events & (NVREG_IRQ_UNKNOWN)) {
  2396. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2397. dev->name, events);
  2398. }
  2399. if (i > max_interrupt_work) {
  2400. spin_lock_irqsave(&np->lock, flags);
  2401. /* disable interrupts on the nic */
  2402. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  2403. pci_push(base);
  2404. if (!np->in_shutdown) {
  2405. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  2406. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2407. }
  2408. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  2409. spin_unlock_irqrestore(&np->lock, flags);
  2410. break;
  2411. }
  2412. }
  2413. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  2414. return IRQ_RETVAL(i);
  2415. }
  2416. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  2417. {
  2418. struct net_device *dev = (struct net_device *) data;
  2419. struct fe_priv *np = netdev_priv(dev);
  2420. u8 __iomem *base = get_hwbase(dev);
  2421. u32 events;
  2422. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  2423. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2424. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2425. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  2426. } else {
  2427. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2428. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  2429. }
  2430. pci_push(base);
  2431. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2432. if (!(events & NVREG_IRQ_TIMER))
  2433. return IRQ_RETVAL(0);
  2434. spin_lock(&np->lock);
  2435. np->intr_test = 1;
  2436. spin_unlock(&np->lock);
  2437. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  2438. return IRQ_RETVAL(1);
  2439. }
  2440. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  2441. {
  2442. u8 __iomem *base = get_hwbase(dev);
  2443. int i;
  2444. u32 msixmap = 0;
  2445. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  2446. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  2447. * the remaining 8 interrupts.
  2448. */
  2449. for (i = 0; i < 8; i++) {
  2450. if ((irqmask >> i) & 0x1) {
  2451. msixmap |= vector << (i << 2);
  2452. }
  2453. }
  2454. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  2455. msixmap = 0;
  2456. for (i = 0; i < 8; i++) {
  2457. if ((irqmask >> (i + 8)) & 0x1) {
  2458. msixmap |= vector << (i << 2);
  2459. }
  2460. }
  2461. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  2462. }
  2463. static int nv_request_irq(struct net_device *dev, int intr_test)
  2464. {
  2465. struct fe_priv *np = get_nvpriv(dev);
  2466. u8 __iomem *base = get_hwbase(dev);
  2467. int ret = 1;
  2468. int i;
  2469. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  2470. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2471. np->msi_x_entry[i].entry = i;
  2472. }
  2473. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  2474. np->msi_flags |= NV_MSI_X_ENABLED;
  2475. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  2476. /* Request irq for rx handling */
  2477. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  2478. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  2479. pci_disable_msix(np->pci_dev);
  2480. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2481. goto out_err;
  2482. }
  2483. /* Request irq for tx handling */
  2484. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  2485. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  2486. pci_disable_msix(np->pci_dev);
  2487. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2488. goto out_free_rx;
  2489. }
  2490. /* Request irq for link and timer handling */
  2491. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  2492. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  2493. pci_disable_msix(np->pci_dev);
  2494. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2495. goto out_free_tx;
  2496. }
  2497. /* map interrupts to their respective vector */
  2498. writel(0, base + NvRegMSIXMap0);
  2499. writel(0, base + NvRegMSIXMap1);
  2500. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  2501. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  2502. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  2503. } else {
  2504. /* Request irq for all interrupts */
  2505. if ((!intr_test &&
  2506. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2507. (intr_test &&
  2508. request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2509. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2510. pci_disable_msix(np->pci_dev);
  2511. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2512. goto out_err;
  2513. }
  2514. /* map interrupts to vector 0 */
  2515. writel(0, base + NvRegMSIXMap0);
  2516. writel(0, base + NvRegMSIXMap1);
  2517. }
  2518. }
  2519. }
  2520. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  2521. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  2522. np->msi_flags |= NV_MSI_ENABLED;
  2523. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2524. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0)) {
  2525. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  2526. pci_disable_msi(np->pci_dev);
  2527. np->msi_flags &= ~NV_MSI_ENABLED;
  2528. goto out_err;
  2529. }
  2530. /* map interrupts to vector 0 */
  2531. writel(0, base + NvRegMSIMap0);
  2532. writel(0, base + NvRegMSIMap1);
  2533. /* enable msi vector 0 */
  2534. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  2535. }
  2536. }
  2537. if (ret != 0) {
  2538. if ((!intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq, IRQF_SHARED, dev->name, dev) != 0) ||
  2539. (intr_test && request_irq(np->pci_dev->irq, &nv_nic_irq_test, IRQF_SHARED, dev->name, dev) != 0))
  2540. goto out_err;
  2541. }
  2542. return 0;
  2543. out_free_tx:
  2544. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  2545. out_free_rx:
  2546. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  2547. out_err:
  2548. return 1;
  2549. }
  2550. static void nv_free_irq(struct net_device *dev)
  2551. {
  2552. struct fe_priv *np = get_nvpriv(dev);
  2553. int i;
  2554. if (np->msi_flags & NV_MSI_X_ENABLED) {
  2555. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  2556. free_irq(np->msi_x_entry[i].vector, dev);
  2557. }
  2558. pci_disable_msix(np->pci_dev);
  2559. np->msi_flags &= ~NV_MSI_X_ENABLED;
  2560. } else {
  2561. free_irq(np->pci_dev->irq, dev);
  2562. if (np->msi_flags & NV_MSI_ENABLED) {
  2563. pci_disable_msi(np->pci_dev);
  2564. np->msi_flags &= ~NV_MSI_ENABLED;
  2565. }
  2566. }
  2567. }
  2568. static void nv_do_nic_poll(unsigned long data)
  2569. {
  2570. struct net_device *dev = (struct net_device *) data;
  2571. struct fe_priv *np = netdev_priv(dev);
  2572. u8 __iomem *base = get_hwbase(dev);
  2573. u32 mask = 0;
  2574. /*
  2575. * First disable irq(s) and then
  2576. * reenable interrupts on the nic, we have to do this before calling
  2577. * nv_nic_irq because that may decide to do otherwise
  2578. */
  2579. if (!using_multi_irqs(dev)) {
  2580. if (np->msi_flags & NV_MSI_X_ENABLED)
  2581. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2582. else
  2583. disable_irq_lockdep(dev->irq);
  2584. mask = np->irqmask;
  2585. } else {
  2586. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2587. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2588. mask |= NVREG_IRQ_RX_ALL;
  2589. }
  2590. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2591. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2592. mask |= NVREG_IRQ_TX_ALL;
  2593. }
  2594. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2595. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2596. mask |= NVREG_IRQ_OTHER;
  2597. }
  2598. }
  2599. np->nic_poll_irq = 0;
  2600. /* FIXME: Do we need synchronize_irq(dev->irq) here? */
  2601. writel(mask, base + NvRegIrqMask);
  2602. pci_push(base);
  2603. if (!using_multi_irqs(dev)) {
  2604. nv_nic_irq(0, dev);
  2605. if (np->msi_flags & NV_MSI_X_ENABLED)
  2606. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  2607. else
  2608. enable_irq_lockdep(dev->irq);
  2609. } else {
  2610. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  2611. nv_nic_irq_rx(0, dev);
  2612. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  2613. }
  2614. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  2615. nv_nic_irq_tx(0, dev);
  2616. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  2617. }
  2618. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  2619. nv_nic_irq_other(0, dev);
  2620. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  2621. }
  2622. }
  2623. }
  2624. #ifdef CONFIG_NET_POLL_CONTROLLER
  2625. static void nv_poll_controller(struct net_device *dev)
