avm_pci.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862
  1. /* $Id: avm_pci.c,v 1.29.2.4 2004/02/11 13:21:32 keil Exp $
  2. *
  3. * low level stuff for AVM Fritz!PCI and ISA PnP isdn cards
  4. *
  5. * Author Karsten Keil
  6. * Copyright by Karsten Keil <keil@isdn4linux.de>
  7. *
  8. * This software may be used and distributed according to the terms
  9. * of the GNU General Public License, incorporated herein by reference.
  10. *
  11. * Thanks to AVM, Berlin for information
  12. *
  13. */
  14. #include <linux/init.h>
  15. #include "hisax.h"
  16. #include "isac.h"
  17. #include "isdnl1.h"
  18. #include <linux/pci.h>
  19. #include <linux/isapnp.h>
  20. #include <linux/interrupt.h>
  21. extern const char *CardType[];
  22. static const char *avm_pci_rev = "$Revision: 1.29.2.4 $";
  23. #define AVM_FRITZ_PCI 1
  24. #define AVM_FRITZ_PNP 2
  25. #define HDLC_FIFO 0x0
  26. #define HDLC_STATUS 0x4
  27. #define AVM_HDLC_1 0x00
  28. #define AVM_HDLC_2 0x01
  29. #define AVM_ISAC_FIFO 0x02
  30. #define AVM_ISAC_REG_LOW 0x04
  31. #define AVM_ISAC_REG_HIGH 0x06
  32. #define AVM_STATUS0_IRQ_ISAC 0x01
  33. #define AVM_STATUS0_IRQ_HDLC 0x02
  34. #define AVM_STATUS0_IRQ_TIMER 0x04
  35. #define AVM_STATUS0_IRQ_MASK 0x07
  36. #define AVM_STATUS0_RESET 0x01
  37. #define AVM_STATUS0_DIS_TIMER 0x02
  38. #define AVM_STATUS0_RES_TIMER 0x04
  39. #define AVM_STATUS0_ENA_IRQ 0x08
  40. #define AVM_STATUS0_TESTBIT 0x10
  41. #define AVM_STATUS1_INT_SEL 0x0f
  42. #define AVM_STATUS1_ENA_IOM 0x80
  43. #define HDLC_MODE_ITF_FLG 0x01
  44. #define HDLC_MODE_TRANS 0x02
  45. #define HDLC_MODE_CCR_7 0x04
  46. #define HDLC_MODE_CCR_16 0x08
  47. #define HDLC_MODE_TESTLOOP 0x80
  48. #define HDLC_INT_XPR 0x80
  49. #define HDLC_INT_XDU 0x40
  50. #define HDLC_INT_RPR 0x20
  51. #define HDLC_INT_MASK 0xE0
  52. #define HDLC_STAT_RME 0x01
  53. #define HDLC_STAT_RDO 0x10
  54. #define HDLC_STAT_CRCVFRRAB 0x0E
  55. #define HDLC_STAT_CRCVFR 0x06
  56. #define HDLC_STAT_RML_MASK 0x3f00
  57. #define HDLC_CMD_XRS 0x80
  58. #define HDLC_CMD_XME 0x01
  59. #define HDLC_CMD_RRS 0x20
  60. #define HDLC_CMD_XML_MASK 0x3f00
  61. /* Interface functions */
  62. static u_char
  63. ReadISAC(struct IsdnCardState *cs, u_char offset)
  64. {
  65. register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
  66. register u_char val;
  67. outb(idx, cs->hw.avm.cfg_reg + 4);
  68. val = inb(cs->hw.avm.isac + (offset & 0xf));
  69. return (val);
  70. }
  71. static void
  72. WriteISAC(struct IsdnCardState *cs, u_char offset, u_char value)
  73. {
  74. register u_char idx = (offset > 0x2f) ? AVM_ISAC_REG_HIGH : AVM_ISAC_REG_LOW;
  75. outb(idx, cs->hw.avm.cfg_reg + 4);
  76. outb(value, cs->hw.avm.isac + (offset & 0xf));
  77. }
  78. static void
  79. ReadISACfifo(struct IsdnCardState *cs, u_char * data, int size)
  80. {
  81. outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
  82. insb(cs->hw.avm.isac, data, size);
  83. }
  84. static void
  85. WriteISACfifo(struct IsdnCardState *cs, u_char * data, int size)
  86. {
  87. outb(AVM_ISAC_FIFO, cs->hw.avm.cfg_reg + 4);
  88. outsb(cs->hw.avm.isac, data, size);
  89. }
  90. static inline u_int
  91. ReadHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset)
  92. {
  93. register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
  94. register u_int val;
  95. outl(idx, cs->hw.avm.cfg_reg + 4);
