process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * arch/sh64/kernel/process.c
  7. *
  8. * Copyright (C) 2000, 2001 Paolo Alberelli
  9. * Copyright (C) 2003 Paul Mundt
  10. * Copyright (C) 2003, 2004 Richard Curnow
  11. *
  12. * Started from SH3/4 version:
  13. * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  14. *
  15. * In turn started from i386 version:
  16. * Copyright (C) 1995 Linus Torvalds
  17. *
  18. */
  19. /*
  20. * This file handles the architecture-dependent parts of process handling..
  21. */
  22. #include <linux/mm.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/reboot.h>
  25. #include <linux/init.h>
  26. #include <linux/module.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/pgtable.h>
  29. struct task_struct *last_task_used_math = NULL;
  30. static int hlt_counter = 1;
  31. #define HARD_IDLE_TIMEOUT (HZ / 3)
  32. void disable_hlt(void)
  33. {
  34. hlt_counter++;
  35. }
  36. void enable_hlt(void)
  37. {
  38. hlt_counter--;
  39. }
  40. static int __init nohlt_setup(char *__unused)
  41. {
  42. hlt_counter = 1;
  43. return 1;
  44. }
  45. static int __init hlt_setup(char *__unused)
  46. {
  47. hlt_counter = 0;
  48. return 1;
  49. }
  50. __setup("nohlt", nohlt_setup);
  51. __setup("hlt", hlt_setup);
  52. static inline void hlt(void)
  53. {
  54. __asm__ __volatile__ ("sleep" : : : "memory");
  55. }
  56. /*
  57. * The idle loop on a uniprocessor SH..
  58. */
  59. void cpu_idle(void)
  60. {
  61. /* endless idle loop with no priority at all */
  62. while (1) {
  63. if (hlt_counter) {
  64. while (!need_resched())
  65. cpu_relax();
  66. } else {
  67. local_irq_disable();
  68. while (!need_resched()) {
  69. local_irq_enable();
  70. hlt();
  71. local_irq_disable();
  72. }
  73. local_irq_enable();
  74. }
  75. preempt_enable_no_resched();
  76. schedule();
  77. preempt_disable();
  78. }
  79. }
  80. void machine_restart(char * __unused)
  81. {
  82. extern void phys_stext(void);
  83. phys_stext();
  84. }
  85. void machine_halt(void)
  86. {
  87. for (;;);
  88. }
  89. void machine_power_off(void)
  90. {
  91. extern void enter_deep_standby(void);
  92. enter_deep_standby();
  93. }
  94. void (*pm_power_off)(void) = machine_power_off;
  95. EXPORT_SYMBOL(pm_power_off);
  96. void show_regs(struct pt_regs * regs)
  97. {
  98. unsigned long long ah, al, bh, bl, ch, cl;
  99. printk("\n");
  100. ah = (regs->pc) >> 32;
  101. al = (regs->pc) & 0xffffffff;
  102. bh = (regs->regs[18]) >> 32;
  103. bl = (regs->regs[18]) & 0xffffffff;
  104. ch = (regs->regs[15]) >> 32;
  105. cl = (regs->regs[15]) & 0xffffffff;
  106. printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
  107. ah, al, bh, bl, ch, cl);
  108. ah = (regs->sr) >> 32;
  109. al = (regs->sr) & 0xffffffff;
  110. asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
  111. asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
  112. bh = (bh) >> 32;
  113. bl = (bl) & 0xffffffff;
  114. asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
  115. asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
  116. ch = (ch) >> 32;
  117. cl = (cl) & 0xffffffff;
