ide-cris.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106
  1. /* $Id: cris-ide-driver.patch,v 1.1 2005/06/29 21:39:07 akpm Exp $
  2. *
  3. * Etrax specific IDE functions, like init and PIO-mode setting etc.
  4. * Almost the entire ide.c is used for the rest of the Etrax ATA driver.
  5. * Copyright (c) 2000-2005 Axis Communications AB
  6. *
  7. * Authors: Bjorn Wesen (initial version)
  8. * Mikael Starvik (crisv32 port)
  9. */
  10. /* Regarding DMA:
  11. *
  12. * There are two forms of DMA - "DMA handshaking" between the interface and the drive,
  13. * and DMA between the memory and the interface. We can ALWAYS use the latter, since it's
  14. * something built-in in the Etrax. However only some drives support the DMA-mode handshaking
  15. * on the ATA-bus. The normal PC driver and Triton interface disables memory-if DMA when the
  16. * device can't do DMA handshaking for some stupid reason. We don't need to do that.
  17. */
  18. #undef REALLY_SLOW_IO /* most systems can safely undef this */
  19. #include <linux/types.h>
  20. #include <linux/kernel.h>
  21. #include <linux/timer.h>
  22. #include <linux/mm.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/delay.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/hdreg.h>
  27. #include <linux/ide.h>
  28. #include <linux/init.h>
  29. #include <asm/io.h>
  30. #include <asm/dma.h>
  31. /* number of DMA descriptors */
  32. #define MAX_DMA_DESCRS 64
  33. /* number of times to retry busy-flags when reading/writing IDE-registers
  34. * this can't be too high because a hung harddisk might cause the watchdog
  35. * to trigger (sometimes INB and OUTB are called with irq's disabled)
  36. */
  37. #define IDE_REGISTER_TIMEOUT 300
  38. #define LOWDB(x)
  39. #define D(x)
  40. enum /* Transfer types */
  41. {
  42. TYPE_PIO,
  43. TYPE_DMA,
  44. TYPE_UDMA
  45. };
  46. /* CRISv32 specifics */
  47. #ifdef CONFIG_ETRAX_ARCH_V32
  48. #include <asm/arch/hwregs/ata_defs.h>
  49. #include <asm/arch/hwregs/dma_defs.h>
  50. #include <asm/arch/hwregs/dma.h>
  51. #include <asm/arch/pinmux.h>
  52. #define ATA_UDMA2_CYC 2
  53. #define ATA_UDMA2_DVS 3
  54. #define ATA_UDMA1_CYC 2
  55. #define ATA_UDMA1_DVS 4
  56. #define ATA_UDMA0_CYC 4
  57. #define ATA_UDMA0_DVS 6
  58. #define ATA_DMA2_STROBE 7
  59. #define ATA_DMA2_HOLD 1
  60. #define ATA_DMA1_STROBE 8
  61. #define ATA_DMA1_HOLD 3
  62. #define ATA_DMA0_STROBE 25
  63. #define ATA_DMA0_HOLD 19
  64. #define ATA_PIO4_SETUP 3
  65. #define ATA_PIO4_STROBE 7
  66. #define ATA_PIO4_HOLD 1
  67. #define ATA_PIO3_SETUP 3
  68. #define ATA_PIO3_STROBE 9
  69. #define ATA_PIO3_HOLD 3
  70. #define ATA_PIO2_SETUP 3
  71. #define ATA_PIO2_STROBE 13
  72. #define ATA_PIO2_HOLD 5
  73. #define ATA_PIO1_SETUP 5
  74. #define ATA_PIO1_STROBE 23
  75. #define ATA_PIO1_HOLD 9
  76. #define ATA_PIO0_SETUP 9
  77. #define ATA_PIO0_STROBE 39
  78. #define ATA_PIO0_HOLD 9
  79. int
  80. cris_ide_ack_intr(ide_hwif_t* hwif)
  81. {
  82. reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2,
  83. int, hwif->io_ports[0]);
  84. REG_WR_INT(ata, regi_ata, rw_ack_intr, 1 << ctrl2.sel);
  85. return 1;
  86. }
  87. static inline int
  88. cris_ide_busy(void)
  89. {
  90. reg_ata_rs_stat_data stat_data;
  91. stat_data = REG_RD(ata, regi_ata, rs_stat_data);
  92. return stat_data.busy;
  93. }
  94. static inline int
  95. cris_ide_ready(void)
  96. {
  97. return !cris_ide_busy();
  98. }
  99. static inline int
  100. cris_ide_data_available(unsigned short* data)
  101. {
  102. reg_ata_rs_stat_data stat_data;
  103. stat_data = REG_RD(ata, regi_ata, rs_stat_data);
  104. *data = stat_data.data;
  105. return stat_data.dav;
  106. }
  107. static void
  108. cris_ide_write_command(unsigned long command)
  109. {
  110. REG_WR_INT(ata, regi_ata, rw_ctrl2, command); /* write data to the drive's register */
  111. }
  112. static void
  113. cris_ide_set_speed(int type, int setup, int strobe, int hold)
  114. {
  115. reg_ata_rw_ctrl0 ctrl0 = REG_RD(ata, regi_ata, rw_ctrl0);
  116. reg_ata_rw_ctrl1 ctrl1 = REG_RD(ata, regi_ata, rw_ctrl1);
  117. if (type == TYPE_PIO) {
  118. ctrl0.pio_setup = setup;
  119. ctrl0.pio_strb = strobe;
  120. ctrl0.pio_hold = hold;
  121. } else if (type == TYPE_DMA) {
  122. ctrl0.dma_strb = strobe;
  123. ctrl0.dma_hold = hold;
  124. } else if (type == TYPE_UDMA) {
  125. ctrl1.udma_tcyc = setup;
  126. ctrl1.udma_tdvs = strobe;
  127. }
  128. REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