  2626. {
  2627. nv_do_nic_poll((unsigned long) dev);
  2628. }
  2629. #endif
  2630. static void nv_do_stats_poll(unsigned long data)
  2631. {
  2632. struct net_device *dev = (struct net_device *) data;
  2633. struct fe_priv *np = netdev_priv(dev);
  2634. u8 __iomem *base = get_hwbase(dev);
  2635. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  2636. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  2637. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  2638. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  2639. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  2640. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  2641. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  2642. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  2643. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  2644. np->estats.tx_deferral += readl(base + NvRegTxDef);
  2645. np->estats.tx_packets += readl(base + NvRegTxFrame);
  2646. np->estats.tx_pause += readl(base + NvRegTxPause);
  2647. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  2648. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  2649. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  2650. np->estats.rx_runt += readl(base + NvRegRxRunt);
  2651. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  2652. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  2653. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  2654. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  2655. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  2656. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  2657. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  2658. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  2659. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  2660. np->estats.rx_pause += readl(base + NvRegRxPause);
  2661. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  2662. np->estats.rx_packets =
  2663. np->estats.rx_unicast +
  2664. np->estats.rx_multicast +
  2665. np->estats.rx_broadcast;
  2666. np->estats.rx_errors_total =
  2667. np->estats.rx_crc_errors +
  2668. np->estats.rx_over_errors +
  2669. np->estats.rx_frame_error +
  2670. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  2671. np->estats.rx_late_collision +
  2672. np->estats.rx_runt +
  2673. np->estats.rx_frame_too_long;
  2674. if (!np->in_shutdown)
  2675. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  2676. }
  2677. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2678. {
  2679. struct fe_priv *np = netdev_priv(dev);
  2680. strcpy(info->driver, "forcedeth");
  2681. strcpy(info->version, FORCEDETH_VERSION);
  2682. strcpy(info->bus_info, pci_name(np->pci_dev));
  2683. }
  2684. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2685. {
  2686. struct fe_priv *np = netdev_priv(dev);
  2687. wolinfo->supported = WAKE_MAGIC;
  2688. spin_lock_irq(&np->lock);
  2689. if (np->wolenabled)
  2690. wolinfo->wolopts = WAKE_MAGIC;
  2691. spin_unlock_irq(&np->lock);
  2692. }
  2693. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  2694. {
  2695. struct fe_priv *np = netdev_priv(dev);
  2696. u8 __iomem *base = get_hwbase(dev);
  2697. u32 flags = 0;
  2698. if (wolinfo->wolopts == 0) {
  2699. np->wolenabled = 0;
  2700. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  2701. np->wolenabled = 1;
  2702. flags = NVREG_WAKEUPFLAGS_ENABLE;
  2703. }
  2704. if (netif_running(dev)) {
  2705. spin_lock_irq(&np->lock);
  2706. writel(flags, base + NvRegWakeUpFlags);
  2707. spin_unlock_irq(&np->lock);
  2708. }
  2709. return 0;
  2710. }
  2711. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2712. {
  2713. struct fe_priv *np = netdev_priv(dev);
  2714. int adv;
  2715. spin_lock_irq(&np->lock);
  2716. ecmd->port = PORT_MII;
  2717. if (!netif_running(dev)) {
  2718. /* We do not track link speed / duplex setting if the
  2719. * interface is disabled. Force a link check */
  2720. if (nv_update_linkspeed(dev)) {
  2721. if (!netif_carrier_ok(dev))
  2722. netif_carrier_on(dev);
  2723. } else {
  2724. if (netif_carrier_ok(dev))
  2725. netif_carrier_off(dev);
  2726. }
  2727. }
  2728. if (netif_carrier_ok(dev)) {
  2729. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  2730. case NVREG_LINKSPEED_10:
  2731. ecmd->speed = SPEED_10;
  2732. break;
  2733. case NVREG_LINKSPEED_100:
  2734. ecmd->speed = SPEED_100;
  2735. break;
  2736. case NVREG_LINKSPEED_1000:
  2737. ecmd->speed = SPEED_1000;
  2738. break;
  2739. }
  2740. ecmd->duplex = DUPLEX_HALF;
  2741. if (np->duplex)
  2742. ecmd->duplex = DUPLEX_FULL;
  2743. } else {
  2744. ecmd->speed = -1;
  2745. ecmd->duplex = -1;
  2746. }
  2747. ecmd->autoneg = np->autoneg;
  2748. ecmd->advertising = ADVERTISED_MII;
  2749. if (np->autoneg) {
  2750. ecmd->advertising |= ADVERTISED_Autoneg;
  2751. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2752. if (adv & ADVERTISE_10HALF)
  2753. ecmd->advertising |= ADVERTISED_10baseT_Half;
  2754. if (adv & ADVERTISE_10FULL)
  2755. ecmd->advertising |= ADVERTISED_10baseT_Full;
  2756. if (adv & ADVERTISE_100HALF)
  2757. ecmd->advertising |= ADVERTISED_100baseT_Half;
  2758. if (adv & ADVERTISE_100FULL)
  2759. ecmd->advertising |= ADVERTISED_100baseT_Full;
  2760. if (np->gigabit == PHY_GIGABIT) {
  2761. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2762. if (adv & ADVERTISE_1000FULL)
  2763. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  2764. }
  2765. }
  2766. ecmd->supported = (SUPPORTED_Autoneg |
  2767. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2768. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2769. SUPPORTED_MII);
  2770. if (np->gigabit == PHY_GIGABIT)
  2771. ecmd->supported |= SUPPORTED_1000baseT_Full;
  2772. ecmd->phy_address = np->phyaddr;
  2773. ecmd->transceiver = XCVR_EXTERNAL;
  2774. /* ignore maxtxpkt, maxrxpkt for now */
  2775. spin_unlock_irq(&np->lock);
  2776. return 0;
  2777. }
  2778. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2779. {
  2780. struct fe_priv *np = netdev_priv(dev);
  2781. if (ecmd->port != PORT_MII)
  2782. return -EINVAL;
  2783. if (ecmd->transceiver != XCVR_EXTERNAL)
  2784. return -EINVAL;
  2785. if (ecmd->phy_address != np->phyaddr) {
  2786. /* TODO: support switching between multiple phys. Should be
  2787. * trivial, but not enabled due to lack of test hardware. */
  2788. return -EINVAL;
  2789. }
  2790. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2791. u32 mask;
  2792. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  2793. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  2794. if (np->gigabit == PHY_GIGABIT)
  2795. mask |= ADVERTISED_1000baseT_Full;
  2796. if ((ecmd->advertising & mask) == 0)
  2797. return -EINVAL;
  2798. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  2799. /* Note: autonegotiation disable, speed 1000 intentionally
  2800. * forbidden - noone should need that. */
  2801. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  2802. return -EINVAL;
  2803. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  2804. return -EINVAL;
  2805. } else {
  2806. return -EINVAL;
  2807. }
  2808. netif_carrier_off(dev);
  2809. if (netif_running(dev)) {
  2810. nv_disable_irq(dev);
  2811. netif_tx_lock_bh(dev);
  2812. spin_lock(&np->lock);
  2813. /* stop engines */
  2814. nv_stop_rx(dev);
  2815. nv_stop_tx(dev);
  2816. spin_unlock(&np->lock);
  2817. netif_tx_unlock_bh(dev);
  2818. }
  2819. if (ecmd->autoneg == AUTONEG_ENABLE) {
  2820. int adv, bmcr;
  2821. np->autoneg = 1;
  2822. /* advertise only what has been requested */
  2823. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2824. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2825. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  2826. adv |= ADVERTISE_10HALF;
  2827. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  2828. adv |= ADVERTISE_10FULL;
  2829. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  2830. adv |= ADVERTISE_100HALF;
  2831. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  2832. adv |= ADVERTISE_100FULL;
  2833. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  2834. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2835. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2836. adv |= ADVERTISE_PAUSE_ASYM;
  2837. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2838. if (np->gigabit == PHY_GIGABIT) {
  2839. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2840. adv &= ~ADVERTISE_1000FULL;
  2841. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  2842. adv |= ADVERTISE_1000FULL;
  2843. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2844. }
  2845. if (netif_running(dev))
