hfc_pci.c 54 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749
  1. /* $Id: hfc_pci.c,v 1.48.2.4 2004/02/11 13:21:33 keil Exp $
  2. *
  3. * low level driver for CCD´s hfc-pci based cards
  4. *
  5. * Author Werner Cornelius
  6. * based on existing driver for CCD hfc ISA cards
  7. * Copyright by Werner Cornelius <werner@isdn4linux.de>
  8. * by Karsten Keil <keil@isdn4linux.de>
  9. *
  10. * This software may be used and distributed according to the terms
  11. * of the GNU General Public License, incorporated herein by reference.
  12. *
  13. * For changes and modifications please read
  14. * Documentation/isdn/HiSax.cert
  15. *
  16. */
  17. #include <linux/init.h>
  18. #include "hisax.h"
  19. #include "hfc_pci.h"
  20. #include "isdnl1.h"
  21. #include <linux/pci.h>
  22. #include <linux/interrupt.h>
  23. extern const char *CardType[];
  24. static const char *hfcpci_revision = "$Revision: 1.48.2.4 $";
  25. /* table entry in the PCI devices list */
  26. typedef struct {
  27. int vendor_id;
  28. int device_id;
  29. char *vendor_name;
  30. char *card_name;
  31. } PCI_ENTRY;
  32. #define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */
  33. #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
  34. #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
  35. static const PCI_ENTRY id_list[] =
  36. {
  37. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0, "CCD/Billion/Asuscom", "2BD0"},
  38. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000, "Billion", "B000"},
  39. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006, "Billion", "B006"},
  40. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007, "Billion", "B007"},
  41. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008, "Billion", "B008"},
  42. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009, "Billion", "B009"},
  43. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A, "Billion", "B00A"},
  44. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B, "Billion", "B00B"},
  45. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C, "Billion", "B00C"},
  46. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100, "Seyeon", "B100"},
  47. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B700, "Primux II S0", "B700"},
  48. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B701, "Primux II S0 NT", "B701"},
  49. {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1, "Abocom/Magitek", "2BD1"},
  50. {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675, "Asuscom/Askey", "675"},
  51. {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT, "German telekom", "T-Concept"},
  52. {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T, "German telekom", "A1T"},
  53. {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575, "Motorola MC145575", "MC145575"},
  54. {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0, "Zoltrix", "2BD0"},
  55. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,"Digi International", "Digi DataFire Micro V IOM2 (Europe)"},
  56. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,"Digi International", "Digi DataFire Micro V (Europe)"},
  57. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,"Digi International", "Digi DataFire Micro V IOM2 (North America)"},
  58. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,"Digi International", "Digi DataFire Micro V (North America)"},
  59. {PCI_VENDOR_ID_SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2, "Sitecom Europe", "DC-105 ISDN PCI"},
  60. {0, 0, NULL, NULL},
  61. };
  62. #ifdef CONFIG_PCI
  63. /******************************************/
  64. /* free hardware resources used by driver */
  65. /******************************************/
  66. static void
  67. release_io_hfcpci(struct IsdnCardState *cs)
  68. {
  69. printk(KERN_INFO "HiSax: release hfcpci at %p\n",
  70. cs->hw.hfcpci.pci_io);
  71. cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
  72. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  73. Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
  74. mdelay(10);
  75. Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
  76. mdelay(10);
  77. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  78. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, 0); /* disable memory mapped ports + busmaster */
  79. del_timer(&cs->hw.hfcpci.timer);
  80. kfree(cs->hw.hfcpci.share_start);
  81. cs->hw.hfcpci.share_start = NULL;
  82. iounmap((void *)cs->hw.hfcpci.pci_io);
  83. }
  84. /********************************************************************************/
  85. /* function called to reset the HFC PCI chip. A complete software reset of chip */
  86. /* and fifos is done. */
  87. /********************************************************************************/
  88. static void
  89. reset_hfcpci(struct IsdnCardState *cs)
  90. {
  91. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
  92. cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
  93. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  94. printk(KERN_INFO "HFC_PCI: resetting card\n");
  95. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO + PCI_ENA_MASTER); /* enable memory ports + busmaster */
  96. Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
  97. mdelay(10);
  98. Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
  99. mdelay(10);
  100. if (Read_hfc(cs, HFCPCI_STATUS) & 2)
  101. printk(KERN_WARNING "HFC-PCI init bit busy\n");
  102. cs->hw.hfcpci.fifo_en = 0x30; /* only D fifos enabled */
  103. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  104. cs->hw.hfcpci.trm = 0 + HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
  105. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  106. Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_TE); /* ST-Bit delay for TE-Mode */
  107. cs->hw.hfcpci.sctrl_e = HFCPCI_AUTO_AWAKE;
  108. Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e); /* S/T Auto awake */
  109. cs->hw.hfcpci.bswapped = 0; /* no exchange */
  110. cs->hw.hfcpci.nt_mode = 0; /* we are in TE mode */
  111. cs->hw.hfcpci.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
  112. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  113. cs->hw.hfcpci.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
  114. HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
  115. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  116. /* Clear already pending ints */
  117. if (Read_hfc(cs, HFCPCI_INT_S1));
  118. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 2); /* HFC ST 2 */
  119. udelay(10);
  120. Write_hfc(cs, HFCPCI_STATES, 2); /* HFC ST 2 */
  121. cs->hw.hfcpci.mst_m = HFCPCI_MASTER; /* HFC Master Mode */
  122. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  123. cs->hw.hfcpci.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
  124. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  125. cs->hw.hfcpci.sctrl_r = 0;
  126. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  127. /* Init GCI/IOM2 in master mode */
  128. /* Slots 0 and 1 are set for B-chan 1 and 2 */
  129. /* D- and monitor/CI channel are not enabled */
  130. /* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
  131. /* STIO2 is used as data input, B1+B2 from IOM->ST */
  132. /* ST B-channel send disabled -> continous 1s */
  133. /* The IOM slots are always enabled */
  134. cs->hw.hfcpci.conn = 0x36; /* set data flow directions */
  135. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  136. Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */
  137. Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */
  138. Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */
  139. Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */
  140. /* Finally enable IRQ output */
  141. cs->hw.hfcpci.int_m2 = HFCPCI_IRQ_ENABLE;
  142. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  143. if (Read_hfc(cs, HFCPCI_INT_S1));
  144. }
