elevator.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <linux/hash.h>
  37. #include <asm/uaccess.h>
  38. static DEFINE_SPINLOCK(elv_list_lock);
  39. static LIST_HEAD(elv_list);
  40. /*
  41. * Merge hash stuff.
  42. */
  43. static const int elv_hash_shift = 6;
  44. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  45. #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  46. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  47. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  48. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  49. /*
  50. * can we safely merge with this request?
  51. */
  52. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  53. {
  54. if (!rq_mergeable(rq))
  55. return 0;
  56. /*
  57. * different data direction or already started, don't merge
  58. */
  59. if (bio_data_dir(bio) != rq_data_dir(rq))
  60. return 0;
  61. /*
  62. * same device and no special stuff set, merge is ok
  63. */
  64. if (rq->rq_disk == bio->bi_bdev->bd_disk && !rq->special)
  65. return 1;
  66. return 0;
  67. }
  68. EXPORT_SYMBOL(elv_rq_merge_ok);
  69. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  70. {
  71. int ret = ELEVATOR_NO_MERGE;
  72. /*
  73. * we can merge and sequence is ok, check if it's possible
  74. */
  75. if (elv_rq_merge_ok(__rq, bio)) {
  76. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  77. ret = ELEVATOR_BACK_MERGE;
  78. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  79. ret = ELEVATOR_FRONT_MERGE;
  80. }
  81. return ret;
  82. }
  83. static struct elevator_type *elevator_find(const char *name)
  84. {
  85. struct elevator_type *e;
  86. struct list_head *entry;
  87. list_for_each(entry, &elv_list) {
  88. e = list_entry(entry, struct elevator_type, list);
  89. if (!strcmp(e->elevator_name, name))
  90. return e;
  91. }
  92. return NULL;
  93. }
  94. static void elevator_put(struct elevator_type *e)
  95. {
  96. module_put(e->elevator_owner);
  97. }
  98. static struct elevator_type *elevator_get(const char *name)
  99. {
  100. struct elevator_type *e;
  101. spin_lock_irq(&elv_list_lock);
  102. e = elevator_find(name);
  103. if (e && !try_module_get(e->elevator_owner))
  104. e = NULL;
  105. spin_unlock_irq(&elv_list_lock);
  106. return e;
  107. }
  108. static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
  109. {
  110. return eq->ops->elevator_init_fn(q, eq);
  111. }
  112. static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
  113. void *data)
  114. {
  115. q->elevator = eq;
  116. eq->elevator_data = data;
  117. }
  118. static char chosen_elevator[16];
  119. static int __init elevator_setup(char *str)
  120. {
  121. /*
  122. * Be backwards-compatible with previous kernels, so users
  123. * won't get the wrong elevator.
  124. */
  125. if (!strcmp(str, "as"))
  126. strcpy(chosen_elevator, "anticipatory");
  127. else
  128. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  129. return 1;
  130. }
  131. __setup("elevator=", elevator_setup);
  132. static struct kobj_type elv_ktype;
  133. static elevator_t *elevator_alloc(request_queue_t *q, struct elevator_type *e)
  134. {
  135. elevator_t *eq;
  136. int i;
  137. eq = kmalloc_node(sizeof(elevator_t), GFP_KERNEL, q->node);
  138. if (unlikely(!eq))
  139. goto err;
  140. memset(eq, 0, sizeof(*eq));
  141. eq->ops = &e->ops;
  142. eq->elevator_type = e;
  143. kobject_init(&eq->kobj);
  144. snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  145. eq->kobj.ktype = &elv_ktype;
  146. mutex_init(&eq->sysfs_lock);
  147. eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
  148. GFP_KERNEL, q->node);
  149. if (!eq->hash)
  150. goto err;
  151. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  152. INIT_HLIST_HEAD(&eq->hash[i]);
  153. return eq;
  154. err:
  155. kfree(eq);
  156. elevator_put(e);
  157. return NULL;
  158. }
  159. static void elevator_release(struct kobject *kobj)
  160. {
  161. elevator_t *e = container_of(kobj, elevator_t, kobj);
  162. elevator_put(e->elevator_type);