  2846. printk(KERN_INFO "%s: link down.\n", dev->name);
  2847. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2848. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  2849. bmcr |= BMCR_ANENABLE;
  2850. /* reset the phy in order for settings to stick,
  2851. * and cause autoneg to start */
  2852. if (phy_reset(dev, bmcr)) {
  2853. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2854. return -EINVAL;
  2855. }
  2856. } else {
  2857. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2858. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2859. }
  2860. } else {
  2861. int adv, bmcr;
  2862. np->autoneg = 0;
  2863. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2864. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  2865. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  2866. adv |= ADVERTISE_10HALF;
  2867. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  2868. adv |= ADVERTISE_10FULL;
  2869. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  2870. adv |= ADVERTISE_100HALF;
  2871. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  2872. adv |= ADVERTISE_100FULL;
  2873. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  2874. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  2875. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  2876. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2877. }
  2878. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  2879. adv |= ADVERTISE_PAUSE_ASYM;
  2880. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2881. }
  2882. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  2883. np->fixed_mode = adv;
  2884. if (np->gigabit == PHY_GIGABIT) {
  2885. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2886. adv &= ~ADVERTISE_1000FULL;
  2887. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  2888. }
  2889. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2890. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  2891. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  2892. bmcr |= BMCR_FULLDPLX;
  2893. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  2894. bmcr |= BMCR_SPEED100;
  2895. if (np->phy_oui == PHY_OUI_MARVELL) {
  2896. /* reset the phy in order for forced mode settings to stick */
  2897. if (phy_reset(dev, bmcr)) {
  2898. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2899. return -EINVAL;
  2900. }
  2901. } else {
  2902. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2903. if (netif_running(dev)) {
  2904. /* Wait a bit and then reconfigure the nic. */
  2905. udelay(10);
  2906. nv_linkchange(dev);
  2907. }
  2908. }
  2909. }
  2910. if (netif_running(dev)) {
  2911. nv_start_rx(dev);
  2912. nv_start_tx(dev);
  2913. nv_enable_irq(dev);
  2914. }
  2915. return 0;
  2916. }
  2917. #define FORCEDETH_REGS_VER 1
  2918. static int nv_get_regs_len(struct net_device *dev)
  2919. {
  2920. struct fe_priv *np = netdev_priv(dev);
  2921. return np->register_size;
  2922. }
  2923. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  2924. {
  2925. struct fe_priv *np = netdev_priv(dev);
  2926. u8 __iomem *base = get_hwbase(dev);
  2927. u32 *rbuf = buf;
  2928. int i;
  2929. regs->version = FORCEDETH_REGS_VER;
  2930. spin_lock_irq(&np->lock);
  2931. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  2932. rbuf[i] = readl(base + i*sizeof(u32));
  2933. spin_unlock_irq(&np->lock);
  2934. }
  2935. static int nv_nway_reset(struct net_device *dev)
  2936. {
  2937. struct fe_priv *np = netdev_priv(dev);
  2938. int ret;
  2939. if (np->autoneg) {
  2940. int bmcr;
  2941. netif_carrier_off(dev);
  2942. if (netif_running(dev)) {
  2943. nv_disable_irq(dev);
  2944. netif_tx_lock_bh(dev);
  2945. spin_lock(&np->lock);
  2946. /* stop engines */
  2947. nv_stop_rx(dev);
  2948. nv_stop_tx(dev);
  2949. spin_unlock(&np->lock);
  2950. netif_tx_unlock_bh(dev);
  2951. printk(KERN_INFO "%s: link down.\n", dev->name);
  2952. }
  2953. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  2954. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  2955. bmcr |= BMCR_ANENABLE;
  2956. /* reset the phy in order for settings to stick*/
  2957. if (phy_reset(dev, bmcr)) {
  2958. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  2959. return -EINVAL;
  2960. }
  2961. } else {
  2962. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  2963. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  2964. }
  2965. if (netif_running(dev)) {
  2966. nv_start_rx(dev);
  2967. nv_start_tx(dev);
  2968. nv_enable_irq(dev);
  2969. }
  2970. ret = 0;
  2971. } else {
  2972. ret = -EINVAL;
  2973. }
  2974. return ret;
  2975. }
  2976. static int nv_set_tso(struct net_device *dev, u32 value)
  2977. {
  2978. struct fe_priv *np = netdev_priv(dev);
  2979. if ((np->driver_data & DEV_HAS_CHECKSUM))
  2980. return ethtool_op_set_tso(dev, value);
  2981. else
  2982. return -EOPNOTSUPP;
  2983. }
  2984. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2985. {
  2986. struct fe_priv *np = netdev_priv(dev);
  2987. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2988. ring->rx_mini_max_pending = 0;
  2989. ring->rx_jumbo_max_pending = 0;
  2990. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  2991. ring->rx_pending = np->rx_ring_size;
  2992. ring->rx_mini_pending = 0;
  2993. ring->rx_jumbo_pending = 0;
  2994. ring->tx_pending = np->tx_ring_size;
  2995. }
  2996. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  2997. {
  2998. struct fe_priv *np = netdev_priv(dev);
  2999. u8 __iomem *base = get_hwbase(dev);
  3000. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff, *rx_dma, *tx_dma, *tx_dma_len;
  3001. dma_addr_t ring_addr;
  3002. if (ring->rx_pending < RX_RING_MIN ||
  3003. ring->tx_pending < TX_RING_MIN ||
  3004. ring->rx_mini_pending != 0 ||
  3005. ring->rx_jumbo_pending != 0 ||
  3006. (np->desc_ver == DESC_VER_1 &&
  3007. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3008. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3009. (np->desc_ver != DESC_VER_1 &&
  3010. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3011. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3012. return -EINVAL;
  3013. }
  3014. /* allocate new rings */
  3015. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3016. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3017. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3018. &ring_addr);
  3019. } else {
  3020. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3021. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3022. &ring_addr);
  3023. }
  3024. rx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->rx_pending, GFP_KERNEL);
  3025. rx_dma = kmalloc(sizeof(dma_addr_t) * ring->rx_pending, GFP_KERNEL);
  3026. tx_skbuff = kmalloc(sizeof(struct sk_buff*) * ring->tx_pending, GFP_KERNEL);
  3027. tx_dma = kmalloc(sizeof(dma_addr_t) * ring->tx_pending, GFP_KERNEL);
  3028. tx_dma_len = kmalloc(sizeof(unsigned int) * ring->tx_pending, GFP_KERNEL);
  3029. if (!rxtx_ring || !rx_skbuff || !rx_dma || !tx_skbuff || !tx_dma || !tx_dma_len) {
  3030. /* fall back to old rings */
  3031. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3032. if (rxtx_ring)
  3033. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3034. rxtx_ring, ring_addr);
  3035. } else {
  3036. if (rxtx_ring)
  3037. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3038. rxtx_ring, ring_addr);
  3039. }
  3040. if (rx_skbuff)
  3041. kfree(rx_skbuff);
  3042. if (rx_dma)
  3043. kfree(rx_dma);
  3044. if (tx_skbuff)
  3045. kfree(tx_skbuff);
  3046. if (tx_dma)
  3047. kfree(tx_dma);
  3048. if (tx_dma_len)
  3049. kfree(tx_dma_len);
  3050. goto exit;
  3051. }
  3052. if (netif_running(dev)) {
  3053. nv_disable_irq(dev);
  3054. netif_tx_lock_bh(dev);
  3055. spin_lock(&np->lock);
  3056. /* stop engines */
  3057. nv_stop_rx(dev);
  3058. nv_stop_tx(dev);
  3059. nv_txrx_reset(dev);
  3060. /* drain queues */
  3061. nv_drain_rx(dev);
  3062. nv_drain_tx(dev);
  3063. /* delete queues */
  3064. free_rings(dev);
  3065. }
  3066. /* set new values */
  3067. np->rx_ring_size = ring->rx_pending;
  3068. np->tx_ring_size = ring->tx_pending;
  3069. np->tx_limit_stop = ring->tx_pending - TX_LIMIT_DIFFERENCE;
  3070. np->tx_limit_start = ring->tx_pending - TX_LIMIT_DIFFERENCE - 1;
  3071. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3072. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3073. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3074. } else {
  3075. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3076. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3077. }
  3078. np->rx_skbuff = (struct sk_buff**)rx_skbuff;