  145. /***************************************************/
  146. /* Timer function called when kernel timer expires */
  147. /***************************************************/
  148. static void
  149. hfcpci_Timer(struct IsdnCardState *cs)
  150. {
  151. cs->hw.hfcpci.timer.expires = jiffies + 75;
  152. /* WD RESET */
  153. /* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcpci.ctmt | 0x80);
  154. add_timer(&cs->hw.hfcpci.timer);
  155. */
  156. }
  157. /*********************************/
  158. /* schedule a new D-channel task */
  159. /*********************************/
  160. static void
  161. sched_event_D_pci(struct IsdnCardState *cs, int event)
  162. {
  163. test_and_set_bit(event, &cs->event);
  164. schedule_work(&cs->tqueue);
  165. }
  166. /*********************************/
  167. /* schedule a new b_channel task */
  168. /*********************************/
  169. static void
  170. hfcpci_sched_event(struct BCState *bcs, int event)
  171. {
  172. test_and_set_bit(event, &bcs->event);
  173. schedule_work(&bcs->tqueue);
  174. }
  175. /************************************************/
  176. /* select a b-channel entry matching and active */
  177. /************************************************/
  178. static
  179. struct BCState *
  180. Sel_BCS(struct IsdnCardState *cs, int channel)
  181. {
  182. if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
  183. return (&cs->bcs[0]);
  184. else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
  185. return (&cs->bcs[1]);
  186. else
  187. return (NULL);
  188. }
  189. /***************************************/
  190. /* clear the desired B-channel rx fifo */
  191. /***************************************/
  192. static void hfcpci_clear_fifo_rx(struct IsdnCardState *cs, int fifo)
  193. { u_char fifo_state;
  194. bzfifo_type *bzr;
  195. if (fifo) {
  196. bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  197. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2RX;
  198. } else {
  199. bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
  200. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1RX;
  201. }
  202. if (fifo_state)
  203. cs->hw.hfcpci.fifo_en ^= fifo_state;
  204. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  205. cs->hw.hfcpci.last_bfifo_cnt[fifo] = 0;
  206. bzr->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
  207. bzr->za[MAX_B_FRAMES].z2 = bzr->za[MAX_B_FRAMES].z1;
  208. bzr->f1 = MAX_B_FRAMES;
  209. bzr->f2 = bzr->f1; /* init F pointers to remain constant */
  210. if (fifo_state)
  211. cs->hw.hfcpci.fifo_en |= fifo_state;
  212. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  213. }
  214. /***************************************/
  215. /* clear the desired B-channel tx fifo */
  216. /***************************************/
  217. static void hfcpci_clear_fifo_tx(struct IsdnCardState *cs, int fifo)
  218. { u_char fifo_state;
  219. bzfifo_type *bzt;
  220. if (fifo) {
  221. bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
  222. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2TX;
  223. } else {
  224. bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
  225. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1TX;
  226. }
  227. if (fifo_state)
  228. cs->hw.hfcpci.fifo_en ^= fifo_state;
  229. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  230. bzt->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
  231. bzt->za[MAX_B_FRAMES].z2 = bzt->za[MAX_B_FRAMES].z1;
  232. bzt->f1 = MAX_B_FRAMES;
  233. bzt->f2 = bzt->f1; /* init F pointers to remain constant */
  234. if (fifo_state)
  235. cs->hw.hfcpci.fifo_en |= fifo_state;
  236. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  237. }
  238. /*********************************************/
  239. /* read a complete B-frame out of the buffer */
  240. /*********************************************/
  241. static struct sk_buff
  242. *
  243. hfcpci_empty_fifo(struct BCState *bcs, bzfifo_type * bz, u_char * bdata, int count)
  244. {
  245. u_char *ptr, *ptr1, new_f2;
  246. struct sk_buff *skb;
  247. struct IsdnCardState *cs = bcs->cs;
  248. int total, maxlen, new_z2;
  249. z_type *zp;
  250. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  251. debugl1(cs, "hfcpci_empty_fifo");
  252. zp = &bz->za[bz->f2]; /* point to Z-Regs */
  253. new_z2 = zp->z2 + count; /* new position in fifo */
  254. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  255. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  256. new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
  257. if ((count > HSCX_BUFMAX + 3) || (count < 4) ||
  258. (*(bdata + (zp->z1 - B_SUB_VAL)))) {
  259. if (cs->debug & L1_DEB_WARN)
  260. debugl1(cs, "hfcpci_empty_fifo: incoming packet invalid length %d or crc", count);
  261. #ifdef ERROR_STATISTIC
  262. bcs->err_inv++;
  263. #endif
  264. bz->za[new_f2].z2 = new_z2;
  265. bz->f2 = new_f2; /* next buffer */
  266. skb = NULL;
  267. } else if (!(skb = dev_alloc_skb(count - 3)))
  268. printk(KERN_WARNING "HFCPCI: receive out of memory\n");
  269. else {
  270. total = count;
  271. count -= 3;
  272. ptr = skb_put(skb, count);
  273. if (zp->z2 + count <= B_FIFO_SIZE + B_SUB_VAL)
  274. maxlen = count; /* complete transfer */
  275. else
  276. maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
  277. ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
  278. memcpy(ptr, ptr1, maxlen); /* copy data */
  279. count -= maxlen;
  280. if (count) { /* rest remaining */
  281. ptr += maxlen;
  282. ptr1 = bdata; /* start of buffer */
  283. memcpy(ptr, ptr1, count); /* rest */
  284. }
  285. bz->za[new_f2].z2 = new_z2;
  286. bz->f2 = new_f2; /* next buffer */
  287. }
  288. return (skb);
  289. }
  290. /*******************************/
  291. /* D-channel receive procedure */
  292. /*******************************/
  293. static
  294. int
  295. receive_dmsg(struct IsdnCardState *cs)
  296. {
  297. struct sk_buff *skb;
  298. int maxlen;
  299. int rcnt, total;
  300. int count = 5;
  301. u_char *ptr, *ptr1;
  302. dfifo_type *df;
  303. z_type *zp;
  304. df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_rx;
  305. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  306. debugl1(cs, "rec_dmsg blocked");
  307. return (1);
  308. }
  309. while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
  310. zp = &df->za[df->f2 & D_FREG_MASK];
  311. rcnt = zp->z1 - zp->z2;
  312. if (rcnt < 0)
  313. rcnt += D_FIFO_SIZE;
  314. rcnt++;
  315. if (cs->debug & L1_DEB_ISAC)
  316. debugl1(cs, "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)",
  317. df->f1, df->f2, zp->z1, zp->z2, rcnt);
  318. if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
  319. (df->data[zp->z1])) {
  320. if (cs->debug & L1_DEB_WARN)
  321. debugl1(cs, "empty_fifo hfcpci paket inv. len %d or crc %d", rcnt, df->data[zp->z1]);
  322. #ifdef ERROR_STATISTIC
  323. cs->err_rx++;
  324. #endif
  325. df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
  326. df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + rcnt) & (D_FIFO_SIZE - 1);
  327. } else if ((skb = dev_alloc_skb(rcnt - 3))) {
  328. total = rcnt;
  329. rcnt -= 3;
  330. ptr = skb_put(skb, rcnt);
  331. if (zp->z2 + rcnt <= D_FIFO_SIZE)
  332. maxlen = rcnt; /* complete transfer */
  333. else
  334. maxlen = D_FIFO_SIZE - zp->z2; /* maximum */
  335. ptr1 = df->data + zp->z2; /* start of data */
  336. memcpy(ptr, ptr1, maxlen); /* copy data */
  337. rcnt -= maxlen;
  338. if (rcnt) { /* rest remaining */
  339. ptr += maxlen;
  340. ptr1 = df->data; /* start of buffer */
  341. memcpy(ptr, ptr1, rcnt); /* rest */
  342. }
  343. df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
  344. df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + total) & (D_FIFO_SIZE - 1);
  345. skb_queue_tail(&cs->rq, skb);
  346. sched_event_D_pci(cs, D_RCVBUFREADY);
  347. } else