  163. kfree(e->hash);
  164. kfree(e);
  165. }
  166. int elevator_init(request_queue_t *q, char *name)
  167. {
  168. struct elevator_type *e = NULL;
  169. struct elevator_queue *eq;
  170. int ret = 0;
  171. void *data;
  172. INIT_LIST_HEAD(&q->queue_head);
  173. q->last_merge = NULL;
  174. q->end_sector = 0;
  175. q->boundary_rq = NULL;
  176. if (name && !(e = elevator_get(name)))
  177. return -EINVAL;
  178. if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
  179. printk("I/O scheduler %s not found\n", chosen_elevator);
  180. if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
  181. printk("Default I/O scheduler not found, using no-op\n");
  182. e = elevator_get("noop");
  183. }
  184. eq = elevator_alloc(q, e);
  185. if (!eq)
  186. return -ENOMEM;
  187. data = elevator_init_queue(q, eq);
  188. if (!data) {
  189. kobject_put(&eq->kobj);
  190. return -ENOMEM;
  191. }
  192. elevator_attach(q, eq, data);
  193. return ret;
  194. }
  195. EXPORT_SYMBOL(elevator_init);
  196. void elevator_exit(elevator_t *e)
  197. {
  198. mutex_lock(&e->sysfs_lock);
  199. if (e->ops->elevator_exit_fn)
  200. e->ops->elevator_exit_fn(e);
  201. e->ops = NULL;
  202. mutex_unlock(&e->sysfs_lock);
  203. kobject_put(&e->kobj);
  204. }
  205. EXPORT_SYMBOL(elevator_exit);
  206. static inline void __elv_rqhash_del(struct request *rq)
  207. {
  208. hlist_del_init(&rq->hash);
  209. }
  210. static void elv_rqhash_del(request_queue_t *q, struct request *rq)
  211. {
  212. if (ELV_ON_HASH(rq))
  213. __elv_rqhash_del(rq);
  214. }
  215. static void elv_rqhash_add(request_queue_t *q, struct request *rq)
  216. {
  217. elevator_t *e = q->elevator;
  218. BUG_ON(ELV_ON_HASH(rq));
  219. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  220. }
  221. static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
  222. {
  223. __elv_rqhash_del(rq);
  224. elv_rqhash_add(q, rq);
  225. }
  226. static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
  227. {
  228. elevator_t *e = q->elevator;
  229. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  230. struct hlist_node *entry, *next;
  231. struct request *rq;
  232. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  233. BUG_ON(!ELV_ON_HASH(rq));
  234. if (unlikely(!rq_mergeable(rq))) {
  235. __elv_rqhash_del(rq);
  236. continue;
  237. }
  238. if (rq_hash_key(rq) == offset)
  239. return rq;
  240. }
  241. return NULL;
  242. }
  243. /*
  244. * RB-tree support functions for inserting/lookup/removal of requests
  245. * in a sorted RB tree.
  246. */
  247. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  248. {
  249. struct rb_node **p = &root->rb_node;
  250. struct rb_node *parent = NULL;
  251. struct request *__rq;
  252. while (*p) {
  253. parent = *p;
  254. __rq = rb_entry(parent, struct request, rb_node);
  255. if (rq->sector < __rq->sector)
  256. p = &(*p)->rb_left;
  257. else if (rq->sector > __rq->sector)
  258. p = &(*p)->rb_right;
  259. else
  260. return __rq;
  261. }
  262. rb_link_node(&rq->rb_node, parent, p);
  263. rb_insert_color(&rq->rb_node, root);
  264. return NULL;
  265. }
  266. EXPORT_SYMBOL(elv_rb_add);
  267. void elv_rb_del(struct rb_root *root, struct request *rq)
  268. {
  269. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  270. rb_erase(&rq->rb_node, root);
  271. RB_CLEAR_NODE(&rq->rb_node);
  272. }
  273. EXPORT_SYMBOL(elv_rb_del);
  274. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  275. {
  276. struct rb_node *n = root->rb_node;
  277. struct request *rq;
  278. while (n) {
  279. rq = rb_entry(n, struct request, rb_node);
  280. if (sector < rq->sector)
  281. n = n->rb_left;
  282. else if (sector > rq->sector)
  283. n = n->rb_right;
  284. else
  285. return rq;
  286. }
  287. return NULL;
  288. }
  289. EXPORT_SYMBOL(elv_rb_find);
  290. /*
  291. * Insert rq into dispatch queue of q. Queue lock must be held on
  292. * entry. rq is sort insted into the dispatch queue. To be used by
  293. * specific elevators.