  3079. np->rx_dma = (dma_addr_t*)rx_dma;
  3080. np->tx_skbuff = (struct sk_buff**)tx_skbuff;
  3081. np->tx_dma = (dma_addr_t*)tx_dma;
  3082. np->tx_dma_len = (unsigned int*)tx_dma_len;
  3083. np->ring_addr = ring_addr;
  3084. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3085. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3086. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3087. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3088. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3089. if (netif_running(dev)) {
  3090. /* reinit driver view of the queues */
  3091. set_bufsize(dev);
  3092. if (nv_init_ring(dev)) {
  3093. if (!np->in_shutdown)
  3094. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3095. }
  3096. /* reinit nic view of the queues */
  3097. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3098. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3099. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3100. base + NvRegRingSizes);
  3101. pci_push(base);
  3102. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3103. pci_push(base);
  3104. /* restart engines */
  3105. nv_start_rx(dev);
  3106. nv_start_tx(dev);
  3107. spin_unlock(&np->lock);
  3108. netif_tx_unlock_bh(dev);
  3109. nv_enable_irq(dev);
  3110. }
  3111. return 0;
  3112. exit:
  3113. return -ENOMEM;
  3114. }
  3115. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3116. {
  3117. struct fe_priv *np = netdev_priv(dev);
  3118. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3119. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3120. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3121. }
  3122. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3123. {
  3124. struct fe_priv *np = netdev_priv(dev);
  3125. int adv, bmcr;
  3126. if ((!np->autoneg && np->duplex == 0) ||
  3127. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3128. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3129. dev->name);
  3130. return -EINVAL;
  3131. }
  3132. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3133. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3134. return -EINVAL;
  3135. }
  3136. netif_carrier_off(dev);
  3137. if (netif_running(dev)) {
  3138. nv_disable_irq(dev);
  3139. netif_tx_lock_bh(dev);
  3140. spin_lock(&np->lock);
  3141. /* stop engines */
  3142. nv_stop_rx(dev);
  3143. nv_stop_tx(dev);
  3144. spin_unlock(&np->lock);
  3145. netif_tx_unlock_bh(dev);
  3146. }
  3147. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3148. if (pause->rx_pause)
  3149. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3150. if (pause->tx_pause)
  3151. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3152. if (np->autoneg && pause->autoneg) {
  3153. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3154. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3155. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3156. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3157. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3158. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3159. adv |= ADVERTISE_PAUSE_ASYM;
  3160. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3161. if (netif_running(dev))
  3162. printk(KERN_INFO "%s: link down.\n", dev->name);
  3163. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3164. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3165. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3166. } else {
  3167. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3168. if (pause->rx_pause)
  3169. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3170. if (pause->tx_pause)
  3171. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3172. if (!netif_running(dev))
  3173. nv_update_linkspeed(dev);
  3174. else
  3175. nv_update_pause(dev, np->pause_flags);
  3176. }
  3177. if (netif_running(dev)) {
  3178. nv_start_rx(dev);
  3179. nv_start_tx(dev);
  3180. nv_enable_irq(dev);
  3181. }
  3182. return 0;
  3183. }
  3184. static u32 nv_get_rx_csum(struct net_device *dev)
  3185. {
  3186. struct fe_priv *np = netdev_priv(dev);
  3187. return (np->rx_csum) != 0;
  3188. }
  3189. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3190. {
  3191. struct fe_priv *np = netdev_priv(dev);
  3192. u8 __iomem *base = get_hwbase(dev);
  3193. int retcode = 0;
  3194. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3195. if (data) {
  3196. np->rx_csum = 1;
  3197. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3198. } else {
  3199. np->rx_csum = 0;
  3200. /* vlan is dependent on rx checksum offload */
  3201. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3202. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3203. }
  3204. if (netif_running(dev)) {
  3205. spin_lock_irq(&np->lock);
  3206. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3207. spin_unlock_irq(&np->lock);
  3208. }
  3209. } else {
  3210. return -EINVAL;
  3211. }
  3212. return retcode;
  3213. }
  3214. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3215. {
  3216. struct fe_priv *np = netdev_priv(dev);
  3217. if (np->driver_data & DEV_HAS_CHECKSUM)
  3218. return ethtool_op_set_tx_hw_csum(dev, data);
  3219. else
  3220. return -EOPNOTSUPP;
  3221. }
  3222. static int nv_set_sg(struct net_device *dev, u32 data)
  3223. {
  3224. struct fe_priv *np = netdev_priv(dev);
  3225. if (np->driver_data & DEV_HAS_CHECKSUM)
  3226. return ethtool_op_set_sg(dev, data);
  3227. else
  3228. return -EOPNOTSUPP;
  3229. }
  3230. static int nv_get_stats_count(struct net_device *dev)
  3231. {
  3232. struct fe_priv *np = netdev_priv(dev);
  3233. if (np->driver_data & DEV_HAS_STATISTICS)
  3234. return sizeof(struct nv_ethtool_stats)/sizeof(u64);
  3235. else
  3236. return 0;
  3237. }
  3238. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3239. {
  3240. struct fe_priv *np = netdev_priv(dev);
  3241. /* update stats */
  3242. nv_do_stats_poll((unsigned long)dev);
  3243. memcpy(buffer, &np->estats, nv_get_stats_count(dev)*sizeof(u64));
  3244. }
  3245. static int nv_self_test_count(struct net_device *dev)
  3246. {
  3247. struct fe_priv *np = netdev_priv(dev);
  3248. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3249. return NV_TEST_COUNT_EXTENDED;
  3250. else
  3251. return NV_TEST_COUNT_BASE;
  3252. }
  3253. static int nv_link_test(struct net_device *dev)
  3254. {
  3255. struct fe_priv *np = netdev_priv(dev);
  3256. int mii_status;
  3257. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3258. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3259. /* check phy link status */
  3260. if (!(mii_status & BMSR_LSTATUS))
  3261. return 0;
  3262. else
  3263. return 1;
  3264. }
  3265. static int nv_register_test(struct net_device *dev)
  3266. {
  3267. u8 __iomem *base = get_hwbase(dev);
  3268. int i = 0;
  3269. u32 orig_read, new_read;
  3270. do {
  3271. orig_read = readl(base + nv_registers_test[i].reg);
  3272. /* xor with mask to toggle bits */
  3273. orig_read ^= nv_registers_test[i].mask;
  3274. writel(orig_read, base + nv_registers_test[i].reg);
  3275. new_read = readl(base + nv_registers_test[i].reg);
  3276. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3277. return 0;
  3278. /* restore original value */
  3279. orig_read ^= nv_registers_test[i].mask;
  3280. writel(orig_read, base + nv_registers_test[i].reg);
  3281. } while (nv_registers_test[++i].reg != 0);
  3282. return 1;
  3283. }
  3284. static int nv_interrupt_test(struct net_device *dev)
  3285. {
  3286. struct fe_priv *np = netdev_priv(dev);
  3287. u8 __iomem *base = get_hwbase(dev);
  3288. int ret = 1;
  3289. int testcnt;
  3290. u32 save_msi_flags, save_poll_interval = 0;
  3291. if (netif_running(dev)) {
  3292. /* free current irq */
  3293. nv_free_irq(dev);
  3294. save_poll_interval = readl(base+NvRegPollingInterval);
  3295. }
  3296. /* flag to test interrupt handler */
  3297. np->intr_test = 0;
  3298. /* setup test irq */
  3299. save_msi_flags = np->msi_flags;
  3300. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3301. np->msi_flags |= 0x001; /* setup 1 vector */
  3302. if (nv_request_irq(dev, 1))
  3303. return 0;
  3304. /* setup timer interrupt */
  3305. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3306. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3307. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3308. /* wait for at least one interrupt */
  3309. msleep(100);
  3310. spin_lock_irq(&np->lock);
  3311. /* flag should be set within ISR */
  3312. testcnt = np->intr_test;
  3313. if (!testcnt)
  3314. ret = 2;
  3315. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3316. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3317. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3318. else