  96. val = inl(cs->hw.avm.isac + offset);
  97. return (val);
  98. }
  99. static inline void
  100. WriteHDLCPCI(struct IsdnCardState *cs, int chan, u_char offset, u_int value)
  101. {
  102. register u_int idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
  103. outl(idx, cs->hw.avm.cfg_reg + 4);
  104. outl(value, cs->hw.avm.isac + offset);
  105. }
  106. static inline u_char
  107. ReadHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset)
  108. {
  109. register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
  110. register u_char val;
  111. outb(idx, cs->hw.avm.cfg_reg + 4);
  112. val = inb(cs->hw.avm.isac + offset);
  113. return (val);
  114. }
  115. static inline void
  116. WriteHDLCPnP(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
  117. {
  118. register u_char idx = chan ? AVM_HDLC_2 : AVM_HDLC_1;
  119. outb(idx, cs->hw.avm.cfg_reg + 4);
  120. outb(value, cs->hw.avm.isac + offset);
  121. }
  122. static u_char
  123. ReadHDLC_s(struct IsdnCardState *cs, int chan, u_char offset)
  124. {
  125. return(0xff & ReadHDLCPCI(cs, chan, offset));
  126. }
  127. static void
  128. WriteHDLC_s(struct IsdnCardState *cs, int chan, u_char offset, u_char value)
  129. {
  130. WriteHDLCPCI(cs, chan, offset, value);
  131. }
  132. static inline
  133. struct BCState *Sel_BCS(struct IsdnCardState *cs, int channel)
  134. {
  135. if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
  136. return(&cs->bcs[0]);
  137. else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
  138. return(&cs->bcs[1]);
  139. else
  140. return(NULL);
  141. }
  142. static void
  143. write_ctrl(struct BCState *bcs, int which) {
  144. if (bcs->cs->debug & L1_DEB_HSCX)
  145. debugl1(bcs->cs, "hdlc %c wr%x ctrl %x",
  146. 'A' + bcs->channel, which, bcs->hw.hdlc.ctrl.ctrl);
  147. if (bcs->cs->subtyp == AVM_FRITZ_PCI) {
  148. WriteHDLCPCI(bcs->cs, bcs->channel, HDLC_STATUS, bcs->hw.hdlc.ctrl.ctrl);
  149. } else {
  150. if (which & 4)
  151. WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 2,
  152. bcs->hw.hdlc.ctrl.sr.mode);
  153. if (which & 2)
  154. WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS + 1,
  155. bcs->hw.hdlc.ctrl.sr.xml);
  156. if (which & 1)
  157. WriteHDLCPnP(bcs->cs, bcs->channel, HDLC_STATUS,
  158. bcs->hw.hdlc.ctrl.sr.cmd);
  159. }
  160. }
  161. static void
  162. modehdlc(struct BCState *bcs, int mode, int bc)
  163. {
  164. struct IsdnCardState *cs = bcs->cs;
  165. int hdlc = bcs->channel;
  166. if (cs->debug & L1_DEB_HSCX)
  167. debugl1(cs, "hdlc %c mode %d --> %d ichan %d --> %d",
  168. 'A' + hdlc, bcs->mode, mode, hdlc, bc);
  169. bcs->hw.hdlc.ctrl.ctrl = 0;
  170. switch (mode) {
  171. case (-1): /* used for init */
  172. bcs->mode = 1;
  173. bcs->channel = bc;
  174. bc = 0;
  175. case (L1_MODE_NULL):
  176. if (bcs->mode == L1_MODE_NULL)
  177. return;
  178. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
  179. bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
  180. write_ctrl(bcs, 5);
  181. bcs->mode = L1_MODE_NULL;
  182. bcs->channel = bc;
  183. break;
  184. case (L1_MODE_TRANS):
  185. bcs->mode = mode;
  186. bcs->channel = bc;
  187. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
  188. bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_TRANS;
  189. write_ctrl(bcs, 5);
  190. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
