ieee1394_transactions.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631
  1. /*
  2. * IEEE 1394 for Linux
  3. *
  4. * Transaction support.
  5. *
  6. * Copyright (C) 1999 Andreas E. Bombe
  7. *
  8. * This code is licensed under the GPL. See the file COPYING in the root
  9. * directory of the kernel sources for details.
  10. */
  11. #include <linux/bitops.h>
  12. #include <linux/spinlock.h>
  13. #include <linux/wait.h>
  14. #include <asm/bug.h>
  15. #include <asm/errno.h>
  16. #include "ieee1394.h"
  17. #include "ieee1394_types.h"
  18. #include "hosts.h"
  19. #include "ieee1394_core.h"
  20. #include "ieee1394_transactions.h"
  21. #define PREP_ASYNC_HEAD_ADDRESS(tc) \
  22. packet->tcode = tc; \
  23. packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
  24. | (1 << 8) | (tc << 4); \
  25. packet->header[1] = (packet->host->node_id << 16) | (addr >> 32); \
  26. packet->header[2] = addr & 0xffffffff
  27. #ifndef HPSB_DEBUG_TLABELS
  28. static
  29. #endif
  30. spinlock_t hpsb_tlabel_lock = SPIN_LOCK_UNLOCKED;
  31. static DECLARE_WAIT_QUEUE_HEAD(tlabel_wq);
  32. static void fill_async_readquad(struct hpsb_packet *packet, u64 addr)
  33. {
  34. PREP_ASYNC_HEAD_ADDRESS(TCODE_READQ);
  35. packet->header_size = 12;
  36. packet->data_size = 0;
  37. packet->expect_response = 1;
  38. }
  39. static void fill_async_readblock(struct hpsb_packet *packet, u64 addr,
  40. int length)
  41. {
  42. PREP_ASYNC_HEAD_ADDRESS(TCODE_READB);
  43. packet->header[3] = length << 16;
  44. packet->header_size = 16;
  45. packet->data_size = 0;
  46. packet->expect_response = 1;
  47. }
  48. static void fill_async_writequad(struct hpsb_packet *packet, u64 addr,
  49. quadlet_t data)
  50. {
  51. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEQ);
  52. packet->header[3] = data;
  53. packet->header_size = 16;
  54. packet->data_size = 0;
  55. packet->expect_response = 1;
  56. }
  57. static void fill_async_writeblock(struct hpsb_packet *packet, u64 addr,
  58. int length)
  59. {
  60. PREP_ASYNC_HEAD_ADDRESS(TCODE_WRITEB);
  61. packet->header[3] = length << 16;
  62. packet->header_size = 16;
  63. packet->expect_response = 1;
  64. packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
  65. }
  66. static void fill_async_lock(struct hpsb_packet *packet, u64 addr, int extcode,
  67. int length)
  68. {
  69. PREP_ASYNC_HEAD_ADDRESS(TCODE_LOCK_REQUEST);
  70. packet->header[3] = (length << 16) | extcode;
  71. packet->header_size = 16;
  72. packet->data_size = length;
  73. packet->expect_response = 1;
  74. }
  75. static void fill_iso_packet(struct hpsb_packet *packet, int length, int channel,
  76. int tag, int sync)
  77. {
  78. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  79. | (TCODE_ISO_DATA << 4) | sync;
  80. packet->header_size = 4;
  81. packet->data_size = length;
  82. packet->type = hpsb_iso;
  83. packet->tcode = TCODE_ISO_DATA;
  84. }
  85. static void fill_phy_packet(struct hpsb_packet *packet, quadlet_t data)
  86. {
  87. packet->header[0] = data;
  88. packet->header[1] = ~data;
  89. packet->header_size = 8;
  90. packet->data_size = 0;
  91. packet->expect_response = 0;
  92. packet->type = hpsb_raw; /* No CRC added */
  93. packet->speed_code = IEEE1394_SPEED_100; /* Force speed to be 100Mbps */
  94. }
  95. static void fill_async_stream_packet(struct hpsb_packet *packet, int length,
  96. int channel, int tag, int sync)
  97. {
  98. packet->header[0] = (length << 16) | (tag << 14) | (channel << 8)
  99. | (TCODE_STREAM_DATA << 4) | sync;
  100. packet->header_size = 4;
  101. packet->data_size = length;
  102. packet->type = hpsb_async;
  103. packet->tcode = TCODE_ISO_DATA;
  104. }
  105. /* same as hpsb_get_tlabel, except that it returns immediately */
  106. static int hpsb_get_tlabel_atomic(struct hpsb_packet *packet)
  107. {
  108. unsigned long flags, *tp;
  109. u8 *next;
  110. int tlabel, n = NODEID_TO_NODE(packet->node_id);
  111. /* Broadcast transactions are complete once the request has been sent.
