smp.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524
  1. /*
  2. * Intel SMP support routines.
  3. *
  4. * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
  5. * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
  6. * (c) 2002,2003 Andi Kleen, SuSE Labs.
  7. *
  8. * This code is released under the GNU General Public License version 2 or
  9. * later.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/mm.h>
  13. #include <linux/delay.h>
  14. #include <linux/spinlock.h>
  15. #include <linux/smp_lock.h>
  16. #include <linux/smp.h>
  17. #include <linux/kernel_stat.h>
  18. #include <linux/mc146818rtc.h>
  19. #include <linux/interrupt.h>
  20. #include <asm/mtrr.h>
  21. #include <asm/pgalloc.h>
  22. #include <asm/tlbflush.h>
  23. #include <asm/mach_apic.h>
  24. #include <asm/mmu_context.h>
  25. #include <asm/proto.h>
  26. #include <asm/apicdef.h>
  27. #include <asm/idle.h>
  28. /*
  29. * Smarter SMP flushing macros.
  30. * c/o Linus Torvalds.
  31. *
  32. * These mean you can really definitely utterly forget about
  33. * writing to user space from interrupts. (Its not allowed anyway).
  34. *
  35. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  36. *
  37. * More scalable flush, from Andi Kleen
  38. *
  39. * To avoid global state use 8 different call vectors.
  40. * Each CPU uses a specific vector to trigger flushes on other
  41. * CPUs. Depending on the received vector the target CPUs look into
  42. * the right per cpu variable for the flush data.
  43. *
  44. * With more than 8 CPUs they are hashed to the 8 available
  45. * vectors. The limited global vector space forces us to this right now.
  46. * In future when interrupts are split into per CPU domains this could be
  47. * fixed, at the cost of triggering multiple IPIs in some cases.
  48. */
  49. union smp_flush_state {
  50. struct {
  51. cpumask_t flush_cpumask;
  52. struct mm_struct *flush_mm;
  53. unsigned long flush_va;
  54. #define FLUSH_ALL -1ULL
  55. spinlock_t tlbstate_lock;
  56. };
  57. char pad[SMP_CACHE_BYTES];
  58. } ____cacheline_aligned;
  59. /* State is put into the per CPU data section, but padded
  60. to a full cache line because other CPUs can access it and we don't
  61. want false sharing in the per cpu data segment. */
  62. static DEFINE_PER_CPU(union smp_flush_state, flush_state);
  63. /*
  64. * We cannot call mmdrop() because we are in interrupt context,
  65. * instead update mm->cpu_vm_mask.
  66. */
  67. static inline void leave_mm(int cpu)
  68. {
  69. if (read_pda(mmu_state) == TLBSTATE_OK)
  70. BUG();
  71. cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
  72. load_cr3(swapper_pg_dir);
  73. }
  74. /*
  75. *
  76. * The flush IPI assumes that a thread switch happens in this order:
  77. * [cpu0: the cpu that switches]
  78. * 1) switch_mm() either 1a) or 1b)
  79. * 1a) thread switch to a different mm
  80. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  81. * Stop ipi delivery for the old mm. This is not synchronized with
  82. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  83. * for the wrong mm, and in the worst case we perform a superfluous
  84. * tlb flush.
  85. * 1a2) set cpu mmu_state to TLBSTATE_OK
  86. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  87. * was in lazy tlb mode.
  88. * 1a3) update cpu active_mm
  89. * Now cpu0 accepts tlb flushes for the new mm.
  90. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  91. * Now the other cpus will send tlb flush ipis.
  92. * 1a4) change cr3.
  93. * 1b) thread switch without mm change
  94. * cpu active_mm is correct, cpu0 already handles
  95. * flush ipis.
  96. * 1b1) set cpu mmu_state to TLBSTATE_OK
  97. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  98. * Atomically set the bit [other cpus will start sending flush ipis],
  99. * and test the bit.
  100. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  101. * 2) switch %%esp, ie current
  102. *
  103. * The interrupt must handle 2 special cases:
  104. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  105. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  106. * runs in kernel space, the cpu could load tlb entries for user space
  107. * pages.