  191. write_ctrl(bcs, 1);
  192. bcs->hw.hdlc.ctrl.sr.cmd = 0;
  193. schedule_event(bcs, B_XMTBUFREADY);
  194. break;
  195. case (L1_MODE_HDLC):
  196. bcs->mode = mode;
  197. bcs->channel = bc;
  198. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS | HDLC_CMD_RRS;
  199. bcs->hw.hdlc.ctrl.sr.mode = HDLC_MODE_ITF_FLG;
  200. write_ctrl(bcs, 5);
  201. bcs->hw.hdlc.ctrl.sr.cmd = HDLC_CMD_XRS;
  202. write_ctrl(bcs, 1);
  203. bcs->hw.hdlc.ctrl.sr.cmd = 0;
  204. schedule_event(bcs, B_XMTBUFREADY);
  205. break;
  206. }
  207. }
  208. static inline void
  209. hdlc_empty_fifo(struct BCState *bcs, int count)
  210. {
  211. register u_int *ptr;
  212. u_char *p;
  213. u_char idx = bcs->channel ? AVM_HDLC_2 : AVM_HDLC_1;
  214. int cnt=0;
  215. struct IsdnCardState *cs = bcs->cs;
  216. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  217. debugl1(cs, "hdlc_empty_fifo %d", count);
  218. if (bcs->hw.hdlc.rcvidx + count > HSCX_BUFMAX) {
  219. if (cs->debug & L1_DEB_WARN)
  220. debugl1(cs, "hdlc_empty_fifo: incoming packet too large");
  221. return;
  222. }
  223. p = bcs->hw.hdlc.rcvbuf + bcs->hw.hdlc.rcvidx;
  224. ptr = (u_int *)p;
  225. bcs->hw.hdlc.rcvidx += count;
  226. if (cs->subtyp == AVM_FRITZ_PCI) {
  227. outl(idx, cs->hw.avm.cfg_reg + 4);
  228. while (cnt < count) {
  229. #ifdef __powerpc__
  230. #ifdef CONFIG_APUS
  231. *ptr++ = in_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
  232. #else
  233. *ptr++ = in_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE));
  234. #endif /* CONFIG_APUS */
  235. #else
  236. *ptr++ = inl(cs->hw.avm.isac);
  237. #endif /* __powerpc__ */
  238. cnt += 4;
  239. }
  240. } else {
  241. outb(idx, cs->hw.avm.cfg_reg + 4);
  242. while (cnt < count) {
  243. *p++ = inb(cs->hw.avm.isac);
  244. cnt++;
  245. }
  246. }
  247. if (cs->debug & L1_DEB_HSCX_FIFO) {
  248. char *t = bcs->blog;
  249. if (cs->subtyp == AVM_FRITZ_PNP)
  250. p = (u_char *) ptr;
  251. t += sprintf(t, "hdlc_empty_fifo %c cnt %d",
  252. bcs->channel ? 'B' : 'A', count);
  253. QuickHex(t, p, count);
  254. debugl1(cs, bcs->blog);
  255. }
  256. }
  257. static inline void
  258. hdlc_fill_fifo(struct BCState *bcs)
  259. {
  260. struct IsdnCardState *cs = bcs->cs;
  261. int count, cnt =0;
  262. int fifo_size = 32;
  263. u_char *p;
  264. u_int *ptr;
  265. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  266. debugl1(cs, "hdlc_fill_fifo");
  267. if (!bcs->tx_skb)
  268. return;
  269. if (bcs->tx_skb->len <= 0)
  270. return;
  271. bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XME;
  272. if (bcs->tx_skb->len > fifo_size) {
  273. count = fifo_size;
  274. } else {
  275. count = bcs->tx_skb->len;
  276. if (bcs->mode != L1_MODE_TRANS)
  277. bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XME;
  278. }
  279. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  280. debugl1(cs, "hdlc_fill_fifo %d/%ld", count, bcs->tx_skb->len);
  281. p = bcs->tx_skb->data;
  282. ptr = (u_int *)p;
  283. skb_pull(bcs->tx_skb, count);
  284. bcs->tx_cnt -= count;
  285. bcs->hw.hdlc.count += count;
  286. bcs->hw.hdlc.ctrl.sr.xml = ((count == fifo_size) ? 0 : count);
  287. write_ctrl(bcs, 3); /* sets the correct index too */
  288. if (cs->subtyp == AVM_FRITZ_PCI) {
  289. while (cnt<count) {
  290. #ifdef __powerpc__
  291. #ifdef CONFIG_APUS
  292. out_le32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