  129. REG_WR(ata, regi_ata, rw_ctrl1, ctrl1);
  130. }
  131. static unsigned long
  132. cris_ide_base_address(int bus)
  133. {
  134. reg_ata_rw_ctrl2 ctrl2 = {0};
  135. ctrl2.sel = bus;
  136. return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
  137. }
  138. static unsigned long
  139. cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
  140. {
  141. reg_ata_rw_ctrl2 ctrl2 = {0};
  142. ctrl2.addr = addr;
  143. ctrl2.cs1 = cs1;
  144. ctrl2.cs0 = cs0;
  145. return REG_TYPE_CONV(int, reg_ata_rw_ctrl2, ctrl2);
  146. }
  147. static __init void
  148. cris_ide_reset(unsigned val)
  149. {
  150. reg_ata_rw_ctrl0 ctrl0 = {0};
  151. ctrl0.rst = val ? regk_ata_active : regk_ata_inactive;
  152. REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
  153. }
  154. static __init void
  155. cris_ide_init(void)
  156. {
  157. reg_ata_rw_ctrl0 ctrl0 = {0};
  158. reg_ata_rw_intr_mask intr_mask = {0};
  159. ctrl0.en = regk_ata_yes;
  160. REG_WR(ata, regi_ata, rw_ctrl0, ctrl0);
  161. intr_mask.bus0 = regk_ata_yes;
  162. intr_mask.bus1 = regk_ata_yes;
  163. intr_mask.bus2 = regk_ata_yes;
  164. intr_mask.bus3 = regk_ata_yes;
  165. REG_WR(ata, regi_ata, rw_intr_mask, intr_mask);
  166. crisv32_request_dma(2, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
  167. crisv32_request_dma(3, "ETRAX FS built-in ATA", DMA_VERBOSE_ON_ERROR, 0, dma_ata);
  168. crisv32_pinmux_alloc_fixed(pinmux_ata);
  169. crisv32_pinmux_alloc_fixed(pinmux_ata0);
  170. crisv32_pinmux_alloc_fixed(pinmux_ata1);
  171. crisv32_pinmux_alloc_fixed(pinmux_ata2);
  172. crisv32_pinmux_alloc_fixed(pinmux_ata3);
  173. DMA_RESET(regi_dma2);
  174. DMA_ENABLE(regi_dma2);
  175. DMA_RESET(regi_dma3);
  176. DMA_ENABLE(regi_dma3);
  177. DMA_WR_CMD (regi_dma2, regk_dma_set_w_size2);
  178. DMA_WR_CMD (regi_dma3, regk_dma_set_w_size2);
  179. }
  180. static dma_descr_context mycontext __attribute__ ((__aligned__(32)));
  181. #define cris_dma_descr_type dma_descr_data
  182. #define cris_pio_read regk_ata_rd
  183. #define cris_ultra_mask 0x7
  184. #define MAX_DESCR_SIZE 0xffffffffUL
  185. static unsigned long
  186. cris_ide_get_reg(unsigned long reg)
  187. {
  188. return (reg & 0x0e000000) >> 25;
  189. }
  190. static void
  191. cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
  192. {
  193. d->buf = (char*)virt_to_phys(buf);
  194. d->after = d->buf + len;
  195. d->eol = last;
  196. }
  197. static void
  198. cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir,int type,int len)
  199. {
  200. reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
  201. reg_ata_rw_trf_cnt trf_cnt = {0};
  202. mycontext.saved_data = (dma_descr_data*)virt_to_phys(d);
  203. mycontext.saved_data_buf = d->buf;
  204. /* start the dma channel */
  205. DMA_START_CONTEXT(dir ? regi_dma3 : regi_dma2, virt_to_phys(&mycontext));
  206. /* initiate a multi word dma read using PIO handshaking */
  207. trf_cnt.cnt = len >> 1;
  208. /* Due to a "feature" the transfer count has to be one extra word for UDMA. */
  209. if (type == TYPE_UDMA)
  210. trf_cnt.cnt++;
  211. REG_WR(ata, regi_ata, rw_trf_cnt, trf_cnt);
  212. ctrl2.rw = dir ? regk_ata_rd : regk_ata_wr;
  213. ctrl2.trf_mode = regk_ata_dma;
  214. ctrl2.hsh = type == TYPE_PIO ? regk_ata_pio :
  215. type == TYPE_DMA ? regk_ata_dma : regk_ata_udma;
  216. ctrl2.multi = regk_ata_yes;
  217. ctrl2.dma_size = regk_ata_word;
  218. REG_WR(ata, regi_ata, rw_ctrl2, ctrl2);
  219. }
  220. static void
  221. cris_ide_wait_dma(int dir)
  222. {
  223. reg_dma_rw_stat status;
  224. do
  225. {
  226. status = REG_RD(dma, dir ? regi_dma3 : regi_dma2, rw_stat);
  227. } while(status.list_state != regk_dma_data_at_eol);
  228. }
  229. static int cris_dma_test_irq(ide_drive_t *drive)
  230. {
  231. int intr = REG_RD_INT(ata, regi_ata, r_intr);
  232. reg_ata_rw_ctrl2 ctrl2 = REG_TYPE_CONV(reg_ata_rw_ctrl2, int, IDE_DATA_REG);
  233. return intr & (1 << ctrl2.sel) ? 1 : 0;
  234. }
  235. static void cris_ide_initialize_dma(int dir)
  236. {
  237. }
  238. #else
  239. /* CRISv10 specifics */
  240. #include <asm/arch/svinto.h>
  241. #include <asm/arch/io_interface_mux.h>
  242. /* PIO timing (in R_ATA_CONFIG)
  243. *
  244. * _____________________________
  245. * ADDRESS : ________/
  246. *
  247. * _______________
  248. * DIOR : ____________/ \__________
  249. *
  250. * _______________
  251. * DATA : XXXXXXXXXXXXXXXX_______________XXXXXXXX
  252. *
  253. *
  254. * DIOR is unbuffered while address and data is buffered.