  112. * Use the same transaction label for all broadcast transactions. */
  113. if (unlikely(n == ALL_NODES)) {
  114. packet->tlabel = 0;
  115. return 0;
  116. }
  117. tp = packet->host->tl_pool[n].map;
  118. next = &packet->host->next_tl[n];
  119. spin_lock_irqsave(&hpsb_tlabel_lock, flags);
  120. tlabel = find_next_zero_bit(tp, 64, *next);
  121. if (tlabel > 63)
  122. tlabel = find_first_zero_bit(tp, 64);
  123. if (tlabel > 63) {
  124. spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
  125. return -EAGAIN;
  126. }
  127. __set_bit(tlabel, tp);
  128. *next = (tlabel + 1) & 63;
  129. spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
  130. packet->tlabel = tlabel;
  131. return 0;
  132. }
  133. /**
  134. * hpsb_get_tlabel - allocate a transaction label
  135. * @packet: the packet whose tlabel and tl_pool we set
  136. *
  137. * Every asynchronous transaction on the 1394 bus needs a transaction
  138. * label to match the response to the request. This label has to be
  139. * different from any other transaction label in an outstanding request to
  140. * the same node to make matching possible without ambiguity.
  141. *
  142. * There are 64 different tlabels, so an allocated tlabel has to be freed
  143. * with hpsb_free_tlabel() after the transaction is complete (unless it's
  144. * reused again for the same target node).
  145. *
  146. * Return value: Zero on success, otherwise non-zero. A non-zero return
  147. * generally means there are no available tlabels. If this is called out
  148. * of interrupt or atomic context, then it will sleep until can return a
  149. * tlabel or a signal is received.
  150. */
  151. int hpsb_get_tlabel(struct hpsb_packet *packet)
  152. {
  153. if (irqs_disabled() || in_atomic())
  154. return hpsb_get_tlabel_atomic(packet);
  155. /* NB: The macro wait_event_interruptible() is called with a condition
  156. * argument with side effect. This is only possible because the side
  157. * effect does not occur until the condition became true, and
  158. * wait_event_interruptible() won't evaluate the condition again after
  159. * that. */
  160. return wait_event_interruptible(tlabel_wq,
  161. !hpsb_get_tlabel_atomic(packet));
  162. }
  163. /**
  164. * hpsb_free_tlabel - free an allocated transaction label
  165. * @packet: packet whose tlabel and tl_pool needs to be cleared
  166. *
  167. * Frees the transaction label allocated with hpsb_get_tlabel(). The
  168. * tlabel has to be freed after the transaction is complete (i.e. response
  169. * was received for a split transaction or packet was sent for a unified
  170. * transaction).
  171. *
  172. * A tlabel must not be freed twice.