  293. #else
  294. out_be32((unsigned *)(cs->hw.avm.isac +_IO_BASE), *ptr++);
  295. #endif /* CONFIG_APUS */
  296. #else
  297. outl(*ptr++, cs->hw.avm.isac);
  298. #endif /* __powerpc__ */
  299. cnt += 4;
  300. }
  301. } else {
  302. while (cnt<count) {
  303. outb(*p++, cs->hw.avm.isac);
  304. cnt++;
  305. }
  306. }
  307. if (cs->debug & L1_DEB_HSCX_FIFO) {
  308. char *t = bcs->blog;
  309. if (cs->subtyp == AVM_FRITZ_PNP)
  310. p = (u_char *) ptr;
  311. t += sprintf(t, "hdlc_fill_fifo %c cnt %d",
  312. bcs->channel ? 'B' : 'A', count);
  313. QuickHex(t, p, count);
  314. debugl1(cs, bcs->blog);
  315. }
  316. }
  317. static void
  318. HDLC_irq(struct BCState *bcs, u_int stat) {
  319. int len;
  320. struct sk_buff *skb;
  321. if (bcs->cs->debug & L1_DEB_HSCX)
  322. debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
  323. if (stat & HDLC_INT_RPR) {
  324. if (stat & HDLC_STAT_RDO) {
  325. if (bcs->cs->debug & L1_DEB_HSCX)
  326. debugl1(bcs->cs, "RDO");
  327. else
  328. debugl1(bcs->cs, "ch%d stat %#x", bcs->channel, stat);
  329. bcs->hw.hdlc.ctrl.sr.xml = 0;
  330. bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_RRS;
  331. write_ctrl(bcs, 1);
  332. bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_RRS;
  333. write_ctrl(bcs, 1);
  334. bcs->hw.hdlc.rcvidx = 0;
  335. } else {
  336. if (!(len = (stat & HDLC_STAT_RML_MASK)>>8))
  337. len = 32;
  338. hdlc_empty_fifo(bcs, len);
  339. if ((stat & HDLC_STAT_RME) || (bcs->mode == L1_MODE_TRANS)) {
  340. if (((stat & HDLC_STAT_CRCVFRRAB)==HDLC_STAT_CRCVFR) ||
  341. (bcs->mode == L1_MODE_TRANS)) {
  342. if (!(skb = dev_alloc_skb(bcs->hw.hdlc.rcvidx)))
  343. printk(KERN_WARNING "HDLC: receive out of memory\n");
  344. else {
  345. memcpy(skb_put(skb, bcs->hw.hdlc.rcvidx),
  346. bcs->hw.hdlc.rcvbuf, bcs->hw.hdlc.rcvidx);
  347. skb_queue_tail(&bcs->rqueue, skb);
  348. }
  349. bcs->hw.hdlc.rcvidx = 0;
  350. schedule_event(bcs, B_RCVBUFREADY);
  351. } else {
  352. if (bcs->cs->debug & L1_DEB_HSCX)
  353. debugl1(bcs->cs, "invalid frame");
  354. else
  355. debugl1(bcs->cs, "ch%d invalid frame %#x", bcs->channel, stat);
  356. bcs->hw.hdlc.rcvidx = 0;
  357. }
  358. }
  359. }
  360. }
  361. if (stat & HDLC_INT_XDU) {
  362. /* Here we lost an TX interrupt, so
  363. * restart transmitting the whole frame.
  364. */
  365. if (bcs->tx_skb) {
  366. skb_push(bcs->tx_skb, bcs->hw.hdlc.count);
  367. bcs->tx_cnt += bcs->hw.hdlc.count;
  368. bcs->hw.hdlc.count = 0;
  369. if (bcs->cs->debug & L1_DEB_WARN)
  370. debugl1(bcs->cs, "ch%d XDU", bcs->channel);
  371. } else if (bcs->cs->debug & L1_DEB_WARN)
  372. debugl1(bcs->cs, "ch%d XDU without skb", bcs->channel);
  373. bcs->hw.hdlc.ctrl.sr.xml = 0;
  374. bcs->hw.hdlc.ctrl.sr.cmd |= HDLC_CMD_XRS;
  375. write_ctrl(bcs, 1);
  376. bcs->hw.hdlc.ctrl.sr.cmd &= ~HDLC_CMD_XRS;
  377. write_ctrl(bcs, 1);
  378. hdlc_fill_fifo(bcs);
  379. } else if (stat & HDLC_INT_XPR) {
  380. if (bcs->tx_skb) {
  381. if (bcs->tx_skb->len) {
  382. hdlc_fill_fifo(bcs);
  383. return;
  384. } else {
  385. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  386. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  387. u_long flags;
  388. spin_lock_irqsave(&bcs->aclock, flags);
  389. bcs->ackcnt += bcs->hw.hdlc.count;
  390. spin_unlock_irqrestore(&bcs->aclock, flags);
  391. schedule_event(bcs, B_ACKPENDING);