  255. * This creates two problems:
  256. * 1. The DIOR pulse is to early (because it is unbuffered)
  257. * 2. The rise time of DIOR is long
  258. *
  259. * There are at least three different plausible solutions
  260. * 1. Use a pad capable of larger currents in Etrax
  261. * 2. Use an external buffer
  262. * 3. Make the strobe pulse longer
  263. *
  264. * Some of the strobe timings below are modified to compensate
  265. * for this. This implies a slight performance decrease.
  266. *
  267. * THIS SHOULD NEVER BE CHANGED!
  268. *
  269. * TODO: Is this true for the latest LX boards still ?
  270. */
  271. #define ATA_UDMA2_CYC 0 /* No UDMA supported, just to make it compile. */
  272. #define ATA_UDMA2_DVS 0
  273. #define ATA_UDMA1_CYC 0
  274. #define ATA_UDMA1_DVS 0
  275. #define ATA_UDMA0_CYC 0
  276. #define ATA_UDMA0_DVS 0
  277. #define ATA_DMA2_STROBE 4
  278. #define ATA_DMA2_HOLD 0
  279. #define ATA_DMA1_STROBE 4
  280. #define ATA_DMA1_HOLD 1
  281. #define ATA_DMA0_STROBE 12
  282. #define ATA_DMA0_HOLD 9
  283. #define ATA_PIO4_SETUP 1
  284. #define ATA_PIO4_STROBE 5
  285. #define ATA_PIO4_HOLD 0
  286. #define ATA_PIO3_SETUP 1
  287. #define ATA_PIO3_STROBE 5
  288. #define ATA_PIO3_HOLD 1
  289. #define ATA_PIO2_SETUP 1
  290. #define ATA_PIO2_STROBE 6
  291. #define ATA_PIO2_HOLD 2
  292. #define ATA_PIO1_SETUP 2
  293. #define ATA_PIO1_STROBE 11
  294. #define ATA_PIO1_HOLD 4
  295. #define ATA_PIO0_SETUP 4
  296. #define ATA_PIO0_STROBE 19
  297. #define ATA_PIO0_HOLD 4
  298. int
  299. cris_ide_ack_intr(ide_hwif_t* hwif)
  300. {
  301. return 1;
  302. }
  303. static inline int
  304. cris_ide_busy(void)
  305. {
  306. return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy) ;
  307. }
  308. static inline int
  309. cris_ide_ready(void)
  310. {
  311. return *R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy) ;
  312. }
  313. static inline int
  314. cris_ide_data_available(unsigned short* data)
  315. {
  316. unsigned long status = *R_ATA_STATUS_DATA;
  317. *data = (unsigned short)status;
  318. return status & IO_MASK(R_ATA_STATUS_DATA, dav);
  319. }
  320. static void
  321. cris_ide_write_command(unsigned long command)
  322. {
  323. *R_ATA_CTRL_DATA = command;
  324. }
  325. static void
  326. cris_ide_set_speed(int type, int setup, int strobe, int hold)
  327. {
  328. static int pio_setup = ATA_PIO4_SETUP;
  329. static int pio_strobe = ATA_PIO4_STROBE;
  330. static int pio_hold = ATA_PIO4_HOLD;
  331. static int dma_strobe = ATA_DMA2_STROBE;
  332. static int dma_hold = ATA_DMA2_HOLD;
  333. if (type == TYPE_PIO) {
  334. pio_setup = setup;
  335. pio_strobe = strobe;
  336. pio_hold = hold;
  337. } else if (type == TYPE_DMA) {
  338. dma_strobe = strobe;
  339. dma_hold = hold;
  340. }
  341. *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ) |
  342. IO_FIELD( R_ATA_CONFIG, dma_strobe, dma_strobe ) |
  343. IO_FIELD( R_ATA_CONFIG, dma_hold, dma_hold ) |
  344. IO_FIELD( R_ATA_CONFIG, pio_setup, pio_setup ) |
  345. IO_FIELD( R_ATA_CONFIG, pio_strobe, pio_strobe ) |
  346. IO_FIELD( R_ATA_CONFIG, pio_hold, pio_hold ) );
  347. }
  348. static unsigned long
  349. cris_ide_base_address(int bus)
  350. {
  351. return IO_FIELD(R_ATA_CTRL_DATA, sel, bus);
  352. }
  353. static unsigned long
  354. cris_ide_reg_addr(unsigned long addr, int cs0, int cs1)
  355. {
  356. return IO_FIELD(R_ATA_CTRL_DATA, addr, addr) |
  357. IO_FIELD(R_ATA_CTRL_DATA, cs0, cs0) |
  358. IO_FIELD(R_ATA_CTRL_DATA, cs1, cs1);
  359. }
  360. static __init void
  361. cris_ide_reset(unsigned val)
  362. {
  363. #ifdef CONFIG_ETRAX_IDE_G27_RESET