  118. printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
  119. ah, al, bh, bl, ch, cl);
  120. ah = (regs->regs[0]) >> 32;
  121. al = (regs->regs[0]) & 0xffffffff;
  122. bh = (regs->regs[1]) >> 32;
  123. bl = (regs->regs[1]) & 0xffffffff;
  124. ch = (regs->regs[2]) >> 32;
  125. cl = (regs->regs[2]) & 0xffffffff;
  126. printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
  127. ah, al, bh, bl, ch, cl);
  128. ah = (regs->regs[3]) >> 32;
  129. al = (regs->regs[3]) & 0xffffffff;
  130. bh = (regs->regs[4]) >> 32;
  131. bl = (regs->regs[4]) & 0xffffffff;
  132. ch = (regs->regs[5]) >> 32;
  133. cl = (regs->regs[5]) & 0xffffffff;
  134. printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
  135. ah, al, bh, bl, ch, cl);
  136. ah = (regs->regs[6]) >> 32;
  137. al = (regs->regs[6]) & 0xffffffff;
  138. bh = (regs->regs[7]) >> 32;
  139. bl = (regs->regs[7]) & 0xffffffff;
  140. ch = (regs->regs[8]) >> 32;
  141. cl = (regs->regs[8]) & 0xffffffff;
  142. printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
  143. ah, al, bh, bl, ch, cl);
  144. ah = (regs->regs[9]) >> 32;
  145. al = (regs->regs[9]) & 0xffffffff;
  146. bh = (regs->regs[10]) >> 32;
  147. bl = (regs->regs[10]) & 0xffffffff;
  148. ch = (regs->regs[11]) >> 32;
  149. cl = (regs->regs[11]) & 0xffffffff;
  150. printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
  151. ah, al, bh, bl, ch, cl);
  152. ah = (regs->regs[12]) >> 32;
  153. al = (regs->regs[12]) & 0xffffffff;
  154. bh = (regs->regs[13]) >> 32;
  155. bl = (regs->regs[13]) & 0xffffffff;
  156. ch = (regs->regs[14]) >> 32;
  157. cl = (regs->regs[14]) & 0xffffffff;
  158. printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
  159. ah, al, bh, bl, ch, cl);
  160. ah = (regs->regs[16]) >> 32;
  161. al = (regs->regs[16]) & 0xffffffff;
  162. bh = (regs->regs[17]) >> 32;
  163. bl = (regs->regs[17]) & 0xffffffff;
  164. ch = (regs->regs[19]) >> 32;
  165. cl = (regs->regs[19]) & 0xffffffff;
  166. printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
  167. ah, al, bh, bl, ch, cl);
  168. ah = (regs->regs[20]) >> 32;
  169. al = (regs->regs[20]) & 0xffffffff;
  170. bh = (regs->regs[21]) >> 32;
  171. bl = (regs->regs[21]) & 0xffffffff;
  172. ch = (regs->regs[22]) >> 32;
  173. cl = (regs->regs[22]) & 0xffffffff;
  174. printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
  175. ah, al, bh, bl, ch, cl);
  176. ah = (regs->regs[23]) >> 32;
  177. al = (regs->regs[23]) & 0xffffffff;
  178. bh = (regs->regs[24]) >> 32;
  179. bl = (regs->regs[24]) & 0xffffffff;
  180. ch = (regs->regs[25]) >> 32;
  181. cl = (regs->regs[25]) & 0xffffffff;
  182. printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
  183. ah, al, bh, bl, ch, cl);
  184. ah = (regs->regs[26]) >> 32;
  185. al = (regs->regs[26]) & 0xffffffff;
  186. bh = (regs->regs[27]) >> 32;
  187. bl = (regs->regs[27]) & 0xffffffff;
  188. ch = (regs->regs[28]) >> 32;
  189. cl = (regs->regs[28]) & 0xffffffff;
  190. printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
  191. ah, al, bh, bl, ch, cl);
  192. ah = (regs->regs[29]) >> 32;
  193. al = (regs->regs[29]) & 0xffffffff;
  194. bh = (regs->regs[30]) >> 32;