  348. printk(KERN_WARNING "HFC-PCI: D receive out of memory\n");
  349. }
  350. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  351. return (1);
  352. }
  353. /*******************************************************************************/
  354. /* check for transparent receive data and read max one threshold size if avail */
  355. /*******************************************************************************/
  356. static int
  357. hfcpci_empty_fifo_trans(struct BCState *bcs, bzfifo_type * bz, u_char * bdata)
  358. {
  359. unsigned short *z1r, *z2r;
  360. int new_z2, fcnt, maxlen;
  361. struct sk_buff *skb;
  362. u_char *ptr, *ptr1;
  363. z1r = &bz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
  364. z2r = z1r + 1;
  365. if (!(fcnt = *z1r - *z2r))
  366. return (0); /* no data avail */
  367. if (fcnt <= 0)
  368. fcnt += B_FIFO_SIZE; /* bytes actually buffered */
  369. if (fcnt > HFCPCI_BTRANS_THRESHOLD)
  370. fcnt = HFCPCI_BTRANS_THRESHOLD; /* limit size */
  371. new_z2 = *z2r + fcnt; /* new position in fifo */
  372. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  373. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  374. if (!(skb = dev_alloc_skb(fcnt)))
  375. printk(KERN_WARNING "HFCPCI: receive out of memory\n");
  376. else {
  377. ptr = skb_put(skb, fcnt);
  378. if (*z2r + fcnt <= B_FIFO_SIZE + B_SUB_VAL)
  379. maxlen = fcnt; /* complete transfer */
  380. else
  381. maxlen = B_FIFO_SIZE + B_SUB_VAL - *z2r; /* maximum */
  382. ptr1 = bdata + (*z2r - B_SUB_VAL); /* start of data */
  383. memcpy(ptr, ptr1, maxlen); /* copy data */
  384. fcnt -= maxlen;
  385. if (fcnt) { /* rest remaining */
  386. ptr += maxlen;
  387. ptr1 = bdata; /* start of buffer */
  388. memcpy(ptr, ptr1, fcnt); /* rest */
  389. }
  390. skb_queue_tail(&bcs->rqueue, skb);
  391. hfcpci_sched_event(bcs, B_RCVBUFREADY);
  392. }
  393. *z2r = new_z2; /* new position */
  394. return (1);
  395. } /* hfcpci_empty_fifo_trans */
  396. /**********************************/
  397. /* B-channel main receive routine */
  398. /**********************************/
  399. static void
  400. main_rec_hfcpci(struct BCState *bcs)
  401. {
  402. struct IsdnCardState *cs = bcs->cs;
  403. int rcnt, real_fifo;
  404. int receive, count = 5;
  405. struct sk_buff *skb;
  406. bzfifo_type *bz;
  407. u_char *bdata;
  408. z_type *zp;
  409. if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
  410. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  411. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
  412. real_fifo = 1;
  413. } else {
  414. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
  415. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b1;
  416. real_fifo = 0;
  417. }
  418. Begin:
  419. count--;
  420. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  421. debugl1(cs, "rec_data %d blocked", bcs->channel);
  422. return;
  423. }
  424. if (bz->f1 != bz->f2) {
  425. if (cs->debug & L1_DEB_HSCX)
  426. debugl1(cs, "hfcpci rec %d f1(%d) f2(%d)",
  427. bcs->channel, bz->f1, bz->f2);
  428. zp = &bz->za[bz->f2];
  429. rcnt = zp->z1 - zp->z2;
  430. if (rcnt < 0)
  431. rcnt += B_FIFO_SIZE;
  432. rcnt++;
  433. if (cs->debug & L1_DEB_HSCX)
  434. debugl1(cs, "hfcpci rec %d z1(%x) z2(%x) cnt(%d)",
  435. bcs->channel, zp->z1, zp->z2, rcnt);
  436. if ((skb = hfcpci_empty_fifo(bcs, bz, bdata, rcnt))) {
  437. skb_queue_tail(&bcs->rqueue, skb);
  438. hfcpci_sched_event(bcs, B_RCVBUFREADY);
  439. }
  440. rcnt = bz->f1 - bz->f2;
  441. if (rcnt < 0)
  442. rcnt += MAX_B_FRAMES + 1;
  443. if (cs->hw.hfcpci.last_bfifo_cnt[real_fifo] > rcnt + 1) {
  444. rcnt = 0;
  445. hfcpci_clear_fifo_rx(cs, real_fifo);
  446. }
  447. cs->hw.hfcpci.last_bfifo_cnt[real_fifo] = rcnt;
  448. if (rcnt > 1)
  449. receive = 1;
  450. else
  451. receive = 0;
  452. } else if (bcs->mode == L1_MODE_TRANS)
  453. receive = hfcpci_empty_fifo_trans(bcs, bz, bdata);
  454. else
  455. receive = 0;
  456. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  457. if (count && receive)
  458. goto Begin;
  459. return;
  460. }
  461. /**************************/
  462. /* D-channel send routine */
  463. /**************************/
  464. static void
  465. hfcpci_fill_dfifo(struct IsdnCardState *cs)
  466. {
  467. int fcnt;
  468. int count, new_z1, maxlen;
  469. dfifo_type *df;
  470. u_char *src, *dst, new_f1;
  471. if (!cs->tx_skb)
  472. return;
  473. if (cs->tx_skb->len <= 0)
  474. return;
  475. df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_tx;
  476. if (cs->debug & L1_DEB_ISAC)
  477. debugl1(cs, "hfcpci_fill_Dfifo f1(%d) f2(%d) z1(f1)(%x)",
  478. df->f1, df->f2,
  479. df->za[df->f1 & D_FREG_MASK].z1);
  480. fcnt = df->f1 - df->f2; /* frame count actually buffered */
  481. if (fcnt < 0)
  482. fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
  483. if (fcnt > (MAX_D_FRAMES - 1)) {
  484. if (cs->debug & L1_DEB_ISAC)
  485. debugl1(cs, "hfcpci_fill_Dfifo more as 14 frames");
  486. #ifdef ERROR_STATISTIC
  487. cs->err_tx++;
  488. #endif
  489. return;
  490. }
  491. /* now determine free bytes in FIFO buffer */
  492. count = df->za[df->f2 & D_FREG_MASK].z2 - df->za[df->f1 & D_FREG_MASK].z1 - 1;
  493. if (count <= 0)
  494. count += D_FIFO_SIZE; /* count now contains available bytes */
  495. if (cs->debug & L1_DEB_ISAC)
  496. debugl1(cs, "hfcpci_fill_Dfifo count(%ld/%d)",
  497. cs->tx_skb->len, count);
  498. if (count < cs->tx_skb->len) {
  499. if (cs->debug & L1_DEB_ISAC)
  500. debugl1(cs, "hfcpci_fill_Dfifo no fifo mem");
  501. return;
  502. }
  503. count = cs->tx_skb->len; /* get frame len */
  504. new_z1 = (df->za[df->f1 & D_FREG_MASK].z1 + count) & (D_FIFO_SIZE - 1);
  505. new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
  506. src = cs->tx_skb->data; /* source pointer */
  507. dst = df->data + df->za[df->f1 & D_FREG_MASK].z1;
  508. maxlen = D_FIFO_SIZE - df->za[df->f1 & D_FREG_MASK].z1; /* end fifo */
  509. if (maxlen > count)
  510. maxlen = count; /* limit size */
  511. memcpy(dst, src, maxlen); /* first copy */
  512. count -= maxlen; /* remaining bytes */
  513. if (count) {
  514. dst = df->data; /* start of buffer */
  515. src += maxlen; /* new position */
  516. memcpy(dst, src, count);
  517. }
  518. df->za[new_f1 & D_FREG_MASK].z1 = new_z1; /* for next buffer */
  519. df->za[df->f1 & D_FREG_MASK].z1 = new_z1; /* new pos actual buffer */
  520. df->f1 = new_f1; /* next frame */
  521. dev_kfree_skb_any(cs->tx_skb);
  522. cs->tx_skb = NULL;
  523. return;
  524. }
  525. /**************************/
  526. /* B-channel send routine */
  527. /**************************/
  528. static void
  529. hfcpci_fill_fifo(struct BCState *bcs)
  530. {
  531. struct IsdnCardState *cs = bcs->cs;
  532. int maxlen, fcnt;
  533. int count, new_z1;
  534. bzfifo_type *bz;
  535. u_char *bdata;
  536. u_char new_f1, *src, *dst;
  537. unsigned short *z1t, *z2t;
  538. if (!bcs->tx_skb)
  539. return;
  540. if (bcs->tx_skb->len <= 0)
  541. return;
  542. if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
  543. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
  544. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b2;
  545. } else {
  546. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
  547. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b1;
  548. }
  549. if (bcs->mode == L1_MODE_TRANS) {
  550. z1t = &bz->za[MAX_B_FRAMES].z1;
  551. z2t = z1t + 1;
  552. if (cs->debug & L1_DEB_HSCX)
  553. debugl1(cs, "hfcpci_fill_fifo_trans %d z1(%x) z2(%x)",
  554. bcs->channel, *z1t, *z2t);
  555. fcnt = *z2t - *z1t;
  556. if (fcnt <= 0)
  557. fcnt += B_FIFO_SIZE; /* fcnt contains available bytes in fifo */
  558. fcnt = B_FIFO_SIZE - fcnt; /* remaining bytes to send */
  559. while ((fcnt < 2 * HFCPCI_BTRANS_THRESHOLD) && (bcs->tx_skb)) {
  560. if (bcs->tx_skb->len < B_FIFO_SIZE - fcnt) {
  561. /* data is suitable for fifo */