  364. REG_SHADOW_SET(R_PORT_G_DATA, port_g_data_shadow, 27, val);
  365. #endif
  366. #ifdef CONFIG_ETRAX_IDE_CSE1_16_RESET
  367. REG_SHADOW_SET(port_cse1_addr, port_cse1_shadow, 16, val);
  368. #endif
  369. #ifdef CONFIG_ETRAX_IDE_CSP0_8_RESET
  370. REG_SHADOW_SET(port_csp0_addr, port_csp0_shadow, 8, val);
  371. #endif
  372. #ifdef CONFIG_ETRAX_IDE_PB7_RESET
  373. port_pb_dir_shadow = port_pb_dir_shadow |
  374. IO_STATE(R_PORT_PB_DIR, dir7, output);
  375. *R_PORT_PB_DIR = port_pb_dir_shadow;
  376. REG_SHADOW_SET(R_PORT_PB_DATA, port_pb_data_shadow, 7, val);
  377. #endif
  378. }
  379. static __init void
  380. cris_ide_init(void)
  381. {
  382. volatile unsigned int dummy;
  383. *R_ATA_CTRL_DATA = 0;
  384. *R_ATA_TRANSFER_CNT = 0;
  385. *R_ATA_CONFIG = 0;
  386. if (cris_request_io_interface(if_ata, "ETRAX100LX IDE")) {
  387. printk(KERN_CRIT "ide: Failed to get IO interface\n");
  388. return;
  389. } else if (cris_request_dma(ATA_TX_DMA_NBR,
  390. "ETRAX100LX IDE TX",
  391. DMA_VERBOSE_ON_ERROR,
  392. dma_ata)) {
  393. cris_free_io_interface(if_ata);
  394. printk(KERN_CRIT "ide: Failed to get Tx DMA channel\n");
  395. return;
  396. } else if (cris_request_dma(ATA_RX_DMA_NBR,
  397. "ETRAX100LX IDE RX",
  398. DMA_VERBOSE_ON_ERROR,
  399. dma_ata)) {
  400. cris_free_dma(ATA_TX_DMA_NBR, "ETRAX100LX IDE Tx");
  401. cris_free_io_interface(if_ata);
  402. printk(KERN_CRIT "ide: Failed to get Rx DMA channel\n");
  403. return;
  404. }
  405. /* make a dummy read to set the ata controller in a proper state */
  406. dummy = *R_ATA_STATUS_DATA;
  407. *R_ATA_CONFIG = ( IO_FIELD( R_ATA_CONFIG, enable, 1 ));
  408. *R_ATA_CTRL_DATA = ( IO_STATE( R_ATA_CTRL_DATA, rw, read) |
  409. IO_FIELD( R_ATA_CTRL_DATA, addr, 1 ) );
  410. while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* wait for busy flag*/
  411. *R_IRQ_MASK0_SET = ( IO_STATE( R_IRQ_MASK0_SET, ata_irq0, set ) |
  412. IO_STATE( R_IRQ_MASK0_SET, ata_irq1, set ) |
  413. IO_STATE( R_IRQ_MASK0_SET, ata_irq2, set ) |
  414. IO_STATE( R_IRQ_MASK0_SET, ata_irq3, set ) );
  415. /* reset the dma channels we will use */
  416. RESET_DMA(ATA_TX_DMA_NBR);
  417. RESET_DMA(ATA_RX_DMA_NBR);
  418. WAIT_DMA(ATA_TX_DMA_NBR);
  419. WAIT_DMA(ATA_RX_DMA_NBR);
  420. }
  421. #define cris_dma_descr_type etrax_dma_descr
  422. #define cris_pio_read IO_STATE(R_ATA_CTRL_DATA, rw, read)
  423. #define cris_ultra_mask 0x0
  424. #define MAX_DESCR_SIZE 0x10000UL
  425. static unsigned long
  426. cris_ide_get_reg(unsigned long reg)
  427. {
  428. return (reg & 0x0e000000) >> 25;
  429. }
  430. static void
  431. cris_ide_fill_descriptor(cris_dma_descr_type *d, void* buf, unsigned int len, int last)
  432. {
  433. d->buf = virt_to_phys(buf);
  434. d->sw_len = len == MAX_DESCR_SIZE ? 0 : len;
  435. if (last)
  436. d->ctrl |= d_eol;
  437. }
  438. static void cris_ide_start_dma(ide_drive_t *drive, cris_dma_descr_type *d, int dir, int type, int len)
  439. {
  440. unsigned long cmd;
  441. if (dir) {
  442. /* need to do this before RX DMA due to a chip bug
  443. * it is enough to just flush the part of the cache that
  444. * corresponds to the buffers we start, but since HD transfers
  445. * usually are more than 8 kB, it is easier to optimize for the
  446. * normal case and just flush the entire cache. its the only
  447. * way to be sure! (OB movie quote)
  448. */
  449. flush_etrax_cache();
  450. *R_DMA_CH3_FIRST = virt_to_phys(d);
  451. *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start);
  452. } else {
  453. *R_DMA_CH2_FIRST = virt_to_phys(d);
  454. *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start);
  455. }