  392. }
  393. dev_kfree_skb_irq(bcs->tx_skb);
  394. bcs->hw.hdlc.count = 0;
  395. bcs->tx_skb = NULL;
  396. }
  397. }
  398. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  399. bcs->hw.hdlc.count = 0;
  400. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  401. hdlc_fill_fifo(bcs);
  402. } else {
  403. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  404. schedule_event(bcs, B_XMTBUFREADY);
  405. }
  406. }
  407. }
  408. static inline void
  409. HDLC_irq_main(struct IsdnCardState *cs)
  410. {
  411. u_int stat;
  412. struct BCState *bcs;
  413. if (cs->subtyp == AVM_FRITZ_PCI) {
  414. stat = ReadHDLCPCI(cs, 0, HDLC_STATUS);
  415. } else {
  416. stat = ReadHDLCPnP(cs, 0, HDLC_STATUS);
  417. if (stat & HDLC_INT_RPR)
  418. stat |= (ReadHDLCPnP(cs, 0, HDLC_STATUS+1))<<8;
  419. }
  420. if (stat & HDLC_INT_MASK) {
  421. if (!(bcs = Sel_BCS(cs, 0))) {
  422. if (cs->debug)
  423. debugl1(cs, "hdlc spurious channel 0 IRQ");
  424. } else
  425. HDLC_irq(bcs, stat);
  426. }
  427. if (cs->subtyp == AVM_FRITZ_PCI) {
  428. stat = ReadHDLCPCI(cs, 1, HDLC_STATUS);
  429. } else {
  430. stat = ReadHDLCPnP(cs, 1, HDLC_STATUS);
  431. if (stat & HDLC_INT_RPR)
  432. stat |= (ReadHDLCPnP(cs, 1, HDLC_STATUS+1))<<8;
  433. }
  434. if (stat & HDLC_INT_MASK) {
  435. if (!(bcs = Sel_BCS(cs, 1))) {
  436. if (cs->debug)
  437. debugl1(cs, "hdlc spurious channel 1 IRQ");
  438. } else
  439. HDLC_irq(bcs, stat);
  440. }
  441. }
  442. static void
  443. hdlc_l2l1(struct PStack *st, int pr, void *arg)
  444. {
  445. struct BCState *bcs = st->l1.bcs;
  446. struct sk_buff *skb = arg;
  447. u_long flags;
  448. switch (pr) {
  449. case (PH_DATA | REQUEST):
  450. spin_lock_irqsave(&bcs->cs->lock, flags);
  451. if (bcs->tx_skb) {
  452. skb_queue_tail(&bcs->squeue, skb);
  453. } else {
  454. bcs->tx_skb = skb;
  455. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  456. bcs->hw.hdlc.count = 0;
  457. bcs->cs->BC_Send_Data(bcs);
  458. }
  459. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  460. break;
  461. case (PH_PULL | INDICATION):
  462. spin_lock_irqsave(&bcs->cs->lock, flags);
  463. if (bcs->tx_skb) {
  464. printk(KERN_WARNING "hdlc_l2l1: this shouldn't happen\n");
  465. } else {
  466. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  467. bcs->tx_skb = skb;
  468. bcs->hw.hdlc.count = 0;
  469. bcs->cs->BC_Send_Data(bcs);
  470. }
  471. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  472. break;
  473. case (PH_PULL | REQUEST):
  474. if (!bcs->tx_skb) {
  475. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  476. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  477. } else
  478. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  479. break;
  480. case (PH_ACTIVATE | REQUEST):
  481. spin_lock_irqsave(&bcs->cs->lock, flags);
  482. test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
  483. modehdlc(bcs, st->l1.mode, st->l1.bc);
  484. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  485. l1_msg_b(st, pr, arg);
  486. break;
  487. case (PH_DEACTIVATE | REQUEST):
  488. l1_msg_b(st, pr, arg);
  489. break;
  490. case (PH_DEACTIVATE | CONFIRM):
  491. spin_lock_irqsave(&bcs->cs->lock, flags);
  492. test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
  493. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  494. modehdlc(bcs, 0, st->l1.bc);