  173. */
  174. void hpsb_free_tlabel(struct hpsb_packet *packet)
  175. {
  176. unsigned long flags, *tp;
  177. int tlabel, n = NODEID_TO_NODE(packet->node_id);
  178. if (unlikely(n == ALL_NODES))
  179. return;
  180. tp = packet->host->tl_pool[n].map;
  181. tlabel = packet->tlabel;
  182. BUG_ON(tlabel > 63 || tlabel < 0);
  183. spin_lock_irqsave(&hpsb_tlabel_lock, flags);
  184. BUG_ON(!__test_and_clear_bit(tlabel, tp));
  185. spin_unlock_irqrestore(&hpsb_tlabel_lock, flags);
  186. wake_up_interruptible(&tlabel_wq);
  187. }
  188. int hpsb_packet_success(struct hpsb_packet *packet)
  189. {
  190. switch (packet->ack_code) {
  191. case ACK_PENDING:
  192. switch ((packet->header[1] >> 12) & 0xf) {
  193. case RCODE_COMPLETE:
  194. return 0;
  195. case RCODE_CONFLICT_ERROR:
  196. return -EAGAIN;
  197. case RCODE_DATA_ERROR:
  198. return -EREMOTEIO;
  199. case RCODE_TYPE_ERROR:
  200. return -EACCES;
  201. case RCODE_ADDRESS_ERROR:
  202. return -EINVAL;
  203. default:
  204. HPSB_ERR("received reserved rcode %d from node %d",
  205. (packet->header[1] >> 12) & 0xf,
  206. packet->node_id);
  207. return -EAGAIN;
  208. }
  209. BUG();
  210. case ACK_BUSY_X:
  211. case ACK_BUSY_A:
  212. case ACK_BUSY_B:
  213. return -EBUSY;
  214. case ACK_TYPE_ERROR:
  215. return -EACCES;
  216. case ACK_COMPLETE:
  217. if (packet->tcode == TCODE_WRITEQ
  218. || packet->tcode == TCODE_WRITEB) {
  219. return 0;
  220. } else {
  221. HPSB_ERR("impossible ack_complete from node %d "
  222. "(tcode %d)", packet->node_id, packet->tcode);
  223. return -EAGAIN;
  224. }
  225. case ACK_DATA_ERROR:
  226. if (packet->tcode == TCODE_WRITEB
  227. || packet->tcode == TCODE_LOCK_REQUEST) {
  228. return -EAGAIN;
  229. } else {
  230. HPSB_ERR("impossible ack_data_error from node %d "
  231. "(tcode %d)", packet->node_id, packet->tcode);
  232. return -EAGAIN;
  233. }
  234. case ACK_ADDRESS_ERROR:
  235. return -EINVAL;
  236. case ACK_TARDY:
  237. case ACK_CONFLICT_ERROR:
  238. case ACKX_NONE:
  239. case ACKX_SEND_ERROR:
  240. case ACKX_ABORTED:
  241. case ACKX_TIMEOUT:
  242. /* error while sending */
  243. return -EAGAIN;
  244. default:
  245. HPSB_ERR("got invalid ack %d from node %d (tcode %d)",
  246. packet->ack_code, packet->node_id, packet->tcode);
  247. return -EAGAIN;
  248. }
  249. BUG();
  250. }
  251. struct hpsb_packet *hpsb_make_readpacket(struct hpsb_host *host, nodeid_t node,
  252. u64 addr, size_t length)
  253. {
  254. struct hpsb_packet *packet;
  255. if (length == 0)
  256. return NULL;
  257. packet = hpsb_alloc_packet(length);
  258. if (!packet)
  259. return NULL;
  260. packet->host = host;
  261. packet->node_id = node;
  262. if (hpsb_get_tlabel(packet)) {
  263. hpsb_free_packet(packet);
  264. return NULL;
  265. }
  266. if (length == 4)
  267. fill_async_readquad(packet, addr);
  268. else
  269. fill_async_readblock(packet, addr, length);
  270. return packet;
  271. }
  272. struct hpsb_packet *hpsb_make_writepacket(struct hpsb_host *host, nodeid_t node,
  273. u64 addr, quadlet_t * buffer,
  274. size_t length)
  275. {
  276. struct hpsb_packet *packet;
  277. if (length == 0)
  278. return NULL;
  279. packet = hpsb_alloc_packet(length);
  280. if (!packet)
  281. return NULL;
  282. if (length % 4) { /* zero padding bytes */
  283. packet->data[length >> 2] = 0;
  284. }
  285. packet->host = host;
  286. packet->node_id = node;
  287. if (hpsb_get_tlabel(packet)) {
  288. hpsb_free_packet(packet);