  456. /* initiate a multi word dma read using DMA handshaking */
  457. *R_ATA_TRANSFER_CNT =
  458. IO_FIELD(R_ATA_TRANSFER_CNT, count, len >> 1);
  459. cmd = dir ? IO_STATE(R_ATA_CTRL_DATA, rw, read) : IO_STATE(R_ATA_CTRL_DATA, rw, write);
  460. cmd |= type == TYPE_PIO ? IO_STATE(R_ATA_CTRL_DATA, handsh, pio) :
  461. IO_STATE(R_ATA_CTRL_DATA, handsh, dma);
  462. *R_ATA_CTRL_DATA =
  463. cmd |
  464. IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) |
  465. IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) |
  466. IO_STATE(R_ATA_CTRL_DATA, multi, on) |
  467. IO_STATE(R_ATA_CTRL_DATA, dma_size, word);
  468. }
  469. static void
  470. cris_ide_wait_dma(int dir)
  471. {
  472. if (dir)
  473. WAIT_DMA(ATA_RX_DMA_NBR);
  474. else
  475. WAIT_DMA(ATA_TX_DMA_NBR);
  476. }
  477. static int cris_dma_test_irq(ide_drive_t *drive)
  478. {
  479. int intr = *R_IRQ_MASK0_RD;
  480. int bus = IO_EXTRACT(R_ATA_CTRL_DATA, sel, IDE_DATA_REG);
  481. return intr & (1 << (bus + IO_BITNR(R_IRQ_MASK0_RD, ata_irq0))) ? 1 : 0;
  482. }
  483. static void cris_ide_initialize_dma(int dir)
  484. {
  485. if (dir)
  486. {
  487. RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
  488. WAIT_DMA(ATA_RX_DMA_NBR);
  489. }
  490. else
  491. {
  492. RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */
  493. WAIT_DMA(ATA_TX_DMA_NBR);
  494. }
  495. }
  496. #endif
  497. void
  498. cris_ide_outw(unsigned short data, unsigned long reg) {
  499. int timeleft;
  500. LOWDB(printk("ow: data 0x%x, reg 0x%x\n", data, reg));
  501. /* note the lack of handling any timeouts. we stop waiting, but we don't
  502. * really notify anybody.
  503. */
  504. timeleft = IDE_REGISTER_TIMEOUT;
  505. /* wait for busy flag */
  506. do {
  507. timeleft--;
  508. } while(timeleft && cris_ide_busy());
  509. /*
  510. * Fall through at a timeout, so the ongoing command will be
  511. * aborted by the write below, which is expected to be a dummy
  512. * command to the command register. This happens when a faulty
  513. * drive times out on a command. See comment on timeout in
  514. * INB.
  515. */
  516. if(!timeleft)
  517. printk("ATA timeout reg 0x%lx := 0x%x\n", reg, data);
  518. cris_ide_write_command(reg|data); /* write data to the drive's register */
  519. timeleft = IDE_REGISTER_TIMEOUT;
  520. /* wait for transmitter ready */
  521. do {
  522. timeleft--;
  523. } while(timeleft && !cris_ide_ready());
  524. }
  525. void
  526. cris_ide_outb(unsigned char data, unsigned long reg)
  527. {
  528. cris_ide_outw(data, reg);
  529. }
  530. void
  531. cris_ide_outbsync(ide_drive_t *drive, u8 addr, unsigned long port)
  532. {
  533. cris_ide_outw(addr, port);
  534. }
  535. unsigned short
  536. cris_ide_inw(unsigned long reg) {
  537. int timeleft;
  538. unsigned short val;
  539. timeleft = IDE_REGISTER_TIMEOUT;
  540. /* wait for busy flag */
  541. do {
  542. timeleft--;
  543. } while(timeleft && cris_ide_busy());
  544. if(!timeleft) {
  545. /*
  546. * If we're asked to read the status register, like for
  547. * example when a command does not complete for an
  548. * extended time, but the ATA interface is stuck in a
  549. * busy state at the *ETRAX* ATA interface level (as has
  550. * happened repeatedly with at least one bad disk), then
  551. * the best thing to do is to pretend that we read
  552. * "busy" in the status register, so the IDE driver will
  553. * time-out, abort the ongoing command and perform a
  554. * reset sequence. Note that the subsequent OUT_BYTE
  555. * call will also timeout on busy, but as long as the
  556. * write is still performed, everything will be fine.