  108. *
  109. * The good news is that cpu mmu_state is local to each cpu, no
  110. * write/read ordering problems.
  111. */
  112. /*
  113. * TLB flush IPI:
  114. *
  115. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  116. * 2) Leave the mm if we are in the lazy tlb mode.
  117. *
  118. * Interrupts are disabled.
  119. */
  120. asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
  121. {
  122. int cpu;
  123. int sender;
  124. union smp_flush_state *f;
  125. cpu = smp_processor_id();
  126. /*
  127. * orig_rax contains the negated interrupt vector.
  128. * Use that to determine where the sender put the data.
  129. */
  130. sender = ~regs->orig_rax - INVALIDATE_TLB_VECTOR_START;
  131. f = &per_cpu(flush_state, sender);
  132. if (!cpu_isset(cpu, f->flush_cpumask))
  133. goto out;
  134. /*
  135. * This was a BUG() but until someone can quote me the
  136. * line from the intel manual that guarantees an IPI to
  137. * multiple CPUs is retried _only_ on the erroring CPUs
  138. * its staying as a return
  139. *
  140. * BUG();
  141. */
  142. if (f->flush_mm == read_pda(active_mm)) {
  143. if (read_pda(mmu_state) == TLBSTATE_OK) {
  144. if (f->flush_va == FLUSH_ALL)
  145. local_flush_tlb();
  146. else
  147. __flush_tlb_one(f->flush_va);
  148. } else
  149. leave_mm(cpu);
  150. }
  151. out:
  152. ack_APIC_irq();
  153. cpu_clear(cpu, f->flush_cpumask);
  154. }
  155. static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
  156. unsigned long va)
  157. {
  158. int sender;
  159. union smp_flush_state *f;
  160. /* Caller has disabled preemption */
  161. sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
  162. f = &per_cpu(flush_state, sender);
  163. /* Could avoid this lock when
  164. num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
  165. probably not worth checking this for a cache-hot lock. */
  166. spin_lock(&f->tlbstate_lock);
  167. f->flush_mm = mm;
  168. f->flush_va = va;
  169. cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
  170. /*
  171. * We have to send the IPI only to
  172. * CPUs affected.
  173. */
  174. send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
  175. while (!cpus_empty(f->flush_cpumask))
  176. cpu_relax();
  177. f->flush_mm = NULL;
  178. f->flush_va = 0;
  179. spin_unlock(&f->tlbstate_lock);
  180. }
  181. int __cpuinit init_smp_flush(void)
  182. {
  183. int i;
  184. for_each_cpu_mask(i, cpu_possible_map) {
  185. spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
  186. }
  187. return 0;
  188. }
  189. core_initcall(init_smp_flush);
  190. void flush_tlb_current_task(void)
  191. {
  192. struct mm_struct *mm = current->mm;
  193. cpumask_t cpu_mask;
  194. preempt_disable();
  195. cpu_mask = mm->cpu_vm_mask;
  196. cpu_clear(smp_processor_id(), cpu_mask);
  197. local_flush_tlb();
  198. if (!cpus_empty(cpu_mask))
  199. flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
  200. preempt_enable();
  201. }
  202. EXPORT_SYMBOL(flush_tlb_current_task);
  203. void flush_tlb_mm (struct mm_struct * mm)
  204. {
  205. cpumask_t cpu_mask;
  206. preempt_disable();
  207. cpu_mask = mm->cpu_vm_mask;
  208. cpu_clear(smp_processor_id(), cpu_mask);
  209. if (current->active_mm == mm) {
  210. if (current->mm)
  211. local_flush_tlb();
  212. else
  213. leave_mm(smp_processor_id());
  214. }
  215. if (!cpus_empty(cpu_mask))
  216. flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
  217. preempt_enable();
  218. }
  219. EXPORT_SYMBOL(flush_tlb_mm);
  220. void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
  221. {
  222. struct mm_struct *mm = vma->vm_mm;
  223. cpumask_t cpu_mask;
  224. preempt_disable();
  225. cpu_mask = mm->cpu_vm_mask;
  226. cpu_clear(smp_processor_id(), cpu_mask);
  227. if (current->active_mm == mm) {
  228. if(current->mm)
  229. __flush_tlb_one(va);
  230. else
  231. leave_mm(smp_processor_id());
  232. }
  233. if (!cpus_empty(cpu_mask))
  234. flush_tlb_others(cpu_mask, mm, va);
  235. preempt_enable();
  236. }
  237. EXPORT_SYMBOL(flush_tlb_page);
  238. static void do_flush_tlb_all(void* info)
  239. {
  240. unsigned long cpu = smp_processor_id();
  241. __flush_tlb_all();
  242. if (read_pda(mmu_state) == TLBSTATE_LAZY)
  243. leave_mm(cpu);
  244. }
  245. void flush_tlb_all(void)
  246. {
  247. on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
  248. }
  249. /*
  250. * this function sends a 'reschedule' IPI to another CPU.