  195. bl = (regs->regs[30]) & 0xffffffff;
  196. ch = (regs->regs[31]) >> 32;
  197. cl = (regs->regs[31]) & 0xffffffff;
  198. printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
  199. ah, al, bh, bl, ch, cl);
  200. ah = (regs->regs[32]) >> 32;
  201. al = (regs->regs[32]) & 0xffffffff;
  202. bh = (regs->regs[33]) >> 32;
  203. bl = (regs->regs[33]) & 0xffffffff;
  204. ch = (regs->regs[34]) >> 32;
  205. cl = (regs->regs[34]) & 0xffffffff;
  206. printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
  207. ah, al, bh, bl, ch, cl);
  208. ah = (regs->regs[35]) >> 32;
  209. al = (regs->regs[35]) & 0xffffffff;
  210. bh = (regs->regs[36]) >> 32;
  211. bl = (regs->regs[36]) & 0xffffffff;
  212. ch = (regs->regs[37]) >> 32;
  213. cl = (regs->regs[37]) & 0xffffffff;
  214. printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
  215. ah, al, bh, bl, ch, cl);
  216. ah = (regs->regs[38]) >> 32;
  217. al = (regs->regs[38]) & 0xffffffff;
  218. bh = (regs->regs[39]) >> 32;
  219. bl = (regs->regs[39]) & 0xffffffff;
  220. ch = (regs->regs[40]) >> 32;
  221. cl = (regs->regs[40]) & 0xffffffff;
  222. printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
  223. ah, al, bh, bl, ch, cl);
  224. ah = (regs->regs[41]) >> 32;
  225. al = (regs->regs[41]) & 0xffffffff;
  226. bh = (regs->regs[42]) >> 32;
  227. bl = (regs->regs[42]) & 0xffffffff;
  228. ch = (regs->regs[43]) >> 32;
  229. cl = (regs->regs[43]) & 0xffffffff;
  230. printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
  231. ah, al, bh, bl, ch, cl);
  232. ah = (regs->regs[44]) >> 32;
  233. al = (regs->regs[44]) & 0xffffffff;
  234. bh = (regs->regs[45]) >> 32;
  235. bl = (regs->regs[45]) & 0xffffffff;
  236. ch = (regs->regs[46]) >> 32;
  237. cl = (regs->regs[46]) & 0xffffffff;
  238. printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
  239. ah, al, bh, bl, ch, cl);
  240. ah = (regs->regs[47]) >> 32;
  241. al = (regs->regs[47]) & 0xffffffff;
  242. bh = (regs->regs[48]) >> 32;
  243. bl = (regs->regs[48]) & 0xffffffff;
  244. ch = (regs->regs[49]) >> 32;
  245. cl = (regs->regs[49]) & 0xffffffff;
  246. printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
  247. ah, al, bh, bl, ch, cl);
  248. ah = (regs->regs[50]) >> 32;
  249. al = (regs->regs[50]) & 0xffffffff;
  250. bh = (regs->regs[51]) >> 32;
  251. bl = (regs->regs[51]) & 0xffffffff;
  252. ch = (regs->regs[52]) >> 32;
  253. cl = (regs->regs[52]) & 0xffffffff;
  254. printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
  255. ah, al, bh, bl, ch, cl);
  256. ah = (regs->regs[53]) >> 32;
  257. al = (regs->regs[53]) & 0xffffffff;
  258. bh = (regs->regs[54]) >> 32;
  259. bl = (regs->regs[54]) & 0xffffffff;
  260. ch = (regs->regs[55]) >> 32;
  261. cl = (regs->regs[55]) & 0xffffffff;
  262. printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
  263. ah, al, bh, bl, ch, cl);
  264. ah = (regs->regs[56]) >> 32;
  265. al = (regs->regs[56]) & 0xffffffff;
  266. bh = (regs->regs[57]) >> 32;
  267. bl = (regs->regs[57]) & 0xffffffff;
  268. ch = (regs->regs[58]) >> 32;
  269. cl = (regs->regs[58]) & 0xffffffff;
  270. printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