  557. */
  558. if (cris_ide_get_reg(reg) == IDE_STATUS_OFFSET)
  559. return BUSY_STAT;
  560. else
  561. /* For other rare cases we assume 0 is good enough. */
  562. return 0;
  563. }
  564. cris_ide_write_command(reg | cris_pio_read);
  565. timeleft = IDE_REGISTER_TIMEOUT;
  566. /* wait for available */
  567. do {
  568. timeleft--;
  569. } while(timeleft && !cris_ide_data_available(&val));
  570. if(!timeleft)
  571. return 0;
  572. LOWDB(printk("inb: 0x%x from reg 0x%x\n", val & 0xff, reg));
  573. return val;
  574. }
  575. unsigned char
  576. cris_ide_inb(unsigned long reg)
  577. {
  578. return (unsigned char)cris_ide_inw(reg);
  579. }
  580. static int cris_dma_check (ide_drive_t *drive);
  581. static int cris_dma_end (ide_drive_t *drive);
  582. static int cris_dma_setup (ide_drive_t *drive);
  583. static void cris_dma_exec_cmd (ide_drive_t *drive, u8 command);
  584. static int cris_dma_test_irq(ide_drive_t *drive);
  585. static void cris_dma_start(ide_drive_t *drive);
  586. static void cris_ide_input_data (ide_drive_t *drive, void *, unsigned int);
  587. static void cris_ide_output_data (ide_drive_t *drive, void *, unsigned int);
  588. static void cris_atapi_input_bytes(ide_drive_t *drive, void *, unsigned int);
  589. static void cris_atapi_output_bytes(ide_drive_t *drive, void *, unsigned int);
  590. static int cris_dma_off (ide_drive_t *drive);
  591. static int cris_dma_on (ide_drive_t *drive);
  592. static void tune_cris_ide(ide_drive_t *drive, u8 pio)
  593. {
  594. int setup, strobe, hold;
  595. switch(pio)
  596. {
  597. case 0:
  598. setup = ATA_PIO0_SETUP;
  599. strobe = ATA_PIO0_STROBE;
  600. hold = ATA_PIO0_HOLD;
  601. break;
  602. case 1:
  603. setup = ATA_PIO1_SETUP;
  604. strobe = ATA_PIO1_STROBE;
  605. hold = ATA_PIO1_HOLD;
  606. break;
  607. case 2:
  608. setup = ATA_PIO2_SETUP;
  609. strobe = ATA_PIO2_STROBE;
  610. hold = ATA_PIO2_HOLD;
  611. break;
  612. case 3:
  613. setup = ATA_PIO3_SETUP;
  614. strobe = ATA_PIO3_STROBE;
  615. hold = ATA_PIO3_HOLD;
  616. break;
  617. case 4:
  618. setup = ATA_PIO4_SETUP;
  619. strobe = ATA_PIO4_STROBE;
  620. hold = ATA_PIO4_HOLD;
  621. break;
  622. default:
  623. return;
  624. }
  625. cris_ide_set_speed(TYPE_PIO, setup, strobe, hold);
  626. }
  627. static int speed_cris_ide(ide_drive_t *drive, u8 speed)
  628. {
  629. int cyc = 0, dvs = 0, strobe = 0, hold = 0;
  630. if (speed >= XFER_PIO_0 && speed <= XFER_PIO_4) {
  631. tune_cris_ide(drive, speed - XFER_PIO_0);
  632. return 0;
  633. }
  634. switch(speed)
  635. {
  636. case XFER_UDMA_0:
  637. cyc = ATA_UDMA0_CYC;
  638. dvs = ATA_UDMA0_DVS;
  639. break;
  640. case XFER_UDMA_1:
  641. cyc = ATA_UDMA1_CYC;
  642. dvs = ATA_UDMA1_DVS;
  643. break;
  644. case XFER_UDMA_2:
  645. cyc = ATA_UDMA2_CYC;
  646. dvs = ATA_UDMA2_DVS;
  647. break;
  648. case XFER_MW_DMA_0:
  649. strobe = ATA_DMA0_STROBE;
  650. hold = ATA_DMA0_HOLD;
  651. break;
  652. case XFER_MW_DMA_1:
  653. strobe = ATA_DMA1_STROBE;
  654. hold = ATA_DMA1_HOLD;
  655. break;
  656. case XFER_MW_DMA_2:
  657. strobe = ATA_DMA2_STROBE;
  658. hold = ATA_DMA2_HOLD;
  659. break;
  660. default:
  661. return 0;
  662. }
  663. if (speed >= XFER_UDMA_0)
  664. cris_ide_set_speed(TYPE_UDMA, cyc, dvs, 0);
  665. else
  666. cris_ide_set_speed(TYPE_DMA, 0, strobe, hold);
  667. return 0;
  668. }
  669. void __init
  670. init_e100_ide (void)
  671. {
  672. hw_regs_t hw;
  673. int ide_offsets[IDE_NR_PORTS];
  674. int h;
  675. int i;
  676. printk("ide: ETRAX FS built-in ATA DMA controller\n");
  677. for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; i++)
  678. ide_offsets[i] = cris_ide_reg_addr(i, 0, 1);
  679. /* the IDE control register is at ATA address 6, with CS1 active instead of CS0 */
  680. ide_offsets[IDE_CONTROL_OFFSET] = cris_ide_reg_addr(6, 1, 0);
  681. /* first fill in some stuff in the ide_hwifs fields */
  682. for(h = 0; h < MAX_HWIFS; h++) {
  683. ide_hwif_t *hwif = &ide_hwifs[h];
  684. ide_setup_ports(&hw, cris_ide_base_address(h),
  685. ide_offsets,
  686. 0, 0, cris_ide_ack_intr,
  687. ide_default_irq(0));
  688. ide_register_hw(&hw, &hwif);
  689. hwif->mmio = 2;
  690. hwif->chipset = ide_etrax100;
  691. hwif->tuneproc = &tune_cris_ide;
  692. hwif->speedproc = &speed_cris_ide;
  693. hwif->ata_input_data = &cris_ide_input_data;
  694. hwif->ata_output_data = &cris_ide_output_data;
  695. hwif->atapi_input_bytes = &cris_atapi_input_bytes;
  696. hwif->atapi_output_bytes = &cris_atapi_output_bytes;