  3319. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3320. spin_unlock_irq(&np->lock);
  3321. nv_free_irq(dev);
  3322. np->msi_flags = save_msi_flags;
  3323. if (netif_running(dev)) {
  3324. writel(save_poll_interval, base + NvRegPollingInterval);
  3325. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3326. /* restore original irq */
  3327. if (nv_request_irq(dev, 0))
  3328. return 0;
  3329. }
  3330. return ret;
  3331. }
  3332. static int nv_loopback_test(struct net_device *dev)
  3333. {
  3334. struct fe_priv *np = netdev_priv(dev);
  3335. u8 __iomem *base = get_hwbase(dev);
  3336. struct sk_buff *tx_skb, *rx_skb;
  3337. dma_addr_t test_dma_addr;
  3338. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  3339. u32 flags;
  3340. int len, i, pkt_len;
  3341. u8 *pkt_data;
  3342. u32 filter_flags = 0;
  3343. u32 misc1_flags = 0;
  3344. int ret = 1;
  3345. if (netif_running(dev)) {
  3346. nv_disable_irq(dev);
  3347. filter_flags = readl(base + NvRegPacketFilterFlags);
  3348. misc1_flags = readl(base + NvRegMisc1);
  3349. } else {
  3350. nv_txrx_reset(dev);
  3351. }
  3352. /* reinit driver view of the rx queue */
  3353. set_bufsize(dev);
  3354. nv_init_ring(dev);
  3355. /* setup hardware for loopback */
  3356. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  3357. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  3358. /* reinit nic view of the rx queue */
  3359. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3360. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3361. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3362. base + NvRegRingSizes);
  3363. pci_push(base);
  3364. /* restart rx engine */
  3365. nv_start_rx(dev);
  3366. nv_start_tx(dev);
  3367. /* setup packet for tx */
  3368. pkt_len = ETH_DATA_LEN;
  3369. tx_skb = dev_alloc_skb(pkt_len);
  3370. if (!tx_skb) {
  3371. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  3372. " of %s\n", dev->name);
  3373. ret = 0;
  3374. goto out;
  3375. }
  3376. pkt_data = skb_put(tx_skb, pkt_len);
  3377. for (i = 0; i < pkt_len; i++)
  3378. pkt_data[i] = (u8)(i & 0xff);
  3379. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  3380. tx_skb->end-tx_skb->data, PCI_DMA_FROMDEVICE);
  3381. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3382. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  3383. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3384. } else {
  3385. np->tx_ring.ex[0].bufhigh = cpu_to_le64(test_dma_addr) >> 32;
  3386. np->tx_ring.ex[0].buflow = cpu_to_le64(test_dma_addr) & 0x0FFFFFFFF;
  3387. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  3388. }
  3389. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3390. pci_push(get_hwbase(dev));
  3391. msleep(500);
  3392. /* check for rx of the packet */
  3393. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3394. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  3395. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  3396. } else {
  3397. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  3398. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  3399. }
  3400. if (flags & NV_RX_AVAIL) {
  3401. ret = 0;
  3402. } else if (np->desc_ver == DESC_VER_1) {
  3403. if (flags & NV_RX_ERROR)
  3404. ret = 0;
  3405. } else {
  3406. if (flags & NV_RX2_ERROR) {
  3407. ret = 0;
  3408. }
  3409. }
  3410. if (ret) {
  3411. if (len != pkt_len) {
  3412. ret = 0;
  3413. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  3414. dev->name, len, pkt_len);
  3415. } else {
  3416. rx_skb = np->rx_skbuff[0];
  3417. for (i = 0; i < pkt_len; i++) {
  3418. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  3419. ret = 0;
  3420. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  3421. dev->name, i);
  3422. break;
  3423. }
  3424. }
  3425. }
  3426. } else {
  3427. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  3428. }
  3429. pci_unmap_page(np->pci_dev, test_dma_addr,
  3430. tx_skb->end-tx_skb->data,
  3431. PCI_DMA_TODEVICE);
  3432. dev_kfree_skb_any(tx_skb);
  3433. out:
  3434. /* stop engines */
  3435. nv_stop_rx(dev);
  3436. nv_stop_tx(dev);
  3437. nv_txrx_reset(dev);
  3438. /* drain rx queue */
  3439. nv_drain_rx(dev);
  3440. nv_drain_tx(dev);
  3441. if (netif_running(dev)) {
  3442. writel(misc1_flags, base + NvRegMisc1);
  3443. writel(filter_flags, base + NvRegPacketFilterFlags);
  3444. nv_enable_irq(dev);
  3445. }
  3446. return ret;
  3447. }
  3448. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  3449. {
  3450. struct fe_priv *np = netdev_priv(dev);
  3451. u8 __iomem *base = get_hwbase(dev);
  3452. int result;
  3453. memset(buffer, 0, nv_self_test_count(dev)*sizeof(u64));
  3454. if (!nv_link_test(dev)) {
  3455. test->flags |= ETH_TEST_FL_FAILED;
  3456. buffer[0] = 1;
  3457. }
  3458. if (test->flags & ETH_TEST_FL_OFFLINE) {
  3459. if (netif_running(dev)) {
  3460. netif_stop_queue(dev);
  3461. netif_poll_disable(dev);
  3462. netif_tx_lock_bh(dev);
  3463. spin_lock_irq(&np->lock);
  3464. nv_disable_hw_interrupts(dev, np->irqmask);
  3465. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3466. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3467. } else {
  3468. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3469. }
  3470. /* stop engines */
  3471. nv_stop_rx(dev);
  3472. nv_stop_tx(dev);
  3473. nv_txrx_reset(dev);
  3474. /* drain rx queue */
  3475. nv_drain_rx(dev);
  3476. nv_drain_tx(dev);
  3477. spin_unlock_irq(&np->lock);
  3478. netif_tx_unlock_bh(dev);
  3479. }
  3480. if (!nv_register_test(dev)) {
  3481. test->flags |= ETH_TEST_FL_FAILED;
  3482. buffer[1] = 1;
  3483. }
  3484. result = nv_interrupt_test(dev);
  3485. if (result != 1) {
  3486. test->flags |= ETH_TEST_FL_FAILED;
  3487. buffer[2] = 1;
  3488. }
  3489. if (result == 0) {
  3490. /* bail out */
  3491. return;
  3492. }
  3493. if (!nv_loopback_test(dev)) {
  3494. test->flags |= ETH_TEST_FL_FAILED;
  3495. buffer[3] = 1;
  3496. }
  3497. if (netif_running(dev)) {
  3498. /* reinit driver view of the rx queue */
  3499. set_bufsize(dev);
  3500. if (nv_init_ring(dev)) {
  3501. if (!np->in_shutdown)
  3502. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3503. }
  3504. /* reinit nic view of the rx queue */
  3505. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3506. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3507. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3508. base + NvRegRingSizes);
  3509. pci_push(base);
  3510. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3511. pci_push(base);
  3512. /* restart rx engine */
  3513. nv_start_rx(dev);
  3514. nv_start_tx(dev);
  3515. netif_start_queue(dev);
  3516. netif_poll_enable(dev);
  3517. nv_enable_hw_interrupts(dev, np->irqmask);
  3518. }
  3519. }
  3520. }
  3521. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  3522. {
  3523. switch (stringset) {
  3524. case ETH_SS_STATS:
  3525. memcpy(buffer, &nv_estats_str, nv_get_stats_count(dev)*sizeof(struct nv_ethtool_str));
  3526. break;
  3527. case ETH_SS_TEST:
  3528. memcpy(buffer, &nv_etests_str, nv_self_test_count(dev)*sizeof(struct nv_ethtool_str));
  3529. break;
  3530. }
  3531. }
  3532. static const struct ethtool_ops ops = {
  3533. .get_drvinfo = nv_get_drvinfo,
  3534. .get_link = ethtool_op_get_link,
  3535. .get_wol = nv_get_wol,
  3536. .set_wol = nv_set_wol,
  3537. .get_settings = nv_get_settings,
  3538. .set_settings = nv_set_settings,
  3539. .get_regs_len = nv_get_regs_len,
  3540. .get_regs = nv_get_regs,
  3541. .nway_reset = nv_nway_reset,
  3542. .get_perm_addr = ethtool_op_get_perm_addr,
  3543. .get_tso = ethtool_op_get_tso,
  3544. .set_tso = nv_set_tso,
  3545. .get_ringparam = nv_get_ringparam,
  3546. .set_ringparam = nv_set_ringparam,
  3547. .get_pauseparam = nv_get_pauseparam,
  3548. .set_pauseparam = nv_set_pauseparam,
  3549. .get_rx_csum = nv_get_rx_csum,
  3550. .set_rx_csum = nv_set_rx_csum,
  3551. .get_tx_csum = ethtool_op_get_tx_csum,
  3552. .set_tx_csum = nv_set_tx_csum,
  3553. .get_sg = ethtool_op_get_sg,
  3554. .set_sg = nv_set_sg,
  3555. .get_strings = nv_get_strings,
  3556. .get_stats_count = nv_get_stats_count,
  3557. .get_ethtool_stats = nv_get_ethtool_stats,
  3558. .self_test_count = nv_self_test_count,
  3559. .self_test = nv_self_test,
  3560. };
  3561. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  3562. {
  3563. struct fe_priv *np = get_nvpriv(dev);
  3564. spin_lock_irq(&np->lock);
  3565. /* save vlan group */
  3566. np->vlangrp = grp;
  3567. if (grp) {
  3568. /* enable vlan on MAC */