  562. count = bcs->tx_skb->len;
  563. new_z1 = *z1t + count; /* new buffer Position */
  564. if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
  565. new_z1 -= B_FIFO_SIZE; /* buffer wrap */
  566. src = bcs->tx_skb->data; /* source pointer */
  567. dst = bdata + (*z1t - B_SUB_VAL);
  568. maxlen = (B_FIFO_SIZE + B_SUB_VAL) - *z1t; /* end of fifo */
  569. if (maxlen > count)
  570. maxlen = count; /* limit size */
  571. memcpy(dst, src, maxlen); /* first copy */
  572. count -= maxlen; /* remaining bytes */
  573. if (count) {
  574. dst = bdata; /* start of buffer */
  575. src += maxlen; /* new position */
  576. memcpy(dst, src, count);
  577. }
  578. bcs->tx_cnt -= bcs->tx_skb->len;
  579. fcnt += bcs->tx_skb->len;
  580. *z1t = new_z1; /* now send data */
  581. } else if (cs->debug & L1_DEB_HSCX)
  582. debugl1(cs, "hfcpci_fill_fifo_trans %d frame length %d discarded",
  583. bcs->channel, bcs->tx_skb->len);
  584. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  585. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  586. u_long flags;
  587. spin_lock_irqsave(&bcs->aclock, flags);
  588. bcs->ackcnt += bcs->tx_skb->len;
  589. spin_unlock_irqrestore(&bcs->aclock, flags);
  590. schedule_event(bcs, B_ACKPENDING);
  591. }
  592. dev_kfree_skb_any(bcs->tx_skb);
  593. bcs->tx_skb = skb_dequeue(&bcs->squeue); /* fetch next data */
  594. }
  595. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  596. return;
  597. }
  598. if (cs->debug & L1_DEB_HSCX)
  599. debugl1(cs, "hfcpci_fill_fifo_hdlc %d f1(%d) f2(%d) z1(f1)(%x)",
  600. bcs->channel, bz->f1, bz->f2,
  601. bz->za[bz->f1].z1);
  602. fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
  603. if (fcnt < 0)
  604. fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
  605. if (fcnt > (MAX_B_FRAMES - 1)) {
  606. if (cs->debug & L1_DEB_HSCX)
  607. debugl1(cs, "hfcpci_fill_Bfifo more as 14 frames");
  608. return;
  609. }
  610. /* now determine free bytes in FIFO buffer */
  611. count = bz->za[bz->f2].z2 - bz->za[bz->f1].z1 - 1;
  612. if (count <= 0)
  613. count += B_FIFO_SIZE; /* count now contains available bytes */
  614. if (cs->debug & L1_DEB_HSCX)
  615. debugl1(cs, "hfcpci_fill_fifo %d count(%ld/%d),%lx",
  616. bcs->channel, bcs->tx_skb->len,
  617. count, current->state);
  618. if (count < bcs->tx_skb->len) {
  619. if (cs->debug & L1_DEB_HSCX)
  620. debugl1(cs, "hfcpci_fill_fifo no fifo mem");
  621. return;
  622. }
  623. count = bcs->tx_skb->len; /* get frame len */
  624. new_z1 = bz->za[bz->f1].z1 + count; /* new buffer Position */
  625. if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
  626. new_z1 -= B_FIFO_SIZE; /* buffer wrap */
  627. new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
  628. src = bcs->tx_skb->data; /* source pointer */
  629. dst = bdata + (bz->za[bz->f1].z1 - B_SUB_VAL);
  630. maxlen = (B_FIFO_SIZE + B_SUB_VAL) - bz->za[bz->f1].z1; /* end fifo */
  631. if (maxlen > count)
  632. maxlen = count; /* limit size */
  633. memcpy(dst, src, maxlen); /* first copy */
  634. count -= maxlen; /* remaining bytes */
  635. if (count) {
  636. dst = bdata; /* start of buffer */
  637. src += maxlen; /* new position */
  638. memcpy(dst, src, count);
  639. }
  640. bcs->tx_cnt -= bcs->tx_skb->len;
  641. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  642. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  643. u_long flags;
  644. spin_lock_irqsave(&bcs->aclock, flags);
  645. bcs->ackcnt += bcs->tx_skb->len;
  646. spin_unlock_irqrestore(&bcs->aclock, flags);
  647. schedule_event(bcs, B_ACKPENDING);
  648. }
  649. bz->za[new_f1].z1 = new_z1; /* for next buffer */
  650. bz->f1 = new_f1; /* next frame */
  651. dev_kfree_skb_any(bcs->tx_skb);
  652. bcs->tx_skb = NULL;
  653. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  654. return;
  655. }
  656. /**********************************************/
  657. /* D-channel l1 state call for leased NT-mode */
  658. /**********************************************/
  659. static void
  660. dch_nt_l2l1(struct PStack *st, int pr, void *arg)
  661. {
  662. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  663. switch (pr) {
  664. case (PH_DATA | REQUEST):
  665. case (PH_PULL | REQUEST):
  666. case (PH_PULL | INDICATION):
  667. st->l1.l1hw(st, pr, arg);
  668. break;
  669. case (PH_ACTIVATE | REQUEST):
  670. st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
  671. break;
  672. case (PH_TESTLOOP | REQUEST):
  673. if (1 & (long) arg)
  674. debugl1(cs, "PH_TEST_LOOP B1");
  675. if (2 & (long) arg)
  676. debugl1(cs, "PH_TEST_LOOP B2");
  677. if (!(3 & (long) arg))
  678. debugl1(cs, "PH_TEST_LOOP DISABLED");
  679. st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
  680. break;
  681. default:
  682. if (cs->debug)
  683. debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
  684. break;
  685. }
  686. }
  687. /***********************/
  688. /* set/reset echo mode */
  689. /***********************/
  690. static int
  691. hfcpci_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
  692. {
  693. u_long flags;
  694. int i = *(unsigned int *) ic->parm.num;
  695. if ((ic->arg == 98) &&
  696. (!(cs->hw.hfcpci.int_m1 & (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC + HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC)))) {
  697. spin_lock_irqsave(&cs->lock, flags);
  698. Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_NT); /* ST-Bit delay for NT-Mode */
  699. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 0); /* HFC ST G0 */
  700. udelay(10);
  701. cs->hw.hfcpci.sctrl |= SCTRL_MODE_NT;
  702. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); /* set NT-mode */
  703. udelay(10);
  704. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 1); /* HFC ST G1 */
  705. udelay(10);
  706. Write_hfc(cs, HFCPCI_STATES, 1 | HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
  707. cs->dc.hfcpci.ph_state = 1;
  708. cs->hw.hfcpci.nt_mode = 1;
  709. cs->hw.hfcpci.nt_timer = 0;
  710. cs->stlist->l2.l2l1 = dch_nt_l2l1;
  711. spin_unlock_irqrestore(&cs->lock, flags);
  712. debugl1(cs, "NT mode activated");
  713. return (0);
  714. }
  715. if ((cs->chanlimit > 1) || (cs->hw.hfcpci.bswapped) ||
  716. (cs->hw.hfcpci.nt_mode) || (ic->arg != 12))
  717. return (-EINVAL);
  718. spin_lock_irqsave(&cs->lock, flags);
  719. if (i) {
  720. cs->logecho = 1;
  721. cs->hw.hfcpci.trm |= 0x20; /* enable echo chan */
  722. cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_B2REC;
  723. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2RX;
  724. } else {
  725. cs->logecho = 0;
  726. cs->hw.hfcpci.trm &= ~0x20; /* disable echo chan */
  727. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_B2REC;
  728. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2RX;
  729. }
  730. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
  731. cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
  732. cs->hw.hfcpci.conn |= 0x10; /* B2-IOM -> B2-ST */
  733. cs->hw.hfcpci.ctmt &= ~2;
  734. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  735. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  736. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  737. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  738. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  739. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  740. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  741. spin_unlock_irqrestore(&cs->lock, flags);
  742. return (0);
  743. } /* hfcpci_auxcmd */
  744. /*****************************/
  745. /* E-channel receive routine */
  746. /*****************************/
  747. static void
  748. receive_emsg(struct IsdnCardState *cs)
  749. {
  750. int rcnt;
  751. int receive, count = 5;
  752. bzfifo_type *bz;
  753. u_char *bdata;
  754. z_type *zp;
  755. u_char *ptr, *ptr1, new_f2;