  697. hwif->ide_dma_check = &cris_dma_check;
  698. hwif->ide_dma_end = &cris_dma_end;
  699. hwif->dma_setup = &cris_dma_setup;
  700. hwif->dma_exec_cmd = &cris_dma_exec_cmd;
  701. hwif->ide_dma_test_irq = &cris_dma_test_irq;
  702. hwif->dma_start = &cris_dma_start;
  703. hwif->OUTB = &cris_ide_outb;
  704. hwif->OUTW = &cris_ide_outw;
  705. hwif->OUTBSYNC = &cris_ide_outbsync;
  706. hwif->INB = &cris_ide_inb;
  707. hwif->INW = &cris_ide_inw;
  708. hwif->ide_dma_host_off = &cris_dma_off;
  709. hwif->ide_dma_host_on = &cris_dma_on;
  710. hwif->ide_dma_off_quietly = &cris_dma_off;
  711. hwif->udma_four = 0;
  712. hwif->ultra_mask = cris_ultra_mask;
  713. hwif->mwdma_mask = 0x07; /* Multiword DMA 0-2 */
  714. hwif->swdma_mask = 0x07; /* Singleword DMA 0-2 */
  715. }
  716. /* Reset pulse */
  717. cris_ide_reset(0);
  718. udelay(25);
  719. cris_ide_reset(1);
  720. cris_ide_init();
  721. cris_ide_set_speed(TYPE_PIO, ATA_PIO4_SETUP, ATA_PIO4_STROBE, ATA_PIO4_HOLD);
  722. cris_ide_set_speed(TYPE_DMA, 0, ATA_DMA2_STROBE, ATA_DMA2_HOLD);
  723. cris_ide_set_speed(TYPE_UDMA, ATA_UDMA2_CYC, ATA_UDMA2_DVS, 0);
  724. }
  725. static int cris_dma_off (ide_drive_t *drive)
  726. {
  727. return 0;
  728. }
  729. static int cris_dma_on (ide_drive_t *drive)
  730. {
  731. return 0;
  732. }
  733. static cris_dma_descr_type mydescr __attribute__ ((__aligned__(16)));
  734. /*
  735. * The following routines are mainly used by the ATAPI drivers.
  736. *
  737. * These routines will round up any request for an odd number of bytes,
  738. * so if an odd bytecount is specified, be sure that there's at least one
  739. * extra byte allocated for the buffer.
  740. */
  741. static void
  742. cris_atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
  743. {
  744. D(printk("atapi_input_bytes, buffer 0x%x, count %d\n",
  745. buffer, bytecount));
  746. if(bytecount & 1) {
  747. printk("warning, odd bytecount in cdrom_in_bytes = %d.\n", bytecount);
  748. bytecount++; /* to round off */
  749. }
  750. /* setup DMA and start transfer */
  751. cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
  752. cris_ide_start_dma(drive, &mydescr, 1, TYPE_PIO, bytecount);
  753. /* wait for completion */
  754. LED_DISK_READ(1);
  755. cris_ide_wait_dma(1);
  756. LED_DISK_READ(0);
  757. }
  758. static void
  759. cris_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount)
  760. {
  761. D(printk("atapi_output_bytes, buffer 0x%x, count %d\n",
  762. buffer, bytecount));
  763. if(bytecount & 1) {
  764. printk("odd bytecount %d in atapi_out_bytes!\n", bytecount);
  765. bytecount++;
  766. }
  767. cris_ide_fill_descriptor(&mydescr, buffer, bytecount, 1);
  768. cris_ide_start_dma(drive, &mydescr, 0, TYPE_PIO, bytecount);
  769. /* wait for completion */
  770. LED_DISK_WRITE(1);
  771. LED_DISK_READ(1);
  772. cris_ide_wait_dma(0);
  773. LED_DISK_WRITE(0);
  774. }
  775. /*
  776. * This is used for most PIO data transfers *from* the IDE interface
  777. */
  778. static void
  779. cris_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
  780. {
  781. cris_atapi_input_bytes(drive, buffer, wcount << 2);
  782. }
  783. /*
  784. * This is used for most PIO data transfers *to* the IDE interface
  785. */
  786. static void
  787. cris_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount)
  788. {
  789. cris_atapi_output_bytes(drive, buffer, wcount << 2);
  790. }
  791. /* we only have one DMA channel on the chip for ATA, so we can keep these statically */
  792. static cris_dma_descr_type ata_descrs[MAX_DMA_DESCRS] __attribute__ ((__aligned__(16)));
  793. static unsigned int ata_tot_size;
  794. /*
  795. * cris_ide_build_dmatable() prepares a dma request.
  796. * Returns 0 if all went okay, returns 1 otherwise.
  797. */
  798. static int cris_ide_build_dmatable (ide_drive_t *drive)
  799. {
  800. ide_hwif_t *hwif = drive->hwif;
  801. struct scatterlist* sg;
  802. struct request *rq = drive->hwif->hwgroup->rq;
  803. unsigned long size, addr;
  804. unsigned int count = 0;
  805. int i = 0;
  806. sg = hwif->sg_table;
  807. ata_tot_size = 0;
  808. ide_map_sg(drive, rq);
  809. i = hwif->sg_nents;
  810. while(i) {
  811. /*
  812. * Determine addr and size of next buffer area. We assume that
  813. * individual virtual buffers are always composed linearly in
  814. * physical memory. For example, we assume that any 8kB buffer
  815. * is always composed of two adjacent physical 4kB pages rather
  816. * than two possibly non-adjacent physical 4kB pages.