  3569. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  3570. } else {
  3571. /* disable vlan on MAC */
  3572. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  3573. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  3574. }
  3575. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3576. spin_unlock_irq(&np->lock);
  3577. };
  3578. static void nv_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  3579. {
  3580. /* nothing to do */
  3581. };
  3582. static int nv_open(struct net_device *dev)
  3583. {
  3584. struct fe_priv *np = netdev_priv(dev);
  3585. u8 __iomem *base = get_hwbase(dev);
  3586. int ret = 1;
  3587. int oom, i;
  3588. dprintk(KERN_DEBUG "nv_open: begin\n");
  3589. /* erase previous misconfiguration */
  3590. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3591. nv_mac_reset(dev);
  3592. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3593. writel(0, base + NvRegMulticastAddrB);
  3594. writel(0, base + NvRegMulticastMaskA);
  3595. writel(0, base + NvRegMulticastMaskB);
  3596. writel(0, base + NvRegPacketFilterFlags);
  3597. writel(0, base + NvRegTransmitterControl);
  3598. writel(0, base + NvRegReceiverControl);
  3599. writel(0, base + NvRegAdapterControl);
  3600. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  3601. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  3602. /* initialize descriptor rings */
  3603. set_bufsize(dev);
  3604. oom = nv_init_ring(dev);
  3605. writel(0, base + NvRegLinkSpeed);
  3606. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  3607. nv_txrx_reset(dev);
  3608. writel(0, base + NvRegUnknownSetupReg6);
  3609. np->in_shutdown = 0;
  3610. /* give hw rings */
  3611. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3612. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3613. base + NvRegRingSizes);
  3614. writel(np->linkspeed, base + NvRegLinkSpeed);
  3615. if (np->desc_ver == DESC_VER_1)
  3616. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  3617. else
  3618. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  3619. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3620. writel(np->vlanctl_bits, base + NvRegVlanControl);
  3621. pci_push(base);
  3622. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  3623. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  3624. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  3625. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  3626. writel(0, base + NvRegUnknownSetupReg4);
  3627. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3628. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3629. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  3630. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  3631. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  3632. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3633. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  3634. get_random_bytes(&i, sizeof(i));
  3635. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  3636. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  3637. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  3638. if (poll_interval == -1) {
  3639. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  3640. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  3641. else
  3642. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3643. }
  3644. else
  3645. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  3646. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3647. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  3648. base + NvRegAdapterControl);
  3649. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  3650. writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4);
  3651. if (np->wolenabled)
  3652. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  3653. i = readl(base + NvRegPowerState);
  3654. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  3655. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  3656. pci_push(base);
  3657. udelay(10);
  3658. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  3659. nv_disable_hw_interrupts(dev, np->irqmask);
  3660. pci_push(base);
  3661. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  3662. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3663. pci_push(base);
  3664. if (nv_request_irq(dev, 0)) {
  3665. goto out_drain;
  3666. }
  3667. /* ask for interrupts */
  3668. nv_enable_hw_interrupts(dev, np->irqmask);
  3669. spin_lock_irq(&np->lock);
  3670. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  3671. writel(0, base + NvRegMulticastAddrB);
  3672. writel(0, base + NvRegMulticastMaskA);
  3673. writel(0, base + NvRegMulticastMaskB);
  3674. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  3675. /* One manual link speed update: Interrupts are enabled, future link
  3676. * speed changes cause interrupts and are handled by nv_link_irq().
  3677. */
  3678. {
  3679. u32 miistat;
  3680. miistat = readl(base + NvRegMIIStatus);
  3681. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  3682. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  3683. }
  3684. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  3685. * to init hw */
  3686. np->linkspeed = 0;
  3687. ret = nv_update_linkspeed(dev);
  3688. nv_start_rx(dev);
  3689. nv_start_tx(dev);
  3690. netif_start_queue(dev);
  3691. netif_poll_enable(dev);
  3692. if (ret) {
  3693. netif_carrier_on(dev);
  3694. } else {
  3695. printk("%s: no link during initialization.\n", dev->name);
  3696. netif_carrier_off(dev);
  3697. }
  3698. if (oom)
  3699. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3700. /* start statistics timer */
  3701. if (np->driver_data & DEV_HAS_STATISTICS)
  3702. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3703. spin_unlock_irq(&np->lock);
  3704. return 0;
  3705. out_drain:
  3706. drain_ring(dev);
  3707. return ret;
  3708. }
  3709. static int nv_close(struct net_device *dev)
  3710. {
  3711. struct fe_priv *np = netdev_priv(dev);
  3712. u8 __iomem *base;
  3713. spin_lock_irq(&np->lock);
  3714. np->in_shutdown = 1;
  3715. spin_unlock_irq(&np->lock);
  3716. netif_poll_disable(dev);
  3717. synchronize_irq(dev->irq);
  3718. del_timer_sync(&np->oom_kick);
  3719. del_timer_sync(&np->nic_poll);
  3720. del_timer_sync(&np->stats_poll);
  3721. netif_stop_queue(dev);
  3722. spin_lock_irq(&np->lock);
  3723. nv_stop_tx(dev);
  3724. nv_stop_rx(dev);
  3725. nv_txrx_reset(dev);
  3726. /* disable interrupts on the nic or we will lock up */
  3727. base = get_hwbase(dev);
  3728. nv_disable_hw_interrupts(dev, np->irqmask);
  3729. pci_push(base);
  3730. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  3731. spin_unlock_irq(&np->lock);
  3732. nv_free_irq(dev);
  3733. drain_ring(dev);
  3734. if (np->wolenabled)
  3735. nv_start_rx(dev);
  3736. /* FIXME: power down nic */
  3737. return 0;
  3738. }
  3739. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  3740. {
  3741. struct net_device *dev;
  3742. struct fe_priv *np;
  3743. unsigned long addr;
  3744. u8 __iomem *base;
  3745. int err, i;
  3746. u32 powerstate, txreg;
  3747. dev = alloc_etherdev(sizeof(struct fe_priv));
  3748. err = -ENOMEM;
  3749. if (!dev)
  3750. goto out;
  3751. np = netdev_priv(dev);
  3752. np->pci_dev = pci_dev;
  3753. spin_lock_init(&np->lock);
  3754. SET_MODULE_OWNER(dev);
  3755. SET_NETDEV_DEV(dev, &pci_dev->dev);
  3756. init_timer(&np->oom_kick);
  3757. np->oom_kick.data = (unsigned long) dev;
  3758. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  3759. init_timer(&np->nic_poll);
  3760. np->nic_poll.data = (unsigned long) dev;
  3761. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  3762. init_timer(&np->stats_poll);
  3763. np->stats_poll.data = (unsigned long) dev;
  3764. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  3765. err = pci_enable_device(pci_dev);
  3766. if (err) {
  3767. printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n",
  3768. err, pci_name(pci_dev));
  3769. goto out_free;
  3770. }
  3771. pci_set_master(pci_dev);
  3772. err = pci_request_regions(pci_dev, DRV_NAME);
  3773. if (err < 0)
  3774. goto out_disable;
  3775. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS))
  3776. np->register_size = NV_PCI_REGSZ_VER2;
  3777. else
  3778. np->register_size = NV_PCI_REGSZ_VER1;
  3779. err = -EINVAL;
  3780. addr = 0;
  3781. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  3782. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  3783. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  3784. pci_resource_len(pci_dev, i),
  3785. pci_resource_flags(pci_dev, i));
  3786. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  3787. pci_resource_len(pci_dev, i) >= np->register_size) {