  294. */
  295. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  296. {
  297. sector_t boundary;
  298. struct list_head *entry;
  299. if (q->last_merge == rq)
  300. q->last_merge = NULL;
  301. elv_rqhash_del(q, rq);
  302. q->nr_sorted--;
  303. boundary = q->end_sector;
  304. list_for_each_prev(entry, &q->queue_head) {
  305. struct request *pos = list_entry_rq(entry);
  306. if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  307. break;
  308. if (rq->sector >= boundary) {
  309. if (pos->sector < boundary)
  310. continue;
  311. } else {
  312. if (pos->sector >= boundary)
  313. break;
  314. }
  315. if (rq->sector >= pos->sector)
  316. break;
  317. }
  318. list_add(&rq->queuelist, entry);
  319. }
  320. EXPORT_SYMBOL(elv_dispatch_sort);
  321. /*
  322. * Insert rq into dispatch queue of q. Queue lock must be held on
  323. * entry. rq is added to the back of the dispatch queue. To be used by
  324. * specific elevators.
  325. */
  326. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  327. {
  328. if (q->last_merge == rq)
  329. q->last_merge = NULL;
  330. elv_rqhash_del(q, rq);
  331. q->nr_sorted--;
  332. q->end_sector = rq_end_sector(rq);
  333. q->boundary_rq = rq;
  334. list_add_tail(&rq->queuelist, &q->queue_head);
  335. }
  336. EXPORT_SYMBOL(elv_dispatch_add_tail);
  337. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  338. {
  339. elevator_t *e = q->elevator;
  340. struct request *__rq;
  341. int ret;
  342. /*
  343. * First try one-hit cache.
  344. */
  345. if (q->last_merge) {
  346. ret = elv_try_merge(q->last_merge, bio);
  347. if (ret != ELEVATOR_NO_MERGE) {
  348. *req = q->last_merge;
  349. return ret;
  350. }
  351. }
  352. /*
  353. * See if our hash lookup can find a potential backmerge.
  354. */
  355. __rq = elv_rqhash_find(q, bio->bi_sector);
  356. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  357. *req = __rq;
  358. return ELEVATOR_BACK_MERGE;
  359. }
  360. if (e->ops->elevator_merge_fn)
  361. return e->ops->elevator_merge_fn(q, req, bio);
  362. return ELEVATOR_NO_MERGE;
  363. }
  364. void elv_merged_request(request_queue_t *q, struct request *rq, int type)
  365. {
  366. elevator_t *e = q->elevator;
  367. if (e->ops->elevator_merged_fn)
  368. e->ops->elevator_merged_fn(q, rq, type);
  369. if (type == ELEVATOR_BACK_MERGE)
  370. elv_rqhash_reposition(q, rq);
  371. q->last_merge = rq;
  372. }
  373. void elv_merge_requests(request_queue_t *q, struct request *rq,
  374. struct request *next)
  375. {
  376. elevator_t *e = q->elevator;
  377. if (e->ops->elevator_merge_req_fn)
  378. e->ops->elevator_merge_req_fn(q, rq, next);
  379. elv_rqhash_reposition(q, rq);
  380. elv_rqhash_del(q, next);
  381. q->nr_sorted--;
  382. q->last_merge = rq;
  383. }
  384. void elv_requeue_request(request_queue_t *q, struct request *rq)
  385. {
  386. elevator_t *e = q->elevator;
  387. /*
  388. * it already went through dequeue, we need to decrement the
  389. * in_flight count again
  390. */
  391. if (blk_account_rq(rq)) {
  392. q->in_flight--;
  393. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  394. e->ops->elevator_deactivate_req_fn(q, rq);
  395. }
  396. rq->cmd_flags &= ~REQ_STARTED;
  397. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  398. }
  399. static void elv_drain_elevator(request_queue_t *q)
  400. {
  401. static int printed;
  402. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  403. ;
  404. if (q->nr_sorted == 0)
  405. return;
  406. if (printed++ < 10) {
  407. printk(KERN_ERR "%s: forced dispatching is broken "
  408. "(nr_sorted=%u), please report this\n",
  409. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  410. }
  411. }
  412. void elv_insert(request_queue_t *q, struct request *rq, int where)
  413. {
  414. struct list_head *pos;
  415. unsigned ordseq;
  416. int unplug_it = 1;
  417. blk_add_trace_rq(q, rq, BLK_TA_INSERT);
  418. rq->q = q;
  419. switch (where) {
  420. case ELEVATOR_INSERT_FRONT:
  421. rq->cmd_flags |= REQ_SOFTBARRIER;
  422. list_add(&rq->queuelist, &q->queue_head);
  423. break;
  424. case ELEVATOR_INSERT_BACK:
  425. rq->cmd_flags |= REQ_SOFTBARRIER;
  426. elv_drain_elevator(q);
  427. list_add_tail(&rq->queuelist, &q->queue_head);
  428. /*
  429. * We kick the queue here for the following reasons.