  271. ah, al, bh, bl, ch, cl);
  272. ah = (regs->regs[59]) >> 32;
  273. al = (regs->regs[59]) & 0xffffffff;
  274. bh = (regs->regs[60]) >> 32;
  275. bl = (regs->regs[60]) & 0xffffffff;
  276. ch = (regs->regs[61]) >> 32;
  277. cl = (regs->regs[61]) & 0xffffffff;
  278. printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
  279. ah, al, bh, bl, ch, cl);
  280. ah = (regs->regs[62]) >> 32;
  281. al = (regs->regs[62]) & 0xffffffff;
  282. bh = (regs->tregs[0]) >> 32;
  283. bl = (regs->tregs[0]) & 0xffffffff;
  284. ch = (regs->tregs[1]) >> 32;
  285. cl = (regs->tregs[1]) & 0xffffffff;
  286. printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
  287. ah, al, bh, bl, ch, cl);
  288. ah = (regs->tregs[2]) >> 32;
  289. al = (regs->tregs[2]) & 0xffffffff;
  290. bh = (regs->tregs[3]) >> 32;
  291. bl = (regs->tregs[3]) & 0xffffffff;
  292. ch = (regs->tregs[4]) >> 32;
  293. cl = (regs->tregs[4]) & 0xffffffff;
  294. printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
  295. ah, al, bh, bl, ch, cl);
  296. ah = (regs->tregs[5]) >> 32;
  297. al = (regs->tregs[5]) & 0xffffffff;
  298. bh = (regs->tregs[6]) >> 32;
  299. bl = (regs->tregs[6]) & 0xffffffff;
  300. ch = (regs->tregs[7]) >> 32;
  301. cl = (regs->tregs[7]) & 0xffffffff;
  302. printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
  303. ah, al, bh, bl, ch, cl);
  304. /*
  305. * If we're in kernel mode, dump the stack too..
  306. */
  307. if (!user_mode(regs)) {
  308. void show_stack(struct task_struct *tsk, unsigned long *sp);
  309. unsigned long sp = regs->regs[15] & 0xffffffff;
  310. struct task_struct *tsk = get_current();
  311. tsk->thread.kregs = regs;
  312. show_stack(tsk, (unsigned long *)sp);
  313. }
  314. }
  315. struct task_struct * alloc_task_struct(void)
  316. {
  317. /* Get task descriptor pages */
  318. return (struct task_struct *)
  319. __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
  320. }
  321. void free_task_struct(struct task_struct *p)
  322. {
  323. free_pages((unsigned long) p, get_order(THREAD_SIZE));
  324. }
  325. /*
  326. * Create a kernel thread
  327. */
  328. ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
  329. {
  330. do_exit(fn(arg));
  331. }
  332. /*
  333. * This is the mechanism for creating a new kernel thread.
  334. *
  335. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  336. * who haven't done an "execve()") should use this: it will work within
  337. * a system call from a "real" process, but the process memory space will
  338. * not be free'd until both the parent and the child have exited.
  339. */
  340. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  341. {
  342. struct pt_regs regs;
  343. memset(&regs, 0, sizeof(regs));
  344. regs.regs[2] = (unsigned long)arg;
  345. regs.regs[3] = (unsigned long)fn;
  346. regs.pc = (unsigned long)kernel_thread_helper;
  347. regs.sr = (1 << 30);
  348. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  349. &regs, 0, NULL, NULL);
  350. }
  351. /*
  352. * Free current thread data structures etc..
  353. */
  354. void exit_thread(void)
  355. {
  356. /* See arch/sparc/kernel/process.c for the precedent for doing this -- RPC.