  3788. addr = pci_resource_start(pci_dev, i);
  3789. break;
  3790. }
  3791. }
  3792. if (i == DEVICE_COUNT_RESOURCE) {
  3793. printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n",
  3794. pci_name(pci_dev));
  3795. goto out_relreg;
  3796. }
  3797. /* copy of driver data */
  3798. np->driver_data = id->driver_data;
  3799. /* handle different descriptor versions */
  3800. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  3801. /* packet format 3: supports 40-bit addressing */
  3802. np->desc_ver = DESC_VER_3;
  3803. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  3804. if (dma_64bit) {
  3805. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3806. printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n",
  3807. pci_name(pci_dev));
  3808. } else {
  3809. dev->features |= NETIF_F_HIGHDMA;
  3810. printk(KERN_INFO "forcedeth: using HIGHDMA\n");
  3811. }
  3812. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  3813. printk(KERN_INFO "forcedeth: 64-bit DMA (consistent) failed, using 32-bit ring buffers for device %s.\n",
  3814. pci_name(pci_dev));
  3815. }
  3816. }
  3817. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  3818. /* packet format 2: supports jumbo frames */
  3819. np->desc_ver = DESC_VER_2;
  3820. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  3821. } else {
  3822. /* original packet format */
  3823. np->desc_ver = DESC_VER_1;
  3824. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  3825. }
  3826. np->pkt_limit = NV_PKTLIMIT_1;
  3827. if (id->driver_data & DEV_HAS_LARGEDESC)
  3828. np->pkt_limit = NV_PKTLIMIT_2;
  3829. if (id->driver_data & DEV_HAS_CHECKSUM) {
  3830. np->rx_csum = 1;
  3831. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3832. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  3833. #ifdef NETIF_F_TSO
  3834. dev->features |= NETIF_F_TSO;
  3835. #endif
  3836. }
  3837. np->vlanctl_bits = 0;
  3838. if (id->driver_data & DEV_HAS_VLAN) {
  3839. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  3840. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  3841. dev->vlan_rx_register = nv_vlan_rx_register;
  3842. dev->vlan_rx_kill_vid = nv_vlan_rx_kill_vid;
  3843. }
  3844. np->msi_flags = 0;
  3845. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  3846. np->msi_flags |= NV_MSI_CAPABLE;
  3847. }
  3848. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  3849. np->msi_flags |= NV_MSI_X_CAPABLE;
  3850. }
  3851. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  3852. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  3853. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  3854. }
  3855. err = -ENOMEM;
  3856. np->base = ioremap(addr, np->register_size);
  3857. if (!np->base)
  3858. goto out_relreg;
  3859. dev->base_addr = (unsigned long)np->base;
  3860. dev->irq = pci_dev->irq;
  3861. np->rx_ring_size = RX_RING_DEFAULT;
  3862. np->tx_ring_size = TX_RING_DEFAULT;
  3863. np->tx_limit_stop = np->tx_ring_size - TX_LIMIT_DIFFERENCE;
  3864. np->tx_limit_start = np->tx_ring_size - TX_LIMIT_DIFFERENCE - 1;
  3865. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3866. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  3867. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  3868. &np->ring_addr);
  3869. if (!np->rx_ring.orig)
  3870. goto out_unmap;
  3871. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3872. } else {
  3873. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  3874. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  3875. &np->ring_addr);
  3876. if (!np->rx_ring.ex)
  3877. goto out_unmap;
  3878. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3879. }
  3880. np->rx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->rx_ring_size, GFP_KERNEL);
  3881. np->rx_dma = kmalloc(sizeof(dma_addr_t) * np->rx_ring_size, GFP_KERNEL);
  3882. np->tx_skbuff = kmalloc(sizeof(struct sk_buff*) * np->tx_ring_size, GFP_KERNEL);
  3883. np->tx_dma = kmalloc(sizeof(dma_addr_t) * np->tx_ring_size, GFP_KERNEL);
  3884. np->tx_dma_len = kmalloc(sizeof(unsigned int) * np->tx_ring_size, GFP_KERNEL);
  3885. if (!np->rx_skbuff || !np->rx_dma || !np->tx_skbuff || !np->tx_dma || !np->tx_dma_len)
  3886. goto out_freering;
  3887. memset(np->rx_skbuff, 0, sizeof(struct sk_buff*) * np->rx_ring_size);
  3888. memset(np->rx_dma, 0, sizeof(dma_addr_t) * np->rx_ring_size);
  3889. memset(np->tx_skbuff, 0, sizeof(struct sk_buff*) * np->tx_ring_size);
  3890. memset(np->tx_dma, 0, sizeof(dma_addr_t) * np->tx_ring_size);
  3891. memset(np->tx_dma_len, 0, sizeof(unsigned int) * np->tx_ring_size);
  3892. dev->open = nv_open;
  3893. dev->stop = nv_close;
  3894. dev->hard_start_xmit = nv_start_xmit;
  3895. dev->get_stats = nv_get_stats;
  3896. dev->change_mtu = nv_change_mtu;
  3897. dev->set_mac_address = nv_set_mac_address;
  3898. dev->set_multicast_list = nv_set_multicast;
  3899. #ifdef CONFIG_NET_POLL_CONTROLLER
  3900. dev->poll_controller = nv_poll_controller;
  3901. #endif
  3902. dev->weight = 64;
  3903. #ifdef CONFIG_FORCEDETH_NAPI
  3904. dev->poll = nv_napi_poll;
  3905. #endif
  3906. SET_ETHTOOL_OPS(dev, &ops);
  3907. dev->tx_timeout = nv_tx_timeout;
  3908. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  3909. pci_set_drvdata(pci_dev, dev);
  3910. /* read the mac address */
  3911. base = get_hwbase(dev);
  3912. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  3913. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  3914. /* check the workaround bit for correct mac address order */
  3915. txreg = readl(base + NvRegTransmitPoll);
  3916. if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  3917. /* mac address is already in correct order */
  3918. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  3919. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  3920. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  3921. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  3922. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  3923. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  3924. } else {
  3925. /* need to reverse mac address to correct order */
  3926. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  3927. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  3928. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  3929. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  3930. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  3931. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  3932. /* set permanent address to be correct aswell */
  3933. np->orig_mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  3934. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  3935. np->orig_mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  3936. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  3937. }
  3938. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  3939. if (!is_valid_ether_addr(dev->perm_addr)) {
  3940. /*
  3941. * Bad mac address. At least one bios sets the mac address
  3942. * to 01:23:45:67:89:ab
  3943. */
  3944. printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n",
  3945. pci_name(pci_dev),
  3946. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3947. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3948. printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n");
  3949. dev->dev_addr[0] = 0x00;
  3950. dev->dev_addr[1] = 0x00;
  3951. dev->dev_addr[2] = 0x6c;
  3952. get_random_bytes(&dev->dev_addr[3], 3);
  3953. }
  3954. dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev),
  3955. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  3956. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  3957. /* set mac address */
  3958. nv_copy_mac_to_hw(dev);
  3959. /* disable WOL */
  3960. writel(0, base + NvRegWakeUpFlags);
  3961. np->wolenabled = 0;
  3962. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  3963. u8 revision_id;
  3964. pci_read_config_byte(pci_dev, PCI_REVISION_ID, &revision_id);
  3965. /* take phy and nic out of low power mode */
  3966. powerstate = readl(base + NvRegPowerState2);
  3967. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  3968. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  3969. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  3970. revision_id >= 0xA3)
  3971. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  3972. writel(powerstate, base + NvRegPowerState2);
  3973. }
  3974. if (np->desc_ver == DESC_VER_1) {
  3975. np->tx_flags = NV_TX_VALID;
  3976. } else {
  3977. np->tx_flags = NV_TX2_VALID;
  3978. }