  430. * - The elevator might have returned NULL previously
  431. * to delay requests and returned them now. As the
  432. * queue wasn't empty before this request, ll_rw_blk
  433. * won't run the queue on return, resulting in hang.
  434. * - Usually, back inserted requests won't be merged
  435. * with anything. There's no point in delaying queue
  436. * processing.
  437. */
  438. blk_remove_plug(q);
  439. q->request_fn(q);
  440. break;
  441. case ELEVATOR_INSERT_SORT:
  442. BUG_ON(!blk_fs_request(rq));
  443. rq->cmd_flags |= REQ_SORTED;
  444. q->nr_sorted++;
  445. if (rq_mergeable(rq)) {
  446. elv_rqhash_add(q, rq);
  447. if (!q->last_merge)
  448. q->last_merge = rq;
  449. }
  450. /*
  451. * Some ioscheds (cfq) run q->request_fn directly, so
  452. * rq cannot be accessed after calling
  453. * elevator_add_req_fn.
  454. */
  455. q->elevator->ops->elevator_add_req_fn(q, rq);
  456. break;
  457. case ELEVATOR_INSERT_REQUEUE:
  458. /*
  459. * If ordered flush isn't in progress, we do front
  460. * insertion; otherwise, requests should be requeued
  461. * in ordseq order.
  462. */
  463. rq->cmd_flags |= REQ_SOFTBARRIER;
  464. if (q->ordseq == 0) {
  465. list_add(&rq->queuelist, &q->queue_head);
  466. break;
  467. }
  468. ordseq = blk_ordered_req_seq(rq);
  469. list_for_each(pos, &q->queue_head) {
  470. struct request *pos_rq = list_entry_rq(pos);
  471. if (ordseq <= blk_ordered_req_seq(pos_rq))
  472. break;
  473. }
  474. list_add_tail(&rq->queuelist, pos);
  475. /*
  476. * most requeues happen because of a busy condition, don't
  477. * force unplug of the queue for that case.
  478. */
  479. unplug_it = 0;
  480. break;
  481. default:
  482. printk(KERN_ERR "%s: bad insertion point %d\n",
  483. __FUNCTION__, where);
  484. BUG();
  485. }
  486. if (unplug_it && blk_queue_plugged(q)) {
  487. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  488. - q->in_flight;
  489. if (nrq >= q->unplug_thresh)
  490. __generic_unplug_device(q);
  491. }
  492. }
  493. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  494. int plug)
  495. {
  496. if (q->ordcolor)
  497. rq->cmd_flags |= REQ_ORDERED_COLOR;
  498. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  499. /*
  500. * toggle ordered color
  501. */
  502. if (blk_barrier_rq(rq))
  503. q->ordcolor ^= 1;
  504. /*
  505. * barriers implicitly indicate back insertion
  506. */
  507. if (where == ELEVATOR_INSERT_SORT)
  508. where = ELEVATOR_INSERT_BACK;
  509. /*
  510. * this request is scheduling boundary, update
  511. * end_sector
  512. */
  513. if (blk_fs_request(rq)) {
  514. q->end_sector = rq_end_sector(rq);
  515. q->boundary_rq = rq;
  516. }
  517. } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  518. where = ELEVATOR_INSERT_BACK;
  519. if (plug)
  520. blk_plug_device(q);
  521. elv_insert(q, rq, where);
  522. }
  523. EXPORT_SYMBOL(__elv_add_request);
  524. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  525. int plug)
  526. {
  527. unsigned long flags;
  528. spin_lock_irqsave(q->queue_lock, flags);
  529. __elv_add_request(q, rq, where, plug);
  530. spin_unlock_irqrestore(q->queue_lock, flags);
  531. }
  532. EXPORT_SYMBOL(elv_add_request);
  533. static inline struct request *__elv_next_request(request_queue_t *q)
  534. {
  535. struct request *rq;
  536. while (1) {
  537. while (!list_empty(&q->queue_head)) {
  538. rq = list_entry_rq(q->queue_head.next);
  539. if (blk_do_ordered(q, &rq))
  540. return rq;
  541. }
  542. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  543. return NULL;
  544. }
  545. }
  546. struct request *elv_next_request(request_queue_t *q)
  547. {
  548. struct request *rq;
  549. int ret;
  550. while ((rq = __elv_next_request(q)) != NULL) {
  551. if (!(rq->cmd_flags & REQ_STARTED)) {
  552. elevator_t *e = q->elevator;
  553. /*
  554. * This is the first time the device driver
  555. * sees this request (possibly after
  556. * requeueing). Notify IO scheduler.