  251. * it goes straight through and wastes no time serializing
  252. * anything. Worst case is that we lose a reschedule ...
  253. */
  254. void smp_send_reschedule(int cpu)
  255. {
  256. send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
  257. }
  258. /*
  259. * Structure and data for smp_call_function(). This is designed to minimise
  260. * static memory requirements. It also looks cleaner.
  261. */
  262. static DEFINE_SPINLOCK(call_lock);
  263. struct call_data_struct {
  264. void (*func) (void *info);
  265. void *info;
  266. atomic_t started;
  267. atomic_t finished;
  268. int wait;
  269. };
  270. static struct call_data_struct * call_data;
  271. void lock_ipi_call_lock(void)
  272. {
  273. spin_lock_irq(&call_lock);
  274. }
  275. void unlock_ipi_call_lock(void)
  276. {
  277. spin_unlock_irq(&call_lock);
  278. }
  279. /*
  280. * this function sends a 'generic call function' IPI to one other CPU
  281. * in the system.
  282. *
  283. * cpu is a standard Linux logical CPU number.
  284. */
  285. static void
  286. __smp_call_function_single(int cpu, void (*func) (void *info), void *info,
  287. int nonatomic, int wait)
  288. {
  289. struct call_data_struct data;
  290. int cpus = 1;
  291. data.func = func;
  292. data.info = info;
  293. atomic_set(&data.started, 0);
  294. data.wait = wait;
  295. if (wait)
  296. atomic_set(&data.finished, 0);
  297. call_data = &data;
  298. wmb();
  299. /* Send a message to all other CPUs and wait for them to respond */
  300. send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
  301. /* Wait for response */
  302. while (atomic_read(&data.started) != cpus)
  303. cpu_relax();
  304. if (!wait)
  305. return;
  306. while (atomic_read(&data.finished) != cpus)
  307. cpu_relax();
  308. }
  309. /*
  310. * smp_call_function_single - Run a function on another CPU
  311. * @func: The function to run. This must be fast and non-blocking.
  312. * @info: An arbitrary pointer to pass to the function.
  313. * @nonatomic: Currently unused.
  314. * @wait: If true, wait until function has completed on other CPUs.
  315. *
  316. * Retrurns 0 on success, else a negative status code.
  317. *
  318. * Does not return until the remote CPU is nearly ready to execute <func>
  319. * or is or has executed.
  320. */
  321. int smp_call_function_single (int cpu, void (*func) (void *info), void *info,
  322. int nonatomic, int wait)
  323. {
  324. /* prevent preemption and reschedule on another processor */
  325. int me = get_cpu();
  326. if (cpu == me) {
  327. WARN_ON(1);
  328. put_cpu();
  329. return -EBUSY;
  330. }
  331. spin_lock_bh(&call_lock);
  332. __smp_call_function_single(cpu, func, info, nonatomic, wait);
  333. spin_unlock_bh(&call_lock);
  334. put_cpu();
  335. return 0;
  336. }
  337. /*
  338. * this function sends a 'generic call function' IPI to all other CPUs
  339. * in the system.