  756. int total, maxlen, new_z2;
  757. u_char e_buffer[256];
  758. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  759. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
  760. Begin:
  761. count--;
  762. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  763. debugl1(cs, "echo_rec_data blocked");
  764. return;
  765. }
  766. if (bz->f1 != bz->f2) {
  767. if (cs->debug & L1_DEB_ISAC)
  768. debugl1(cs, "hfcpci e_rec f1(%d) f2(%d)",
  769. bz->f1, bz->f2);
  770. zp = &bz->za[bz->f2];
  771. rcnt = zp->z1 - zp->z2;
  772. if (rcnt < 0)
  773. rcnt += B_FIFO_SIZE;
  774. rcnt++;
  775. if (cs->debug & L1_DEB_ISAC)
  776. debugl1(cs, "hfcpci e_rec z1(%x) z2(%x) cnt(%d)",
  777. zp->z1, zp->z2, rcnt);
  778. new_z2 = zp->z2 + rcnt; /* new position in fifo */
  779. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  780. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  781. new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
  782. if ((rcnt > 256 + 3) || (count < 4) ||
  783. (*(bdata + (zp->z1 - B_SUB_VAL)))) {
  784. if (cs->debug & L1_DEB_WARN)
  785. debugl1(cs, "hfcpci_empty_echan: incoming packet invalid length %d or crc", rcnt);
  786. bz->za[new_f2].z2 = new_z2;
  787. bz->f2 = new_f2; /* next buffer */
  788. } else {
  789. total = rcnt;
  790. rcnt -= 3;
  791. ptr = e_buffer;
  792. if (zp->z2 <= B_FIFO_SIZE + B_SUB_VAL)
  793. maxlen = rcnt; /* complete transfer */
  794. else
  795. maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
  796. ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
  797. memcpy(ptr, ptr1, maxlen); /* copy data */
  798. rcnt -= maxlen;
  799. if (rcnt) { /* rest remaining */
  800. ptr += maxlen;
  801. ptr1 = bdata; /* start of buffer */
  802. memcpy(ptr, ptr1, rcnt); /* rest */
  803. }
  804. bz->za[new_f2].z2 = new_z2;
  805. bz->f2 = new_f2; /* next buffer */
  806. if (cs->debug & DEB_DLOG_HEX) {
  807. ptr = cs->dlog;
  808. if ((total - 3) < MAX_DLOG_SPACE / 3 - 10) {
  809. *ptr++ = 'E';
  810. *ptr++ = 'C';
  811. *ptr++ = 'H';
  812. *ptr++ = 'O';
  813. *ptr++ = ':';
  814. ptr += QuickHex(ptr, e_buffer, total - 3);
  815. ptr--;
  816. *ptr++ = '\n';
  817. *ptr = 0;
  818. HiSax_putstatus(cs, NULL, cs->dlog);
  819. } else
  820. HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", total - 3);
  821. }
  822. }
  823. rcnt = bz->f1 - bz->f2;
  824. if (rcnt < 0)
  825. rcnt += MAX_B_FRAMES + 1;
  826. if (rcnt > 1)
  827. receive = 1;
  828. else
  829. receive = 0;
  830. } else
  831. receive = 0;
  832. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  833. if (count && receive)
  834. goto Begin;
  835. return;
  836. } /* receive_emsg */
  837. /*********************/
  838. /* Interrupt handler */
  839. /*********************/
  840. static irqreturn_t
  841. hfcpci_interrupt(int intno, void *dev_id)
  842. {
  843. u_long flags;
  844. struct IsdnCardState *cs = dev_id;
  845. u_char exval;
  846. struct BCState *bcs;
  847. int count = 15;
  848. u_char val, stat;
  849. if (!(cs->hw.hfcpci.int_m2 & 0x08)) {
  850. debugl1(cs, "HFC-PCI: int_m2 %x not initialised", cs->hw.hfcpci.int_m2);
  851. return IRQ_NONE; /* not initialised */
  852. }
  853. spin_lock_irqsave(&cs->lock, flags);
  854. if (HFCPCI_ANYINT & (stat = Read_hfc(cs, HFCPCI_STATUS))) {
  855. val = Read_hfc(cs, HFCPCI_INT_S1);
  856. if (cs->debug & L1_DEB_ISAC)
  857. debugl1(cs, "HFC-PCI: stat(%02x) s1(%02x)", stat, val);
  858. } else {
  859. spin_unlock_irqrestore(&cs->lock, flags);
  860. return IRQ_NONE;
  861. }
  862. if (cs->debug & L1_DEB_ISAC)
  863. debugl1(cs, "HFC-PCI irq %x %s", val,
  864. test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
  865. "locked" : "unlocked");
  866. val &= cs->hw.hfcpci.int_m1;
  867. if (val & 0x40) { /* state machine irq */
  868. exval = Read_hfc(cs, HFCPCI_STATES) & 0xf;
  869. if (cs->debug & L1_DEB_ISAC)
  870. debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcpci.ph_state,
  871. exval);
  872. cs->dc.hfcpci.ph_state = exval;
  873. sched_event_D_pci(cs, D_L1STATECHANGE);
  874. val &= ~0x40;
  875. }
  876. if (val & 0x80) { /* timer irq */
  877. if (cs->hw.hfcpci.nt_mode) {
  878. if ((--cs->hw.hfcpci.nt_timer) < 0)
  879. sched_event_D_pci(cs, D_L1STATECHANGE);
  880. }
  881. val &= ~0x80;
  882. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  883. }
  884. while (val) {
  885. if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  886. cs->hw.hfcpci.int_s1 |= val;
  887. spin_unlock_irqrestore(&cs->lock, flags);
  888. return IRQ_HANDLED;
  889. }
  890. if (cs->hw.hfcpci.int_s1 & 0x18) {
  891. exval = val;
  892. val = cs->hw.hfcpci.int_s1;
  893. cs->hw.hfcpci.int_s1 = exval;
  894. }
  895. if (val & 0x08) {
  896. if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
  897. if (cs->debug)
  898. debugl1(cs, "hfcpci spurious 0x08 IRQ");
  899. } else
  900. main_rec_hfcpci(bcs);
  901. }
  902. if (val & 0x10) {
  903. if (cs->logecho)
  904. receive_emsg(cs);
  905. else if (!(bcs = Sel_BCS(cs, 1))) {
  906. if (cs->debug)
  907. debugl1(cs, "hfcpci spurious 0x10 IRQ");
  908. } else
  909. main_rec_hfcpci(bcs);
  910. }
  911. if (val & 0x01) {
  912. if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
  913. if (cs->debug)
  914. debugl1(cs, "hfcpci spurious 0x01 IRQ");
  915. } else {
  916. if (bcs->tx_skb) {
  917. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  918. hfcpci_fill_fifo(bcs);
  919. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  920. } else
  921. debugl1(cs, "fill_data %d blocked", bcs->channel);
  922. } else {
  923. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  924. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  925. hfcpci_fill_fifo(bcs);
  926. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  927. } else
  928. debugl1(cs, "fill_data %d blocked", bcs->channel);
  929. } else {
  930. hfcpci_sched_event(bcs, B_XMTBUFREADY);
  931. }
  932. }
  933. }
  934. }
  935. if (val & 0x02) {
  936. if (!(bcs = Sel_BCS(cs, 1))) {
  937. if (cs->debug)
  938. debugl1(cs, "hfcpci spurious 0x02 IRQ");
  939. } else {
  940. if (bcs->tx_skb) {
  941. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  942. hfcpci_fill_fifo(bcs);
  943. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  944. } else
  945. debugl1(cs, "fill_data %d blocked", bcs->channel);
  946. } else {
  947. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  948. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  949. hfcpci_fill_fifo(bcs);
  950. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  951. } else
  952. debugl1(cs, "fill_data %d blocked", bcs->channel);
  953. } else {
  954. hfcpci_sched_event(bcs, B_XMTBUFREADY);
  955. }
  956. }
  957. }
  958. }
  959. if (val & 0x20) { /* receive dframe */
  960. receive_dmsg(cs);
  961. }
  962. if (val & 0x04) { /* dframe transmitted */
  963. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  964. del_timer(&cs->dbusytimer);
  965. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  966. sched_event_D_pci(cs, D_CLEARBUSY);
  967. if (cs->tx_skb) {
  968. if (cs->tx_skb->len) {
  969. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  970. hfcpci_fill_dfifo(cs);
  971. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  972. } else {
  973. debugl1(cs, "hfcpci_fill_dfifo irq blocked");
  974. }
  975. goto afterXPR;
  976. } else {
  977. dev_kfree_skb_irq(cs->tx_skb);
  978. cs->tx_cnt = 0;
  979. cs->tx_skb = NULL;
  980. }
  981. }
  982. if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
  983. cs->tx_cnt = 0;
  984. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  985. hfcpci_fill_dfifo(cs);
  986. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  987. } else {
  988. debugl1(cs, "hfcpci_fill_dfifo irq blocked");
  989. }
  990. } else
  991. sched_event_D_pci(cs, D_XMTBUFREADY);
  992. }
  993. afterXPR:
  994. if (cs->hw.hfcpci.int_s1 && count--) {