  557. */
  558. if (blk_sorted_rq(rq) &&
  559. e->ops->elevator_activate_req_fn)
  560. e->ops->elevator_activate_req_fn(q, rq);
  561. /*
  562. * just mark as started even if we don't start
  563. * it, a request that has been delayed should
  564. * not be passed by new incoming requests
  565. */
  566. rq->cmd_flags |= REQ_STARTED;
  567. blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
  568. }
  569. if (!q->boundary_rq || q->boundary_rq == rq) {
  570. q->end_sector = rq_end_sector(rq);
  571. q->boundary_rq = NULL;
  572. }
  573. if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
  574. break;
  575. ret = q->prep_rq_fn(q, rq);
  576. if (ret == BLKPREP_OK) {
  577. break;
  578. } else if (ret == BLKPREP_DEFER) {
  579. /*
  580. * the request may have been (partially) prepped.
  581. * we need to keep this request in the front to
  582. * avoid resource deadlock. REQ_STARTED will
  583. * prevent other fs requests from passing this one.
  584. */
  585. rq = NULL;
  586. break;
  587. } else if (ret == BLKPREP_KILL) {
  588. int nr_bytes = rq->hard_nr_sectors << 9;
  589. if (!nr_bytes)
  590. nr_bytes = rq->data_len;
  591. blkdev_dequeue_request(rq);
  592. rq->cmd_flags |= REQ_QUIET;
  593. end_that_request_chunk(rq, 0, nr_bytes);
  594. end_that_request_last(rq, 0);
  595. } else {
  596. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  597. ret);
  598. break;
  599. }
  600. }
  601. return rq;
  602. }
  603. EXPORT_SYMBOL(elv_next_request);
  604. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  605. {
  606. BUG_ON(list_empty(&rq->queuelist));
  607. BUG_ON(ELV_ON_HASH(rq));
  608. list_del_init(&rq->queuelist);
  609. /*
  610. * the time frame between a request being removed from the lists
  611. * and to it is freed is accounted as io that is in progress at
  612. * the driver side.
  613. */
  614. if (blk_account_rq(rq))
  615. q->in_flight++;
  616. }
  617. EXPORT_SYMBOL(elv_dequeue_request);
  618. int elv_queue_empty(request_queue_t *q)
  619. {
  620. elevator_t *e = q->elevator;
  621. if (!list_empty(&q->queue_head))
  622. return 0;
  623. if (e->ops->elevator_queue_empty_fn)
  624. return e->ops->elevator_queue_empty_fn(q);
  625. return 1;
  626. }
  627. EXPORT_SYMBOL(elv_queue_empty);
  628. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  629. {
  630. elevator_t *e = q->elevator;
  631. if (e->ops->elevator_latter_req_fn)
  632. return e->ops->elevator_latter_req_fn(q, rq);
  633. return NULL;
  634. }
  635. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  636. {
  637. elevator_t *e = q->elevator;
  638. if (e->ops->elevator_former_req_fn)
  639. return e->ops->elevator_former_req_fn(q, rq);
  640. return NULL;
  641. }
  642. int elv_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
  643. {
  644. elevator_t *e = q->elevator;
  645. if (e->ops->elevator_set_req_fn)
  646. return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
  647. rq->elevator_private = NULL;
  648. return 0;
  649. }
  650. void elv_put_request(request_queue_t *q, struct request *rq)
  651. {
  652. elevator_t *e = q->elevator;
  653. if (e->ops->elevator_put_req_fn)
  654. e->ops->elevator_put_req_fn(q, rq);
  655. }
  656. int elv_may_queue(request_queue_t *q, int rw)
  657. {
  658. elevator_t *e = q->elevator;
  659. if (e->ops->elevator_may_queue_fn)
  660. return e->ops->elevator_may_queue_fn(q, rw);
  661. return ELV_MQUEUE_MAY;
  662. }
  663. void elv_completed_request(request_queue_t *q, struct request *rq)
  664. {
  665. elevator_t *e = q->elevator;
  666. /*
  667. * request is released from the driver, io must be done
  668. */
  669. if (blk_account_rq(rq)) {
  670. q->in_flight--;
  671. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  672. e->ops->elevator_completed_req_fn(q, rq);
  673. }
  674. /*
  675. * Check if the queue is waiting for fs requests to be
  676. * drained for flush sequence.