  340. */
  341. static void __smp_call_function (void (*func) (void *info), void *info,
  342. int nonatomic, int wait)
  343. {
  344. struct call_data_struct data;
  345. int cpus = num_online_cpus()-1;
  346. if (!cpus)
  347. return;
  348. data.func = func;
  349. data.info = info;
  350. atomic_set(&data.started, 0);
  351. data.wait = wait;
  352. if (wait)
  353. atomic_set(&data.finished, 0);
  354. call_data = &data;
  355. wmb();
  356. /* Send a message to all other CPUs and wait for them to respond */
  357. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  358. /* Wait for response */
  359. while (atomic_read(&data.started) != cpus)
  360. cpu_relax();
  361. if (!wait)
  362. return;
  363. while (atomic_read(&data.finished) != cpus)
  364. cpu_relax();
  365. }
  366. /*
  367. * smp_call_function - run a function on all other CPUs.
  368. * @func: The function to run. This must be fast and non-blocking.
  369. * @info: An arbitrary pointer to pass to the function.
  370. * @nonatomic: currently unused.
  371. * @wait: If true, wait (atomically) until function has completed on other
  372. * CPUs.
  373. *
  374. * Returns 0 on success, else a negative status code. Does not return until
  375. * remote CPUs are nearly ready to execute func or are or have executed.
  376. *
  377. * You must not call this function with disabled interrupts or from a
  378. * hardware interrupt handler or from a bottom half handler.
  379. * Actually there are a few legal cases, like panic.
  380. */
  381. int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
  382. int wait)
  383. {
  384. spin_lock(&call_lock);
  385. __smp_call_function(func,info,nonatomic,wait);
  386. spin_unlock(&call_lock);
  387. return 0;
  388. }
  389. EXPORT_SYMBOL(smp_call_function);
  390. void smp_stop_cpu(void)
  391. {
  392. unsigned long flags;
  393. /*
  394. * Remove this CPU:
  395. */
  396. cpu_clear(smp_processor_id(), cpu_online_map);
  397. local_irq_save(flags);
  398. disable_local_APIC();
  399. local_irq_restore(flags);
  400. }
  401. static void smp_really_stop_cpu(void *dummy)
  402. {
  403. smp_stop_cpu();
  404. for (;;)
  405. halt();
  406. }
  407. void smp_send_stop(void)
  408. {
  409. int nolock = 0;
  410. if (reboot_force)
  411. return;
  412. /* Don't deadlock on the call lock in panic */
  413. if (!spin_trylock(&call_lock)) {
  414. /* ignore locking because we have panicked anyways */
  415. nolock = 1;
  416. }
  417. __smp_call_function(smp_really_stop_cpu, NULL, 0, 0);
  418. if (!nolock)
  419. spin_unlock(&call_lock);
  420. local_irq_disable();
  421. disable_local_APIC();
  422. local_irq_enable();
  423. }
  424. /*
  425. * Reschedule call back. Nothing to do,
  426. * all the work is done automatically when
  427. * we return from the interrupt.
  428. */
  429. asmlinkage void smp_reschedule_interrupt(void)
  430. {
  431. ack_APIC_irq();
  432. }
  433. asmlinkage void smp_call_function_interrupt(void)
  434. {
  435. void (*func) (void *info) = call_data->func;
  436. void *info = call_data->info;
  437. int wait = call_data->wait;
  438. ack_APIC_irq();
  439. /*
  440. * Notify initiating CPU that I've grabbed the data and am
  441. * about to execute the function
  442. */
  443. mb();
  444. atomic_inc(&call_data->started);
  445. /*
  446. * At this point the info structure may be out of scope unless wait==1
  447. */
  448. exit_idle();
  449. irq_enter();
  450. (*func)(info);
  451. irq_exit();
  452. if (wait) {
  453. mb();
  454. atomic_inc(&call_data->finished);
  455. }
  456. }