  289. return NULL;
  290. }
  291. if (length == 4) {
  292. fill_async_writequad(packet, addr, buffer ? *buffer : 0);
  293. } else {
  294. fill_async_writeblock(packet, addr, length);
  295. if (buffer)
  296. memcpy(packet->data, buffer, length);
  297. }
  298. return packet;
  299. }
  300. struct hpsb_packet *hpsb_make_streampacket(struct hpsb_host *host, u8 * buffer,
  301. int length, int channel, int tag,
  302. int sync)
  303. {
  304. struct hpsb_packet *packet;
  305. if (length == 0)
  306. return NULL;
  307. packet = hpsb_alloc_packet(length);
  308. if (!packet)
  309. return NULL;
  310. if (length % 4) { /* zero padding bytes */
  311. packet->data[length >> 2] = 0;
  312. }
  313. packet->host = host;
  314. if (hpsb_get_tlabel(packet)) {
  315. hpsb_free_packet(packet);
  316. return NULL;
  317. }
  318. fill_async_stream_packet(packet, length, channel, tag, sync);
  319. if (buffer)
  320. memcpy(packet->data, buffer, length);
  321. return packet;
  322. }
  323. struct hpsb_packet *hpsb_make_lockpacket(struct hpsb_host *host, nodeid_t node,
  324. u64 addr, int extcode,
  325. quadlet_t * data, quadlet_t arg)
  326. {
  327. struct hpsb_packet *p;
  328. u32 length;
  329. p = hpsb_alloc_packet(8);
  330. if (!p)
  331. return NULL;
  332. p->host = host;
  333. p->node_id = node;
  334. if (hpsb_get_tlabel(p)) {
  335. hpsb_free_packet(p);
  336. return NULL;
  337. }
  338. switch (extcode) {
  339. case EXTCODE_FETCH_ADD:
  340. case EXTCODE_LITTLE_ADD:
  341. length = 4;
  342. if (data)
  343. p->data[0] = *data;
  344. break;
  345. default:
  346. length = 8;
  347. if (data) {
  348. p->data[0] = arg;
  349. p->data[1] = *data;
  350. }
  351. break;
  352. }
  353. fill_async_lock(p, addr, extcode, length);
  354. return p;
  355. }
  356. struct hpsb_packet *hpsb_make_lock64packet(struct hpsb_host *host,
  357. nodeid_t node, u64 addr, int extcode,
  358. octlet_t * data, octlet_t arg)
  359. {
  360. struct hpsb_packet *p;
  361. u32 length;
  362. p = hpsb_alloc_packet(16);
  363. if (!p)
  364. return NULL;
  365. p->host = host;
  366. p->node_id = node;
  367. if (hpsb_get_tlabel(p)) {
  368. hpsb_free_packet(p);
  369. return NULL;
  370. }
  371. switch (extcode) {
  372. case EXTCODE_FETCH_ADD:
  373. case EXTCODE_LITTLE_ADD:
  374. length = 8;
  375. if (data) {
  376. p->data[0] = *data >> 32;
  377. p->data[1] = *data & 0xffffffff;
  378. }
  379. break;
  380. default:
  381. length = 16;
  382. if (data) {
  383. p->data[0] = arg >> 32;
  384. p->data[1] = arg & 0xffffffff;
  385. p->data[2] = *data >> 32;
  386. p->data[3] = *data & 0xffffffff;
  387. }
  388. break;
  389. }
  390. fill_async_lock(p, addr, extcode, length);
  391. return p;
  392. }
  393. struct hpsb_packet *hpsb_make_phypacket(struct hpsb_host *host, quadlet_t data)
  394. {
  395. struct hpsb_packet *p;
  396. p = hpsb_alloc_packet(0);
  397. if (!p)
  398. return NULL;
  399. p->host = host;
  400. fill_phy_packet(p, data);
  401. return p;
  402. }
  403. struct hpsb_packet *hpsb_make_isopacket(struct hpsb_host *host,
  404. int length, int channel,
  405. int tag, int sync)
  406. {
  407. struct hpsb_packet *p;
  408. p = hpsb_alloc_packet(length);
  409. if (!p)
  410. return NULL;
  411. p->host = host;
  412. fill_iso_packet(p, length, channel, tag, sync);
  413. p->generation = get_hpsb_generation(host);
  414. return p;
  415. }
  416. /*
  417. * FIXME - these functions should probably read from / write to user space to