  495. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  496. st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
  497. break;
  498. }
  499. }
  500. static void
  501. close_hdlcstate(struct BCState *bcs)
  502. {
  503. modehdlc(bcs, 0, 0);
  504. if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
  505. kfree(bcs->hw.hdlc.rcvbuf);
  506. bcs->hw.hdlc.rcvbuf = NULL;
  507. kfree(bcs->blog);
  508. bcs->blog = NULL;
  509. skb_queue_purge(&bcs->rqueue);
  510. skb_queue_purge(&bcs->squeue);
  511. if (bcs->tx_skb) {
  512. dev_kfree_skb_any(bcs->tx_skb);
  513. bcs->tx_skb = NULL;
  514. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  515. }
  516. }
  517. }
  518. static int
  519. open_hdlcstate(struct IsdnCardState *cs, struct BCState *bcs)
  520. {
  521. if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
  522. if (!(bcs->hw.hdlc.rcvbuf = kmalloc(HSCX_BUFMAX, GFP_ATOMIC))) {
  523. printk(KERN_WARNING
  524. "HiSax: No memory for hdlc.rcvbuf\n");
  525. return (1);
  526. }
  527. if (!(bcs->blog = kmalloc(MAX_BLOG_SPACE, GFP_ATOMIC))) {
  528. printk(KERN_WARNING
  529. "HiSax: No memory for bcs->blog\n");
  530. test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
  531. kfree(bcs->hw.hdlc.rcvbuf);
  532. bcs->hw.hdlc.rcvbuf = NULL;
  533. return (2);
  534. }
  535. skb_queue_head_init(&bcs->rqueue);
  536. skb_queue_head_init(&bcs->squeue);
  537. }
  538. bcs->tx_skb = NULL;
  539. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  540. bcs->event = 0;
  541. bcs->hw.hdlc.rcvidx = 0;
  542. bcs->tx_cnt = 0;
  543. return (0);
  544. }
  545. static int
  546. setstack_hdlc(struct PStack *st, struct BCState *bcs)
  547. {
  548. bcs->channel = st->l1.bc;
  549. if (open_hdlcstate(st->l1.hardware, bcs))
  550. return (-1);
  551. st->l1.bcs = bcs;
  552. st->l2.l2l1 = hdlc_l2l1;
  553. setstack_manager(st);
  554. bcs->st = st;
  555. setstack_l1_B(st);
  556. return (0);
  557. }
  558. #if 0
  559. void __init
  560. clear_pending_hdlc_ints(struct IsdnCardState *cs)
  561. {
  562. u_int val;
  563. if (cs->subtyp == AVM_FRITZ_PCI) {
  564. val = ReadHDLCPCI(cs, 0, HDLC_STATUS);
  565. debugl1(cs, "HDLC 1 STA %x", val);
  566. val = ReadHDLCPCI(cs, 1, HDLC_STATUS);
  567. debugl1(cs, "HDLC 2 STA %x", val);
  568. } else {
  569. val = ReadHDLCPnP(cs, 0, HDLC_STATUS);
  570. debugl1(cs, "HDLC 1 STA %x", val);
  571. val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 1);
  572. debugl1(cs, "HDLC 1 RML %x", val);
  573. val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 2);
  574. debugl1(cs, "HDLC 1 MODE %x", val);
  575. val = ReadHDLCPnP(cs, 0, HDLC_STATUS + 3);
  576. debugl1(cs, "HDLC 1 VIN %x", val);
  577. val = ReadHDLCPnP(cs, 1, HDLC_STATUS);
  578. debugl1(cs, "HDLC 2 STA %x", val);
  579. val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 1);
  580. debugl1(cs, "HDLC 2 RML %x", val);
  581. val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 2);
  582. debugl1(cs, "HDLC 2 MODE %x", val);
  583. val = ReadHDLCPnP(cs, 1, HDLC_STATUS + 3);
  584. debugl1(cs, "HDLC 2 VIN %x", val);
  585. }
  586. }
  587. #endif /* 0 */
  588. static void
  589. inithdlc(struct IsdnCardState *cs)
  590. {
  591. cs->bcs[0].BC_SetStack = setstack_hdlc;
  592. cs->bcs[1].BC_SetStack = setstack_hdlc;
  593. cs->bcs[0].BC_Close = close_hdlcstate;
  594. cs->bcs[1].BC_Close = close_hdlcstate;