  995. val = cs->hw.hfcpci.int_s1;
  996. cs->hw.hfcpci.int_s1 = 0;
  997. if (cs->debug & L1_DEB_ISAC)
  998. debugl1(cs, "HFC-PCI irq %x loop %d", val, 15 - count);
  999. } else
  1000. val = 0;
  1001. }
  1002. spin_unlock_irqrestore(&cs->lock, flags);
  1003. return IRQ_HANDLED;
  1004. }
  1005. /********************************************************************/
  1006. /* timer callback for D-chan busy resolution. Currently no function */
  1007. /********************************************************************/
  1008. static void
  1009. hfcpci_dbusy_timer(struct IsdnCardState *cs)
  1010. {
  1011. }
  1012. /*************************************/
  1013. /* Layer 1 D-channel hardware access */
  1014. /*************************************/
  1015. static void
  1016. HFCPCI_l1hw(struct PStack *st, int pr, void *arg)
  1017. {
  1018. u_long flags;
  1019. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  1020. struct sk_buff *skb = arg;
  1021. switch (pr) {
  1022. case (PH_DATA | REQUEST):
  1023. if (cs->debug & DEB_DLOG_HEX)
  1024. LogFrame(cs, skb->data, skb->len);
  1025. if (cs->debug & DEB_DLOG_VERBOSE)
  1026. dlogframe(cs, skb, 0);
  1027. spin_lock_irqsave(&cs->lock, flags);
  1028. if (cs->tx_skb) {
  1029. skb_queue_tail(&cs->sq, skb);
  1030. #ifdef L2FRAME_DEBUG /* psa */
  1031. if (cs->debug & L1_DEB_LAPD)
  1032. Logl2Frame(cs, skb, "PH_DATA Queued", 0);
  1033. #endif
  1034. } else {
  1035. cs->tx_skb = skb;
  1036. cs->tx_cnt = 0;
  1037. #ifdef L2FRAME_DEBUG /* psa */
  1038. if (cs->debug & L1_DEB_LAPD)
  1039. Logl2Frame(cs, skb, "PH_DATA", 0);
  1040. #endif
  1041. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1042. hfcpci_fill_dfifo(cs);
  1043. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1044. } else
  1045. debugl1(cs, "hfcpci_fill_dfifo blocked");
  1046. }
  1047. spin_unlock_irqrestore(&cs->lock, flags);
  1048. break;
  1049. case (PH_PULL | INDICATION):
  1050. spin_lock_irqsave(&cs->lock, flags);
  1051. if (cs->tx_skb) {
  1052. if (cs->debug & L1_DEB_WARN)
  1053. debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
  1054. skb_queue_tail(&cs->sq, skb);
  1055. spin_unlock_irqrestore(&cs->lock, flags);
  1056. break;
  1057. }
  1058. if (cs->debug & DEB_DLOG_HEX)
  1059. LogFrame(cs, skb->data, skb->len);
  1060. if (cs->debug & DEB_DLOG_VERBOSE)
  1061. dlogframe(cs, skb, 0);
  1062. cs->tx_skb = skb;
  1063. cs->tx_cnt = 0;
  1064. #ifdef L2FRAME_DEBUG /* psa */
  1065. if (cs->debug & L1_DEB_LAPD)
  1066. Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
  1067. #endif
  1068. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1069. hfcpci_fill_dfifo(cs);
  1070. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1071. } else
  1072. debugl1(cs, "hfcpci_fill_dfifo blocked");
  1073. spin_unlock_irqrestore(&cs->lock, flags);
  1074. break;
  1075. case (PH_PULL | REQUEST):
  1076. #ifdef L2FRAME_DEBUG /* psa */
  1077. if (cs->debug & L1_DEB_LAPD)
  1078. debugl1(cs, "-> PH_REQUEST_PULL");
  1079. #endif
  1080. if (!cs->tx_skb) {
  1081. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1082. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  1083. } else
  1084. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1085. break;
  1086. case (HW_RESET | REQUEST):
  1087. spin_lock_irqsave(&cs->lock, flags);
  1088. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); /* HFC ST 3 */
  1089. udelay(6);
  1090. Write_hfc(cs, HFCPCI_STATES, 3); /* HFC ST 2 */
  1091. cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
  1092. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1093. Write_hfc(cs, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
  1094. spin_unlock_irqrestore(&cs->lock, flags);
  1095. l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
  1096. break;
  1097. case (HW_ENABLE | REQUEST):
  1098. spin_lock_irqsave(&cs->lock, flags);
  1099. Write_hfc(cs, HFCPCI_STATES, HFCPCI_DO_ACTION);
  1100. spin_unlock_irqrestore(&cs->lock, flags);
  1101. break;
  1102. case (HW_DEACTIVATE | REQUEST):
  1103. spin_lock_irqsave(&cs->lock, flags);
  1104. cs->hw.hfcpci.mst_m &= ~HFCPCI_MASTER;
  1105. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1106. spin_unlock_irqrestore(&cs->lock, flags);
  1107. break;
  1108. case (HW_INFO3 | REQUEST):
  1109. spin_lock_irqsave(&cs->lock, flags);
  1110. cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
  1111. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1112. spin_unlock_irqrestore(&cs->lock, flags);
  1113. break;
  1114. case (HW_TESTLOOP | REQUEST):
  1115. spin_lock_irqsave(&cs->lock, flags);
  1116. switch ((int) arg) {
  1117. case (1):
  1118. Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* tx slot */
  1119. Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* rx slot */
  1120. cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~7) | 1;
  1121. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1122. break;
  1123. case (2):
  1124. Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* tx slot */
  1125. Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* rx slot */
  1126. cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~0x38) | 0x08;
  1127. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1128. break;
  1129. default:
  1130. spin_unlock_irqrestore(&cs->lock, flags);
  1131. if (cs->debug & L1_DEB_WARN)
  1132. debugl1(cs, "hfcpci_l1hw loop invalid %4x", (int) arg);
  1133. return;
  1134. }
  1135. cs->hw.hfcpci.trm |= 0x80; /* enable IOM-loop */
  1136. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  1137. spin_unlock_irqrestore(&cs->lock, flags);
  1138. break;
  1139. default:
  1140. if (cs->debug & L1_DEB_WARN)
  1141. debugl1(cs, "hfcpci_l1hw unknown pr %4x", pr);
  1142. break;
  1143. }
  1144. }
  1145. /***********************************************/
  1146. /* called during init setting l1 stack pointer */
  1147. /***********************************************/
  1148. static void
  1149. setstack_hfcpci(struct PStack *st, struct IsdnCardState *cs)
  1150. {
  1151. st->l1.l1hw = HFCPCI_l1hw;
  1152. }
  1153. /**************************************/
  1154. /* send B-channel data if not blocked */
  1155. /**************************************/
  1156. static void
  1157. hfcpci_send_data(struct BCState *bcs)
  1158. {
  1159. struct IsdnCardState *cs = bcs->cs;
  1160. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1161. hfcpci_fill_fifo(bcs);
  1162. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1163. } else
  1164. debugl1(cs, "send_data %d blocked", bcs->channel);
  1165. }
  1166. /***************************************************************/
  1167. /* activate/deactivate hardware for selected channels and mode */
  1168. /***************************************************************/
  1169. static void
  1170. mode_hfcpci(struct BCState *bcs, int mode, int bc)
  1171. {
  1172. struct IsdnCardState *cs = bcs->cs;
  1173. int fifo2;
  1174. if (cs->debug & L1_DEB_HSCX)
  1175. debugl1(cs, "HFCPCI bchannel mode %d bchan %d/%d",
  1176. mode, bc, bcs->channel);
  1177. bcs->mode = mode;
  1178. bcs->channel = bc;
  1179. fifo2 = bc;
  1180. if (cs->chanlimit > 1) {
  1181. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1182. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1183. } else {
  1184. if (bc) {
  1185. if (mode != L1_MODE_NULL) {
  1186. cs->hw.hfcpci.bswapped = 1; /* B1 and B2 exchanged */
  1187. cs->hw.hfcpci.sctrl_e |= 0x80;
  1188. } else {
  1189. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1190. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1191. }
  1192. fifo2 = 0;
  1193. } else {
  1194. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1195. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1196. }
  1197. }
  1198. switch (mode) {
  1199. case (L1_MODE_NULL):
  1200. if (bc) {
  1201. cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