  677. */
  678. if (unlikely(q->ordseq)) {
  679. struct request *first_rq = list_entry_rq(q->queue_head.next);
  680. if (q->in_flight == 0 &&
  681. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  682. blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
  683. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  684. q->request_fn(q);
  685. }
  686. }
  687. }
  688. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  689. static ssize_t
  690. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  691. {
  692. elevator_t *e = container_of(kobj, elevator_t, kobj);
  693. struct elv_fs_entry *entry = to_elv(attr);
  694. ssize_t error;
  695. if (!entry->show)
  696. return -EIO;
  697. mutex_lock(&e->sysfs_lock);
  698. error = e->ops ? entry->show(e, page) : -ENOENT;
  699. mutex_unlock(&e->sysfs_lock);
  700. return error;
  701. }
  702. static ssize_t
  703. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  704. const char *page, size_t length)
  705. {
  706. elevator_t *e = container_of(kobj, elevator_t, kobj);
  707. struct elv_fs_entry *entry = to_elv(attr);
  708. ssize_t error;
  709. if (!entry->store)
  710. return -EIO;
  711. mutex_lock(&e->sysfs_lock);
  712. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  713. mutex_unlock(&e->sysfs_lock);
  714. return error;
  715. }
  716. static struct sysfs_ops elv_sysfs_ops = {
  717. .show = elv_attr_show,
  718. .store = elv_attr_store,
  719. };
  720. static struct kobj_type elv_ktype = {
  721. .sysfs_ops = &elv_sysfs_ops,
  722. .release = elevator_release,
  723. };
  724. int elv_register_queue(struct request_queue *q)
  725. {
  726. elevator_t *e = q->elevator;
  727. int error;
  728. e->kobj.parent = &q->kobj;
  729. error = kobject_add(&e->kobj);
  730. if (!error) {
  731. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  732. if (attr) {
  733. while (attr->attr.name) {
  734. if (sysfs_create_file(&e->kobj, &attr->attr))
  735. break;
  736. attr++;
  737. }
  738. }
  739. kobject_uevent(&e->kobj, KOBJ_ADD);
  740. }
  741. return error;
  742. }
  743. static void __elv_unregister_queue(elevator_t *e)
  744. {
  745. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  746. kobject_del(&e->kobj);
  747. }
  748. void elv_unregister_queue(struct request_queue *q)
  749. {
  750. if (q)
  751. __elv_unregister_queue(q->elevator);
  752. }
  753. int elv_register(struct elevator_type *e)
  754. {
  755. spin_lock_irq(&elv_list_lock);
  756. BUG_ON(elevator_find(e->elevator_name));
  757. list_add_tail(&e->list, &elv_list);
  758. spin_unlock_irq(&elv_list_lock);
  759. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  760. if (!strcmp(e->elevator_name, chosen_elevator) ||
  761. (!*chosen_elevator &&
  762. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  763. printk(" (default)");
  764. printk("\n");
  765. return 0;
  766. }
  767. EXPORT_SYMBOL_GPL(elv_register);
  768. void elv_unregister(struct elevator_type *e)
  769. {
  770. struct task_struct *g, *p;
  771. /*
  772. * Iterate every thread in the process to remove the io contexts.