  3979. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  3980. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3981. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3982. np->msi_flags |= 0x0003;
  3983. } else {
  3984. np->irqmask = NVREG_IRQMASK_CPU;
  3985. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  3986. np->msi_flags |= 0x0001;
  3987. }
  3988. if (id->driver_data & DEV_NEED_TIMERIRQ)
  3989. np->irqmask |= NVREG_IRQ_TIMER;
  3990. if (id->driver_data & DEV_NEED_LINKTIMER) {
  3991. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  3992. np->need_linktimer = 1;
  3993. np->link_timeout = jiffies + LINK_TIMEOUT;
  3994. } else {
  3995. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  3996. np->need_linktimer = 0;
  3997. }
  3998. /* find a suitable phy */
  3999. for (i = 1; i <= 32; i++) {
  4000. int id1, id2;
  4001. int phyaddr = i & 0x1F;
  4002. spin_lock_irq(&np->lock);
  4003. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4004. spin_unlock_irq(&np->lock);
  4005. if (id1 < 0 || id1 == 0xffff)
  4006. continue;
  4007. spin_lock_irq(&np->lock);
  4008. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4009. spin_unlock_irq(&np->lock);
  4010. if (id2 < 0 || id2 == 0xffff)
  4011. continue;
  4012. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4013. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4014. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4015. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4016. pci_name(pci_dev), id1, id2, phyaddr);
  4017. np->phyaddr = phyaddr;
  4018. np->phy_oui = id1 | id2;
  4019. break;
  4020. }
  4021. if (i == 33) {
  4022. printk(KERN_INFO "%s: open: Could not find a valid PHY.\n",
  4023. pci_name(pci_dev));
  4024. goto out_error;
  4025. }
  4026. /* reset it */
  4027. phy_init(dev);
  4028. /* set default link speed settings */
  4029. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4030. np->duplex = 0;
  4031. np->autoneg = 1;
  4032. err = register_netdev(dev);
  4033. if (err) {
  4034. printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err);
  4035. goto out_error;
  4036. }
  4037. printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n",
  4038. dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device,
  4039. pci_name(pci_dev));
  4040. return 0;
  4041. out_error:
  4042. pci_set_drvdata(pci_dev, NULL);
  4043. out_freering:
  4044. free_rings(dev);
  4045. out_unmap:
  4046. iounmap(get_hwbase(dev));
  4047. out_relreg:
  4048. pci_release_regions(pci_dev);
  4049. out_disable:
  4050. pci_disable_device(pci_dev);
  4051. out_free:
  4052. free_netdev(dev);
  4053. out:
  4054. return err;
  4055. }
  4056. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4057. {
  4058. struct net_device *dev = pci_get_drvdata(pci_dev);
  4059. struct fe_priv *np = netdev_priv(dev);
  4060. u8 __iomem *base = get_hwbase(dev);
  4061. unregister_netdev(dev);
  4062. /* special op: write back the misordered MAC address - otherwise
  4063. * the next nv_probe would see a wrong address.
  4064. */
  4065. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4066. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4067. /* free all structures */
  4068. free_rings(dev);
  4069. iounmap(get_hwbase(dev));
  4070. pci_release_regions(pci_dev);
  4071. pci_disable_device(pci_dev);
  4072. free_netdev(dev);
  4073. pci_set_drvdata(pci_dev, NULL);
  4074. }
  4075. static struct pci_device_id pci_tbl[] = {
  4076. { /* nForce Ethernet Controller */
  4077. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4078. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4079. },
  4080. { /* nForce2 Ethernet Controller */
  4081. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4082. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4083. },
  4084. { /* nForce3 Ethernet Controller */
  4085. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4086. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4087. },
  4088. { /* nForce3 Ethernet Controller */
  4089. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4090. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4091. },
  4092. { /* nForce3 Ethernet Controller */
  4093. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4094. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4095. },
  4096. { /* nForce3 Ethernet Controller */
  4097. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4098. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4099. },
  4100. { /* nForce3 Ethernet Controller */
  4101. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4102. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4103. },
  4104. { /* CK804 Ethernet Controller */
  4105. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4106. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4107. },
  4108. { /* CK804 Ethernet Controller */
  4109. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4110. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4111. },
  4112. { /* MCP04 Ethernet Controller */
  4113. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4114. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4115. },
  4116. { /* MCP04 Ethernet Controller */
  4117. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4118. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA,
  4119. },
  4120. { /* MCP51 Ethernet Controller */
  4121. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4122. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4123. },
  4124. { /* MCP51 Ethernet Controller */
  4125. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4126. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL,
  4127. },
  4128. { /* MCP55 Ethernet Controller */
  4129. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4130. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4131. },
  4132. { /* MCP55 Ethernet Controller */
  4133. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4134. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4135. },
  4136. { /* MCP61 Ethernet Controller */
  4137. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4138. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4139. },
  4140. { /* MCP61 Ethernet Controller */
  4141. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4142. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4143. },
  4144. { /* MCP61 Ethernet Controller */
  4145. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4146. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4147. },
  4148. { /* MCP61 Ethernet Controller */
  4149. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4150. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4151. },
  4152. { /* MCP65 Ethernet Controller */
  4153. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4154. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4155. },
  4156. { /* MCP65 Ethernet Controller */
  4157. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4158. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4159. },
  4160. { /* MCP65 Ethernet Controller */
  4161. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4162. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4163. },
  4164. { /* MCP65 Ethernet Controller */
  4165. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4166. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS|DEV_HAS_TEST_EXTENDED,
  4167. },
  4168. {0,},
  4169. };
  4170. static struct pci_driver driver = {
  4171. .name = "forcedeth",
  4172. .id_table = pci_tbl,
  4173. .probe = nv_probe,
  4174. .remove = __devexit_p(nv_remove),
  4175. };
  4176. static int __init init_nic(void)
  4177. {
  4178. printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION);
  4179. return pci_register_driver(&driver);
  4180. }
  4181. static void __exit exit_nic(void)
  4182. {
  4183. pci_unregister_driver(&driver);
  4184. }
  4185. module_param(max_interrupt_work, int, 0);
  4186. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  4187. module_param(optimization_mode, int, 0);
  4188. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  4189. module_param(poll_interval, int, 0);
  4190. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  4191. module_param(msi, int, 0);
  4192. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4193. module_param(msix, int, 0);
  4194. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  4195. module_param(dma_64bit, int, 0);
  4196. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  4197. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  4198. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  4199. MODULE_LICENSE("GPL");
  4200. MODULE_DEVICE_TABLE(pci, pci_tbl);
  4201. module_init(init_nic);
  4202. module_exit(exit_nic);