  1202. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
  1203. } else {
  1204. cs->hw.hfcpci.sctrl &= ~SCTRL_B1_ENA;
  1205. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B1_ENA;
  1206. }
  1207. if (fifo2) {
  1208. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
  1209. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1210. } else {
  1211. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
  1212. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1213. }
  1214. break;
  1215. case (L1_MODE_TRANS):
  1216. hfcpci_clear_fifo_rx(cs, fifo2);
  1217. hfcpci_clear_fifo_tx(cs, fifo2);
  1218. if (bc) {
  1219. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1220. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1221. } else {
  1222. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1223. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1224. }
  1225. if (fifo2) {
  1226. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
  1227. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1228. cs->hw.hfcpci.ctmt |= 2;
  1229. cs->hw.hfcpci.conn &= ~0x18;
  1230. } else {
  1231. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
  1232. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1233. cs->hw.hfcpci.ctmt |= 1;
  1234. cs->hw.hfcpci.conn &= ~0x03;
  1235. }
  1236. break;
  1237. case (L1_MODE_HDLC):
  1238. hfcpci_clear_fifo_rx(cs, fifo2);
  1239. hfcpci_clear_fifo_tx(cs, fifo2);
  1240. if (bc) {
  1241. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1242. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1243. } else {
  1244. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1245. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1246. }
  1247. if (fifo2) {
  1248. cs->hw.hfcpci.last_bfifo_cnt[1] = 0;
  1249. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
  1250. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1251. cs->hw.hfcpci.ctmt &= ~2;
  1252. cs->hw.hfcpci.conn &= ~0x18;
  1253. } else {
  1254. cs->hw.hfcpci.last_bfifo_cnt[0] = 0;
  1255. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
  1256. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1257. cs->hw.hfcpci.ctmt &= ~1;
  1258. cs->hw.hfcpci.conn &= ~0x03;
  1259. }
  1260. break;
  1261. case (L1_MODE_EXTRN):
  1262. if (bc) {
  1263. cs->hw.hfcpci.conn |= 0x10;
  1264. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1265. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1266. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
  1267. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1268. } else {
  1269. cs->hw.hfcpci.conn |= 0x02;
  1270. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1271. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1272. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
  1273. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1274. }
  1275. break;
  1276. }
  1277. Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e);
  1278. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1279. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  1280. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  1281. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  1282. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  1283. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1284. }
  1285. /******************************/
  1286. /* Layer2 -> Layer 1 Transfer */
  1287. /******************************/
  1288. static void
  1289. hfcpci_l2l1(struct PStack *st, int pr, void *arg)
  1290. {
  1291. struct BCState *bcs = st->l1.bcs;
  1292. u_long flags;
  1293. struct sk_buff *skb = arg;
  1294. switch (pr) {
  1295. case (PH_DATA | REQUEST):
  1296. spin_lock_irqsave(&bcs->cs->lock, flags);
  1297. if (bcs->tx_skb) {
  1298. skb_queue_tail(&bcs->squeue, skb);
  1299. } else {
  1300. bcs->tx_skb = skb;
  1301. // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  1302. bcs->cs->BC_Send_Data(bcs);
  1303. }
  1304. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1305. break;
  1306. case (PH_PULL | INDICATION):
  1307. spin_lock_irqsave(&bcs->cs->lock, flags);
  1308. if (bcs->tx_skb) {
  1309. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1310. printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
  1311. break;
  1312. }
  1313. // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  1314. bcs->tx_skb = skb;
  1315. bcs->cs->BC_Send_Data(bcs);
  1316. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1317. break;
  1318. case (PH_PULL | REQUEST):
  1319. if (!bcs->tx_skb) {
  1320. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1321. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  1322. } else
  1323. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1324. break;
  1325. case (PH_ACTIVATE | REQUEST):
  1326. spin_lock_irqsave(&bcs->cs->lock, flags);
  1327. test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
  1328. mode_hfcpci(bcs, st->l1.mode, st->l1.bc);
  1329. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1330. l1_msg_b(st, pr, arg);
  1331. break;
  1332. case (PH_DEACTIVATE | REQUEST):
  1333. l1_msg_b(st, pr, arg);
  1334. break;
  1335. case (PH_DEACTIVATE | CONFIRM):
  1336. spin_lock_irqsave(&bcs->cs->lock, flags);
  1337. test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
  1338. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1339. mode_hfcpci(bcs, 0, st->l1.bc);
  1340. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1341. st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
  1342. break;
  1343. }
  1344. }
  1345. /******************************************/
  1346. /* deactivate B-channel access and queues */
  1347. /******************************************/
  1348. static void
  1349. close_hfcpci(struct BCState *bcs)
  1350. {
  1351. mode_hfcpci(bcs, 0, bcs->channel);
  1352. if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
  1353. skb_queue_purge(&bcs->rqueue);
  1354. skb_queue_purge(&bcs->squeue);
  1355. if (bcs->tx_skb) {
  1356. dev_kfree_skb_any(bcs->tx_skb);
  1357. bcs->tx_skb = NULL;
  1358. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1359. }
  1360. }
  1361. }
  1362. /*************************************/
  1363. /* init B-channel queues and control */
  1364. /*************************************/
  1365. static int
  1366. open_hfcpcistate(struct IsdnCardState *cs, struct BCState *bcs)
  1367. {
  1368. if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
  1369. skb_queue_head_init(&bcs->rqueue);
  1370. skb_queue_head_init(&bcs->squeue);
  1371. }
  1372. bcs->tx_skb = NULL;
  1373. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1374. bcs->event = 0;
  1375. bcs->tx_cnt = 0;
  1376. return (0);
  1377. }
  1378. /*********************************/
  1379. /* inits the stack for B-channel */
  1380. /*********************************/
  1381. static int
  1382. setstack_2b(struct PStack *st, struct BCState *bcs)
  1383. {
  1384. bcs->channel = st->l1.bc;
  1385. if (open_hfcpcistate(st->l1.hardware, bcs))
  1386. return (-1);
  1387. st->l1.bcs = bcs;
  1388. st->l2.l2l1 = hfcpci_l2l1;
  1389. setstack_manager(st);
  1390. bcs->st = st;
  1391. setstack_l1_B(st);
  1392. return (0);
  1393. }
  1394. /***************************/
  1395. /* handle L1 state changes */
  1396. /***************************/
  1397. static void
  1398. hfcpci_bh(struct IsdnCardState *cs)
  1399. {
  1400. u_long flags;
  1401. // struct PStack *stptr;
  1402. if (!cs)
  1403. return;
  1404. if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
  1405. if (!cs->hw.hfcpci.nt_mode)
  1406. switch (cs->dc.hfcpci.ph_state) {
  1407. case (0):
  1408. l1_msg(cs, HW_RESET | INDICATION, NULL);
  1409. break;
  1410. case (3):
  1411. l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
  1412. break;
  1413. case (8):
  1414. l1_msg(cs, HW_RSYNC | INDICATION, NULL);
  1415. break;
  1416. case (6):