  773. */
  774. if (e->ops.trim) {
  775. read_lock(&tasklist_lock);
  776. do_each_thread(g, p) {
  777. task_lock(p);
  778. if (p->io_context)
  779. e->ops.trim(p->io_context);
  780. task_unlock(p);
  781. } while_each_thread(g, p);
  782. read_unlock(&tasklist_lock);
  783. }
  784. spin_lock_irq(&elv_list_lock);
  785. list_del_init(&e->list);
  786. spin_unlock_irq(&elv_list_lock);
  787. }
  788. EXPORT_SYMBOL_GPL(elv_unregister);
  789. /*
  790. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  791. * we don't free the old io scheduler, before we have allocated what we
  792. * need for the new one. this way we have a chance of going back to the old
  793. * one, if the new one fails init for some reason.
  794. */
  795. static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  796. {
  797. elevator_t *old_elevator, *e;
  798. void *data;
  799. /*
  800. * Allocate new elevator
  801. */
  802. e = elevator_alloc(q, new_e);
  803. if (!e)
  804. return 0;
  805. data = elevator_init_queue(q, e);
  806. if (!data) {
  807. kobject_put(&e->kobj);
  808. return 0;
  809. }
  810. /*
  811. * Turn on BYPASS and drain all requests w/ elevator private data
  812. */
  813. spin_lock_irq(q->queue_lock);
  814. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  815. elv_drain_elevator(q);
  816. while (q->rq.elvpriv) {
  817. blk_remove_plug(q);
  818. q->request_fn(q);
  819. spin_unlock_irq(q->queue_lock);
  820. msleep(10);
  821. spin_lock_irq(q->queue_lock);
  822. elv_drain_elevator(q);
  823. }
  824. /*
  825. * Remember old elevator.
  826. */
  827. old_elevator = q->elevator;
  828. /*
  829. * attach and start new elevator
  830. */
  831. elevator_attach(q, e, data);
  832. spin_unlock_irq(q->queue_lock);
  833. __elv_unregister_queue(old_elevator);
  834. if (elv_register_queue(q))
  835. goto fail_register;
  836. /*
  837. * finally exit old elevator and turn off BYPASS.
  838. */
  839. elevator_exit(old_elevator);
  840. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  841. return 1;
  842. fail_register:
  843. /*
  844. * switch failed, exit the new io scheduler and reattach the old
  845. * one again (along with re-adding the sysfs dir)
  846. */
  847. elevator_exit(e);
  848. q->elevator = old_elevator;
  849. elv_register_queue(q);
  850. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  851. return 0;
  852. }
  853. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  854. {
  855. char elevator_name[ELV_NAME_MAX];
  856. size_t len;
  857. struct elevator_type *e;
  858. elevator_name[sizeof(elevator_name) - 1] = '\0';
  859. strncpy(elevator_name, name, sizeof(elevator_name) - 1);
  860. len = strlen(elevator_name);
  861. if (len && elevator_name[len - 1] == '\n')
  862. elevator_name[len - 1] = '\0';
  863. e = elevator_get(elevator_name);
  864. if (!e) {
  865. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  866. return -EINVAL;
  867. }
  868. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  869. elevator_put(e);
  870. return count;
  871. }
  872. if (!elevator_switch(q, e))
  873. printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
  874. return count;
  875. }
  876. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  877. {
  878. elevator_t *e = q->elevator;
  879. struct elevator_type *elv = e->elevator_type;
  880. struct list_head *entry;
  881. int len = 0;
  882. spin_lock_irq(&elv_list_lock);
  883. list_for_each(entry, &elv_list) {
  884. struct elevator_type *__e;
  885. __e = list_entry(entry, struct elevator_type, list);
  886. if (!strcmp(elv->elevator_name, __e->elevator_name))
  887. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  888. else
  889. len += sprintf(name+len, "%s ", __e->elevator_name);
  890. }
  891. spin_unlock_irq(&elv_list_lock);
  892. len += sprintf(len+name, "\n");
  893. return len;
  894. }
  895. struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
  896. {
  897. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  898. if (rbprev)
  899. return rb_entry_rq(rbprev);
  900. return NULL;
  901. }
  902. EXPORT_SYMBOL(elv_rb_former_request);
  903. struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
  904. {
  905. struct rb_node *rbnext = rb_next(&rq->rb_node);
  906. if (rbnext)
  907. return rb_entry_rq(rbnext);
  908. return NULL;
  909. }
  910. EXPORT_SYMBOL(elv_rb_latter_request);