  357. The SH-5 FPU save/restore approach relies on last_task_used_math
  358. pointing to a live task_struct. When another task tries to use the
  359. FPU for the 1st time, the FPUDIS trap handling (see
  360. arch/sh64/kernel/fpu.c) will save the existing FPU state to the
  361. FP regs field within last_task_used_math before re-loading the new
  362. task's FPU state (or initialising it if the FPU has been used
  363. before). So if last_task_used_math is stale, and its page has already been
  364. re-allocated for another use, the consequences are rather grim. Unless we
  365. null it here, there is no other path through which it would get safely
  366. nulled. */
  367. #ifdef CONFIG_SH_FPU
  368. if (last_task_used_math == current) {
  369. last_task_used_math = NULL;
  370. }
  371. #endif
  372. }
  373. void flush_thread(void)
  374. {
  375. /* Called by fs/exec.c (flush_old_exec) to remove traces of a
  376. * previously running executable. */
  377. #ifdef CONFIG_SH_FPU
  378. if (last_task_used_math == current) {
  379. last_task_used_math = NULL;
  380. }
  381. /* Force FPU state to be reinitialised after exec */
  382. clear_used_math();
  383. #endif
  384. /* if we are a kernel thread, about to change to user thread,
  385. * update kreg
  386. */
  387. if(current->thread.kregs==&fake_swapper_regs) {
  388. current->thread.kregs =
  389. ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
  390. current->thread.uregs = current->thread.kregs;
  391. }
  392. }
  393. void release_thread(struct task_struct *dead_task)
  394. {
  395. /* do nothing */
  396. }
  397. /* Fill in the fpu structure for a core dump.. */
  398. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  399. {
  400. #ifdef CONFIG_SH_FPU
  401. int fpvalid;
  402. struct task_struct *tsk = current;
  403. fpvalid = !!tsk_used_math(tsk);
  404. if (fpvalid) {
  405. if (current == last_task_used_math) {
  406. grab_fpu();
  407. fpsave(&tsk->thread.fpu.hard);
  408. release_fpu();
  409. last_task_used_math = 0;
  410. regs->sr |= SR_FD;
  411. }
  412. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  413. }
  414. return fpvalid;
  415. #else
  416. return 0; /* Task didn't use the fpu at all. */
  417. #endif
  418. }
  419. asmlinkage void ret_from_fork(void);
  420. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  421. unsigned long unused,
  422. struct task_struct *p, struct pt_regs *regs)
  423. {
  424. struct pt_regs *childregs;
  425. unsigned long long se; /* Sign extension */
  426. #ifdef CONFIG_SH_FPU
  427. if(last_task_used_math == current) {
  428. grab_fpu();
  429. fpsave(&current->thread.fpu.hard);
  430. release_fpu();
  431. last_task_used_math = NULL;
  432. regs->sr |= SR_FD;
  433. }
  434. #endif
  435. /* Copy from sh version */
  436. childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
  437. *childregs = *regs;
  438. if (user_mode(regs)) {
  439. childregs->regs[15] = usp;
  440. p->thread.uregs = childregs;
  441. } else {
  442. childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  443. }
  444. childregs->regs[9] = 0; /* Set return value for child */
  445. childregs->sr |= SR_FD; /* Invalidate FPU flag */
  446. p->thread.sp = (unsigned long) childregs;
  447. p->thread.pc = (unsigned long) ret_from_fork;
  448. /*
  449. * Sign extend the edited stack.
  450. * Note that thread.pc and thread.pc will stay
  451. * 32-bit wide and context switch must take care
  452. * of NEFF sign extension.
  453. */
  454. se = childregs->regs[15];
  455. se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
  456. childregs->regs[15] = se;
  457. return 0;
  458. }
  459. asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
  460. unsigned long r4, unsigned long r5,
  461. unsigned long r6, unsigned long r7,
  462. struct pt_regs *pregs)
  463. {
  464. return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
  465. }
  466. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  467. unsigned long r4, unsigned long r5,
  468. unsigned long r6, unsigned long r7,
  469. struct pt_regs *pregs)
  470. {
  471. if (!newsp)
  472. newsp = pregs->regs[15];
  473. return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
  474. }
  475. /*
  476. * This is trivial, and on the face of it looks like it
  477. * could equally well be done in user mode.
  478. *
  479. * Not so, for quite unobvious reasons - register pressure.
  480. * In user mode vfork() cannot have a stack frame, and if
  481. * done by calling the "clone()" system call directly, you
  482. * do not have enough call-clobbered registers to hold all
  483. * the information you need.