  817. */
  818. /* group sequential buffers into one large buffer */
  819. addr = page_to_phys(sg->page) + sg->offset;
  820. size = sg_dma_len(sg);
  821. while (sg++, --i) {
  822. if ((addr + size) != page_to_phys(sg->page) + sg->offset)
  823. break;
  824. size += sg_dma_len(sg);
  825. }
  826. /* did we run out of descriptors? */
  827. if(count >= MAX_DMA_DESCRS) {
  828. printk("%s: too few DMA descriptors\n", drive->name);
  829. return 1;
  830. }
  831. /* however, this case is more difficult - rw_trf_cnt cannot be more
  832. than 65536 words per transfer, so in that case we need to either
  833. 1) use a DMA interrupt to re-trigger rw_trf_cnt and continue with
  834. the descriptors, or
  835. 2) simply do the request here, and get dma_intr to only ide_end_request on
  836. those blocks that were actually set-up for transfer.
  837. */
  838. if(ata_tot_size + size > 131072) {
  839. printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size);
  840. return 1;
  841. }
  842. /* If size > MAX_DESCR_SIZE it has to be splitted into new descriptors. Since we
  843. don't handle size > 131072 only one split is necessary */
  844. if(size > MAX_DESCR_SIZE) {
  845. cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, MAX_DESCR_SIZE, 0);
  846. count++;
  847. ata_tot_size += MAX_DESCR_SIZE;
  848. size -= MAX_DESCR_SIZE;
  849. addr += MAX_DESCR_SIZE;
  850. }
  851. cris_ide_fill_descriptor(&ata_descrs[count], (void*)addr, size,i ? 0 : 1);
  852. count++;
  853. ata_tot_size += size;
  854. }
  855. if (count) {
  856. /* return and say all is ok */
  857. return 0;
  858. }
  859. printk("%s: empty DMA table?\n", drive->name);
  860. return 1; /* let the PIO routines handle this weirdness */
  861. }
  862. static int cris_config_drive_for_dma (ide_drive_t *drive)
  863. {
  864. u8 speed = ide_dma_speed(drive, 1);
  865. if (!speed)
  866. return 0;
  867. speed_cris_ide(drive, speed);
  868. ide_config_drive_speed(drive, speed);
  869. return ide_dma_enable(drive);
  870. }
  871. /*
  872. * cris_dma_intr() is the handler for disk read/write DMA interrupts
  873. */
  874. static ide_startstop_t cris_dma_intr (ide_drive_t *drive)
  875. {
  876. LED_DISK_READ(0);
  877. LED_DISK_WRITE(0);
  878. return ide_dma_intr(drive);
  879. }
  880. /*
  881. * Functions below initiates/aborts DMA read/write operations on a drive.
  882. *
  883. * The caller is assumed to have selected the drive and programmed the drive's
  884. * sector address using CHS or LBA. All that remains is to prepare for DMA
  885. * and then issue the actual read/write DMA/PIO command to the drive.
  886. *
  887. * For ATAPI devices, we just prepare for DMA and return. The caller should
  888. * then issue the packet command to the drive and call us again with
  889. * cris_dma_start afterwards.
  890. *
  891. * Returns 0 if all went well.
  892. * Returns 1 if DMA read/write could not be started, in which case
  893. * the caller should revert to PIO for the current request.
  894. */
  895. static int cris_dma_check(ide_drive_t *drive)
  896. {
  897. ide_hwif_t *hwif = drive->hwif;
  898. struct hd_driveid* id = drive->id;
  899. if (id && (id->capability & 1)) {
  900. if (ide_use_dma(drive)) {
  901. if (cris_config_drive_for_dma(drive))
  902. return hwif->ide_dma_on(drive);
  903. }
  904. }
  905. return hwif->ide_dma_off_quietly(drive);
  906. }
  907. static int cris_dma_end(ide_drive_t *drive)
  908. {
  909. drive->waiting_for_dma = 0;
  910. return 0;
  911. }
  912. static int cris_dma_setup(ide_drive_t *drive)
  913. {
  914. struct request *rq = drive->hwif->hwgroup->rq;
  915. cris_ide_initialize_dma(!rq_data_dir(rq));
  916. if (cris_ide_build_dmatable (drive)) {
  917. ide_map_sg(drive, rq);
  918. return 1;
  919. }
  920. drive->waiting_for_dma = 1;
  921. return 0;
  922. }
  923. static void cris_dma_exec_cmd(ide_drive_t *drive, u8 command)
  924. {
  925. /* set the irq handler which will finish the request when DMA is done */
  926. ide_set_handler(drive, &cris_dma_intr, WAIT_CMD, NULL);
  927. /* issue cmd to drive */
  928. cris_ide_outb(command, IDE_COMMAND_REG);
  929. }
  930. static void cris_dma_start(ide_drive_t *drive)
  931. {
  932. struct request *rq = drive->hwif->hwgroup->rq;
  933. int writing = rq_data_dir(rq);
  934. int type = TYPE_DMA;
  935. if (drive->current_speed >= XFER_UDMA_0)
  936. type = TYPE_UDMA;
  937. cris_ide_start_dma(drive, &ata_descrs[0], writing ? 0 : 1, type, ata_tot_size);
  938. if (writing) {
  939. LED_DISK_WRITE(1);
  940. } else {
  941. LED_DISK_READ(1);
  942. }
  943. }