  595. modehdlc(cs->bcs, -1, 0);
  596. modehdlc(cs->bcs + 1, -1, 1);
  597. }
  598. static irqreturn_t
  599. avm_pcipnp_interrupt(int intno, void *dev_id)
  600. {
  601. struct IsdnCardState *cs = dev_id;
  602. u_long flags;
  603. u_char val;
  604. u_char sval;
  605. spin_lock_irqsave(&cs->lock, flags);
  606. sval = inb(cs->hw.avm.cfg_reg + 2);
  607. if ((sval & AVM_STATUS0_IRQ_MASK) == AVM_STATUS0_IRQ_MASK) {
  608. /* possible a shared IRQ reqest */
  609. spin_unlock_irqrestore(&cs->lock, flags);
  610. return IRQ_NONE;
  611. }
  612. if (!(sval & AVM_STATUS0_IRQ_ISAC)) {
  613. val = ReadISAC(cs, ISAC_ISTA);
  614. isac_interrupt(cs, val);
  615. }
  616. if (!(sval & AVM_STATUS0_IRQ_HDLC)) {
  617. HDLC_irq_main(cs);
  618. }
  619. WriteISAC(cs, ISAC_MASK, 0xFF);
  620. WriteISAC(cs, ISAC_MASK, 0x0);
  621. spin_unlock_irqrestore(&cs->lock, flags);
  622. return IRQ_HANDLED;
  623. }
  624. static void
  625. reset_avmpcipnp(struct IsdnCardState *cs)
  626. {
  627. printk(KERN_INFO "AVM PCI/PnP: reset\n");
  628. outb(AVM_STATUS0_RESET | AVM_STATUS0_DIS_TIMER, cs->hw.avm.cfg_reg + 2);
  629. mdelay(10);
  630. outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER | AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
  631. outb(AVM_STATUS1_ENA_IOM | cs->irq, cs->hw.avm.cfg_reg + 3);
  632. mdelay(10);
  633. printk(KERN_INFO "AVM PCI/PnP: S1 %x\n", inb(cs->hw.avm.cfg_reg + 3));
  634. }
  635. static int
  636. AVM_card_msg(struct IsdnCardState *cs, int mt, void *arg)
  637. {
  638. u_long flags;
  639. switch (mt) {
  640. case CARD_RESET:
  641. spin_lock_irqsave(&cs->lock, flags);
  642. reset_avmpcipnp(cs);
  643. spin_unlock_irqrestore(&cs->lock, flags);
  644. return(0);
  645. case CARD_RELEASE:
  646. outb(0, cs->hw.avm.cfg_reg + 2);
  647. release_region(cs->hw.avm.cfg_reg, 32);
  648. return(0);
  649. case CARD_INIT:
  650. spin_lock_irqsave(&cs->lock, flags);
  651. reset_avmpcipnp(cs);
  652. clear_pending_isac_ints(cs);
  653. initisac(cs);
  654. inithdlc(cs);
  655. outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER,
  656. cs->hw.avm.cfg_reg + 2);
  657. WriteISAC(cs, ISAC_MASK, 0);
  658. outb(AVM_STATUS0_DIS_TIMER | AVM_STATUS0_RES_TIMER |
  659. AVM_STATUS0_ENA_IRQ, cs->hw.avm.cfg_reg + 2);
  660. /* RESET Receiver and Transmitter */
  661. WriteISAC(cs, ISAC_CMDR, 0x41);
  662. spin_unlock_irqrestore(&cs->lock, flags);
  663. return(0);
  664. case CARD_TEST:
  665. return(0);
  666. }
  667. return(0);
  668. }
  669. #ifdef CONFIG_PCI
  670. static struct pci_dev *dev_avm __devinitdata = NULL;
  671. #endif
  672. #ifdef __ISAPNP__
  673. static struct pnp_card *pnp_avm_c __devinitdata = NULL;
  674. #endif
  675. int __devinit
  676. setup_avm_pcipnp(struct IsdnCard *card)
  677. {
  678. u_int val, ver;
  679. struct IsdnCardState *cs = card->cs;
  680. char tmp[64];
  681. strcpy(tmp, avm_pci_rev);
  682. printk(KERN_INFO "HiSax: AVM PCI driver Rev. %s\n", HiSax_getrev(tmp));
  683. if (cs->typ != ISDN_CTYPE_FRITZPCI)
  684. return (0);
  685. if (card->para[1]) {
  686. /* old manual method */
  687. cs->hw.avm.cfg_reg = card->para[1];
  688. cs->irq = card->para[0];
  689. cs->subtyp = AVM_FRITZ_PNP;
  690. goto ready;
  691. }
  692. #ifdef __ISAPNP__
  693. if (isapnp_present()) {
  694. struct pnp_dev *pnp_avm_d = NULL;
  695. if ((pnp_avm_c = pnp_find_card(
  696. ISAPNP_VENDOR('A', 'V', 'M'),