  484. */
  485. asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
  486. unsigned long r4, unsigned long r5,
  487. unsigned long r6, unsigned long r7,
  488. struct pt_regs *pregs)
  489. {
  490. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
  491. }
  492. /*
  493. * sys_execve() executes a new program.
  494. */
  495. asmlinkage int sys_execve(char *ufilename, char **uargv,
  496. char **uenvp, unsigned long r5,
  497. unsigned long r6, unsigned long r7,
  498. struct pt_regs *pregs)
  499. {
  500. int error;
  501. char *filename;
  502. lock_kernel();
  503. filename = getname((char __user *)ufilename);
  504. error = PTR_ERR(filename);
  505. if (IS_ERR(filename))
  506. goto out;
  507. error = do_execve(filename,
  508. (char __user * __user *)uargv,
  509. (char __user * __user *)uenvp,
  510. pregs);
  511. if (error == 0) {
  512. task_lock(current);
  513. current->ptrace &= ~PT_DTRACE;
  514. task_unlock(current);
  515. }
  516. putname(filename);
  517. out:
  518. unlock_kernel();
  519. return error;
  520. }
  521. /*
  522. * These bracket the sleeping functions..
  523. */
  524. extern void interruptible_sleep_on(wait_queue_head_t *q);
  525. #define mid_sched ((unsigned long) interruptible_sleep_on)
  526. static int in_sh64_switch_to(unsigned long pc)
  527. {
  528. extern char __sh64_switch_to_end;
  529. /* For a sleeping task, the PC is somewhere in the middle of the function,
  530. so we don't have to worry about masking the LSB off */
  531. return (pc >= (unsigned long) sh64_switch_to) &&
  532. (pc < (unsigned long) &__sh64_switch_to_end);
  533. }
  534. unsigned long get_wchan(struct task_struct *p)
  535. {
  536. unsigned long schedule_fp;
  537. unsigned long sh64_switch_to_fp;
  538. unsigned long schedule_caller_pc;
  539. unsigned long pc;
  540. if (!p || p == current || p->state == TASK_RUNNING)
  541. return 0;
  542. /*
  543. * The same comment as on the Alpha applies here, too ...
  544. */
  545. pc = thread_saved_pc(p);
  546. #ifdef CONFIG_FRAME_POINTER
  547. if (in_sh64_switch_to(pc)) {
  548. sh64_switch_to_fp = (long) p->thread.sp;
  549. /* r14 is saved at offset 4 in the sh64_switch_to frame */
  550. schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
  551. /* and the caller of 'schedule' is (currently!) saved at offset 24
  552. in the frame of schedule (from disasm) */
  553. schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
  554. return schedule_caller_pc;
  555. }
  556. #endif
  557. return pc;
  558. }
  559. /* Provide a /proc/asids file that lists out the
  560. ASIDs currently associated with the processes. (If the DM.PC register is
  561. examined through the debug link, this shows ASID + PC. To make use of this,
  562. the PID->ASID relationship needs to be known. This is primarily for
  563. debugging.)
  564. */
  565. #if defined(CONFIG_SH64_PROC_ASIDS)
  566. #include <linux/init.h>
  567. #include <linux/proc_fs.h>
  568. static int
  569. asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
  570. {
  571. int len=0;
  572. struct task_struct *p;
  573. read_lock(&tasklist_lock);
  574. for_each_process(p) {
  575. int pid = p->pid;
  576. struct mm_struct *mm;
  577. if (!pid) continue;
  578. mm = p->mm;
  579. if (mm) {
  580. unsigned long asid, context;
  581. context = mm->context;
  582. asid = (context & 0xff);
  583. len += sprintf(buf+len, "%5d : %02lx\n", pid, asid);
  584. } else {
  585. len += sprintf(buf+len, "%5d : (none)\n", pid);
  586. }
  587. }
  588. read_unlock(&tasklist_lock);
  589. *eof = 1;
  590. return len;
  591. }
  592. static int __init register_proc_asids(void)
  593. {
  594. create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
  595. return 0;
  596. }
  597. __initcall(register_proc_asids);
  598. #endif