  1417. l1_msg(cs, HW_INFO2 | INDICATION, NULL);
  1418. break;
  1419. case (7):
  1420. l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
  1421. break;
  1422. default:
  1423. break;
  1424. } else {
  1425. spin_lock_irqsave(&cs->lock, flags);
  1426. switch (cs->dc.hfcpci.ph_state) {
  1427. case (2):
  1428. if (cs->hw.hfcpci.nt_timer < 0) {
  1429. cs->hw.hfcpci.nt_timer = 0;
  1430. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1431. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1432. /* Clear already pending ints */
  1433. if (Read_hfc(cs, HFCPCI_INT_S1));
  1434. Write_hfc(cs, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
  1435. udelay(10);
  1436. Write_hfc(cs, HFCPCI_STATES, 4);
  1437. cs->dc.hfcpci.ph_state = 4;
  1438. } else {
  1439. cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_TIMER;
  1440. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1441. cs->hw.hfcpci.ctmt &= ~HFCPCI_AUTO_TIMER;
  1442. cs->hw.hfcpci.ctmt |= HFCPCI_TIM3_125;
  1443. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  1444. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  1445. cs->hw.hfcpci.nt_timer = NT_T1_COUNT;
  1446. Write_hfc(cs, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); /* allow G2 -> G3 transition */
  1447. }
  1448. break;
  1449. case (1):
  1450. case (3):
  1451. case (4):
  1452. cs->hw.hfcpci.nt_timer = 0;
  1453. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1454. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1455. break;
  1456. default:
  1457. break;
  1458. }
  1459. spin_unlock_irqrestore(&cs->lock, flags);
  1460. }
  1461. }
  1462. if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
  1463. DChannel_proc_rcv(cs);
  1464. if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
  1465. DChannel_proc_xmt(cs);
  1466. }
  1467. /********************************/
  1468. /* called for card init message */
  1469. /********************************/
  1470. static void
  1471. inithfcpci(struct IsdnCardState *cs)
  1472. {
  1473. cs->bcs[0].BC_SetStack = setstack_2b;
  1474. cs->bcs[1].BC_SetStack = setstack_2b;
  1475. cs->bcs[0].BC_Close = close_hfcpci;
  1476. cs->bcs[1].BC_Close = close_hfcpci;
  1477. cs->dbusytimer.function = (void *) hfcpci_dbusy_timer;
  1478. cs->dbusytimer.data = (long) cs;
  1479. init_timer(&cs->dbusytimer);
  1480. mode_hfcpci(cs->bcs, 0, 0);
  1481. mode_hfcpci(cs->bcs + 1, 0, 1);
  1482. }
  1483. /*******************************************/
  1484. /* handle card messages from control layer */
  1485. /*******************************************/
  1486. static int
  1487. hfcpci_card_msg(struct IsdnCardState *cs, int mt, void *arg)
  1488. {
  1489. u_long flags;
  1490. if (cs->debug & L1_DEB_ISAC)
  1491. debugl1(cs, "HFCPCI: card_msg %x", mt);
  1492. switch (mt) {
  1493. case CARD_RESET:
  1494. spin_lock_irqsave(&cs->lock, flags);
  1495. reset_hfcpci(cs);
  1496. spin_unlock_irqrestore(&cs->lock, flags);
  1497. return (0);
  1498. case CARD_RELEASE:
  1499. release_io_hfcpci(cs);
  1500. return (0);
  1501. case CARD_INIT:
  1502. spin_lock_irqsave(&cs->lock, flags);
  1503. inithfcpci(cs);
  1504. reset_hfcpci(cs);
  1505. spin_unlock_irqrestore(&cs->lock, flags);
  1506. msleep(80); /* Timeout 80ms */
  1507. /* now switch timer interrupt off */
  1508. spin_lock_irqsave(&cs->lock, flags);
  1509. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1510. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1511. /* reinit mode reg */
  1512. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1513. spin_unlock_irqrestore(&cs->lock, flags);
  1514. return (0);
  1515. case CARD_TEST:
  1516. return (0);
  1517. }
  1518. return (0);
  1519. }
  1520. /* this variable is used as card index when more than one cards are present */
  1521. static struct pci_dev *dev_hfcpci __devinitdata = NULL;
  1522. #endif /* CONFIG_PCI */
  1523. int __devinit
  1524. setup_hfcpci(struct IsdnCard *card)
  1525. {
  1526. u_long flags;
  1527. struct IsdnCardState *cs = card->cs;
  1528. char tmp[64];
  1529. int i;
  1530. struct pci_dev *tmp_hfcpci = NULL;
  1531. #ifdef __BIG_ENDIAN
  1532. #error "not running on big endian machines now"
  1533. #endif
  1534. strcpy(tmp, hfcpci_revision);
  1535. printk(KERN_INFO "HiSax: HFC-PCI driver Rev. %s\n", HiSax_getrev(tmp));
  1536. #ifdef CONFIG_PCI
  1537. cs->hw.hfcpci.int_s1 = 0;
  1538. cs->dc.hfcpci.ph_state = 0;
  1539. cs->hw.hfcpci.fifo = 255;
  1540. if (cs->typ == ISDN_CTYPE_HFC_PCI) {
  1541. i = 0;
  1542. while (id_list[i].vendor_id) {
  1543. tmp_hfcpci = pci_find_device(id_list[i].vendor_id,
  1544. id_list[i].device_id,
  1545. dev_hfcpci);
  1546. i++;
  1547. if (tmp_hfcpci) {
  1548. if (pci_enable_device(tmp_hfcpci))
  1549. continue;
  1550. pci_set_master(tmp_hfcpci);
  1551. if ((card->para[0]) && (card->para[0] != (tmp_hfcpci->resource[ 0].start & PCI_BASE_ADDRESS_IO_MASK)))
  1552. continue;
  1553. else
  1554. break;
  1555. }
  1556. }
  1557. if (tmp_hfcpci) {
  1558. i--;
  1559. dev_hfcpci = tmp_hfcpci; /* old device */
  1560. cs->hw.hfcpci.dev = dev_hfcpci;
  1561. cs->irq = dev_hfcpci->irq;
  1562. if (!cs->irq) {
  1563. printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
  1564. return (0);
  1565. }
  1566. cs->hw.hfcpci.pci_io = (char *)(unsigned long)dev_hfcpci->resource[1].start;
  1567. printk(KERN_INFO "HiSax: HFC-PCI card manufacturer: %s card name: %s\n", id_list[i].vendor_name, id_list[i].card_name);
  1568. } else {
  1569. printk(KERN_WARNING "HFC-PCI: No PCI card found\n");
  1570. return (0);
  1571. }
  1572. if (!cs->hw.hfcpci.pci_io) {
  1573. printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
  1574. return (0);
  1575. }
  1576. /* Allocate memory for FIFOS */
  1577. /* Because the HFC-PCI needs a 32K physical alignment, we */
  1578. /* need to allocate the double mem and align the address */
  1579. if (!(cs->hw.hfcpci.share_start = kmalloc(65536, GFP_KERNEL))) {
  1580. printk(KERN_WARNING "HFC-PCI: Error allocating memory for FIFO!\n");
  1581. return 0;
  1582. }
  1583. cs->hw.hfcpci.fifos = (void *)
  1584. (((ulong) cs->hw.hfcpci.share_start) & ~0x7FFF) + 0x8000;
  1585. pci_write_config_dword(cs->hw.hfcpci.dev, 0x80, (u_int) virt_to_bus(cs->hw.hfcpci.fifos));
  1586. cs->hw.hfcpci.pci_io = ioremap((ulong) cs->hw.hfcpci.pci_io, 256);
  1587. printk(KERN_INFO
  1588. "HFC-PCI: defined at mem %#x fifo %#x(%#x) IRQ %d HZ %d\n",
  1589. (u_int) cs->hw.hfcpci.pci_io,
  1590. (u_int) cs->hw.hfcpci.fifos,
  1591. (u_int) virt_to_bus(cs->hw.hfcpci.fifos),
  1592. cs->irq, HZ);
  1593. spin_lock_irqsave(&cs->lock, flags);
  1594. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
  1595. cs->hw.hfcpci.int_m2 = 0; /* disable alle interrupts */
  1596. cs->hw.hfcpci.int_m1 = 0;
  1597. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1598. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  1599. /* At this point the needed PCI config is done */
  1600. /* fifos are still not enabled */
  1601. INIT_WORK(&cs->tqueue, (void *)(void *) hfcpci_bh, cs);
  1602. cs->setstack_d = setstack_hfcpci;
  1603. cs->BC_Send_Data = &hfcpci_send_data;
  1604. cs->readisac = NULL;
  1605. cs->writeisac = NULL;
  1606. cs->readisacfifo = NULL;
  1607. cs->writeisacfifo = NULL;
  1608. cs->BC_Read_Reg = NULL;
  1609. cs->BC_Write_Reg = NULL;
  1610. cs->irq_func = &hfcpci_interrupt;
  1611. cs->irq_flags |= IRQF_SHARED;
  1612. cs->hw.hfcpci.timer.function = (void *) hfcpci_Timer;
  1613. cs->hw.hfcpci.timer.data = (long) cs;
  1614. init_timer(&cs->hw.hfcpci.timer);
  1615. cs->cardmsg = &hfcpci_card_msg;
  1616. cs->auxcmd = &hfcpci_auxcmd;
  1617. spin_unlock_irqrestore(&cs->lock, flags);
  1618. return (1);
  1619. } else
  1620. return (0); /* no valid card type */
  1621. #else
  1622. printk(KERN_WARNING "HFC-PCI: NO_PCI_BIOS\n");
  1623. return (0);
  1624. #endif /* CONFIG_PCI */
  1625. }