  697. ISAPNP_FUNCTION(0x0900), pnp_avm_c))) {
  698. if ((pnp_avm_d = pnp_find_dev(pnp_avm_c,
  699. ISAPNP_VENDOR('A', 'V', 'M'),
  700. ISAPNP_FUNCTION(0x0900), pnp_avm_d))) {
  701. int err;
  702. pnp_disable_dev(pnp_avm_d);
  703. err = pnp_activate_dev(pnp_avm_d);
  704. if (err<0) {
  705. printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
  706. __FUNCTION__, err);
  707. return(0);
  708. }
  709. cs->hw.avm.cfg_reg =
  710. pnp_port_start(pnp_avm_d, 0);
  711. cs->irq = pnp_irq(pnp_avm_d, 0);
  712. if (!cs->irq) {
  713. printk(KERN_ERR "FritzPnP:No IRQ\n");
  714. return(0);
  715. }
  716. if (!cs->hw.avm.cfg_reg) {
  717. printk(KERN_ERR "FritzPnP:No IO address\n");
  718. return(0);
  719. }
  720. cs->subtyp = AVM_FRITZ_PNP;
  721. goto ready;
  722. }
  723. }
  724. } else {
  725. printk(KERN_INFO "FritzPnP: no ISA PnP present\n");
  726. }
  727. #endif
  728. #ifdef CONFIG_PCI
  729. if ((dev_avm = pci_find_device(PCI_VENDOR_ID_AVM,
  730. PCI_DEVICE_ID_AVM_A1, dev_avm))) {
  731. if (pci_enable_device(dev_avm))
  732. return(0);
  733. cs->irq = dev_avm->irq;
  734. if (!cs->irq) {
  735. printk(KERN_ERR "FritzPCI: No IRQ for PCI card found\n");
  736. return(0);
  737. }
  738. cs->hw.avm.cfg_reg = pci_resource_start(dev_avm, 1);
  739. if (!cs->hw.avm.cfg_reg) {
  740. printk(KERN_ERR "FritzPCI: No IO-Adr for PCI card found\n");
  741. return(0);
  742. }
  743. cs->subtyp = AVM_FRITZ_PCI;
  744. } else {
  745. printk(KERN_WARNING "FritzPCI: No PCI card found\n");
  746. return(0);
  747. }
  748. cs->irq_flags |= IRQF_SHARED;
  749. #else
  750. printk(KERN_WARNING "FritzPCI: NO_PCI_BIOS\n");
  751. return (0);
  752. #endif /* CONFIG_PCI */
  753. ready:
  754. cs->hw.avm.isac = cs->hw.avm.cfg_reg + 0x10;
  755. if (!request_region(cs->hw.avm.cfg_reg, 32,
  756. (cs->subtyp == AVM_FRITZ_PCI) ? "avm PCI" : "avm PnP")) {
  757. printk(KERN_WARNING
  758. "HiSax: %s config port %x-%x already in use\n",
  759. CardType[card->typ],
  760. cs->hw.avm.cfg_reg,
  761. cs->hw.avm.cfg_reg + 31);
  762. return (0);
  763. }
  764. switch (cs->subtyp) {
  765. case AVM_FRITZ_PCI:
  766. val = inl(cs->hw.avm.cfg_reg);
  767. printk(KERN_INFO "AVM PCI: stat %#x\n", val);
  768. printk(KERN_INFO "AVM PCI: Class %X Rev %d\n",
  769. val & 0xff, (val>>8) & 0xff);
  770. cs->BC_Read_Reg = &ReadHDLC_s;
  771. cs->BC_Write_Reg = &WriteHDLC_s;
  772. break;
  773. case AVM_FRITZ_PNP:
  774. val = inb(cs->hw.avm.cfg_reg);
  775. ver = inb(cs->hw.avm.cfg_reg + 1);
  776. printk(KERN_INFO "AVM PnP: Class %X Rev %d\n", val, ver);
  777. cs->BC_Read_Reg = &ReadHDLCPnP;
  778. cs->BC_Write_Reg = &WriteHDLCPnP;
  779. break;
  780. default:
  781. printk(KERN_WARNING "AVM unknown subtype %d\n", cs->subtyp);
  782. return(0);
  783. }
  784. printk(KERN_INFO "HiSax: %s config irq:%d base:0x%X\n",
  785. (cs->subtyp == AVM_FRITZ_PCI) ? "AVM Fritz!PCI" : "AVM Fritz!PnP",
  786. cs->irq, cs->hw.avm.cfg_reg);
  787. setup_isac(cs);
  788. cs->readisac = &ReadISAC;
  789. cs->writeisac = &WriteISAC;
  790. cs->readisacfifo = &ReadISACfifo;
  791. cs->writeisacfifo = &WriteISACfifo;
  792. cs->BC_Send_Data = &hdlc_fill_fifo;
  793. cs->cardmsg = &AVM_card_msg;
  794. cs->irq_func = &avm_pcipnp_interrupt;
  795. cs->writeisac(cs, ISAC_MASK, 0xFF);
  796. ISACVersion(cs, (cs->subtyp == AVM_FRITZ_PCI) ? "AVM PCI:" : "AVM PnP:");
  797. return (1);
  798. }