  418. * avoid in kernel buffers for user space callers
  419. */
  420. int hpsb_read(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  421. u64 addr, quadlet_t * buffer, size_t length)
  422. {
  423. struct hpsb_packet *packet;
  424. int retval = 0;
  425. if (length == 0)
  426. return -EINVAL;
  427. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  428. packet = hpsb_make_readpacket(host, node, addr, length);
  429. if (!packet) {
  430. return -ENOMEM;
  431. }
  432. packet->generation = generation;
  433. retval = hpsb_send_packet_and_wait(packet);
  434. if (retval < 0)
  435. goto hpsb_read_fail;
  436. retval = hpsb_packet_success(packet);
  437. if (retval == 0) {
  438. if (length == 4) {
  439. *buffer = packet->header[3];
  440. } else {
  441. memcpy(buffer, packet->data, length);
  442. }
  443. }
  444. hpsb_read_fail:
  445. hpsb_free_tlabel(packet);
  446. hpsb_free_packet(packet);
  447. return retval;
  448. }
  449. int hpsb_write(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  450. u64 addr, quadlet_t * buffer, size_t length)
  451. {
  452. struct hpsb_packet *packet;
  453. int retval;
  454. if (length == 0)
  455. return -EINVAL;
  456. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  457. packet = hpsb_make_writepacket(host, node, addr, buffer, length);
  458. if (!packet)
  459. return -ENOMEM;
  460. packet->generation = generation;
  461. retval = hpsb_send_packet_and_wait(packet);
  462. if (retval < 0)
  463. goto hpsb_write_fail;
  464. retval = hpsb_packet_success(packet);
  465. hpsb_write_fail:
  466. hpsb_free_tlabel(packet);
  467. hpsb_free_packet(packet);
  468. return retval;
  469. }
  470. #if 0
  471. int hpsb_lock(struct hpsb_host *host, nodeid_t node, unsigned int generation,
  472. u64 addr, int extcode, quadlet_t * data, quadlet_t arg)
  473. {
  474. struct hpsb_packet *packet;
  475. int retval = 0;
  476. BUG_ON(in_interrupt()); // We can't be called in an interrupt, yet
  477. packet = hpsb_make_lockpacket(host, node, addr, extcode, data, arg);
  478. if (!packet)
  479. return -ENOMEM;
  480. packet->generation = generation;
  481. retval = hpsb_send_packet_and_wait(packet);
  482. if (retval < 0)
  483. goto hpsb_lock_fail;
  484. retval = hpsb_packet_success(packet);
  485. if (retval == 0) {
  486. *data = packet->data[0];
  487. }
  488. hpsb_lock_fail:
  489. hpsb_free_tlabel(packet);
  490. hpsb_free_packet(packet);
  491. return retval;
  492. }
  493. int hpsb_send_gasp(struct hpsb_host *host, int channel, unsigned int generation,
  494. quadlet_t * buffer, size_t length, u32 specifier_id,
  495. unsigned int version)
  496. {
  497. struct hpsb_packet *packet;
  498. int retval = 0;
  499. u16 specifier_id_hi = (specifier_id & 0x00ffff00) >> 8;
  500. u8 specifier_id_lo = specifier_id & 0xff;
  501. HPSB_VERBOSE("Send GASP: channel = %d, length = %Zd", channel, length);
  502. length += 8;
  503. packet = hpsb_make_streampacket(host, NULL, length, channel, 3, 0);
  504. if (!packet)
  505. return -ENOMEM;
  506. packet->data[0] = cpu_to_be32((host->node_id << 16) | specifier_id_hi);
  507. packet->data[1] =
  508. cpu_to_be32((specifier_id_lo << 24) | (version & 0x00ffffff));
  509. memcpy(&(packet->data[2]), buffer, length - 8);
  510. packet->generation = generation;
  511. packet->no_waiter = 1;
  512. retval = hpsb_send_packet(packet);
  513. if (retval < 0)
  514. hpsb_free_packet(packet);
  515. return retval;
  516. }
  517. #endif /* 0 */