time.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. /*
  2. * Common time routines among all ppc machines.
  3. *
  4. * Written by Cort Dougan (cort@cs.nmt.edu) to merge
  5. * Paul Mackerras' version and mine for PReP and Pmac.
  6. * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
  7. *
  8. * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  9. * to make clock more stable (2.4.0-test5). The only thing
  10. * that this code assumes is that the timebases have been synchronized
  11. * by firmware on SMP and are never stopped (never do sleep
  12. * on SMP then, nap and doze are OK).
  13. *
  14. * TODO (not necessarily in this file):
  15. * - improve precision and reproducibility of timebase frequency
  16. * measurement at boot time.
  17. * - get rid of xtime_lock for gettimeofday (generic kernel problem
  18. * to be implemented on all architectures for SMP scalability and
  19. * eventually implementing gettimeofday without entering the kernel).
  20. * - put all time/clock related variables in a single structure
  21. * to minimize number of cache lines touched by gettimeofday()
  22. * - for astronomical applications: add a new function to get
  23. * non ambiguous timestamps even around leap seconds. This needs
  24. * a new timestamp format and a good name.
  25. *
  26. *
  27. * The following comment is partially obsolete (at least the long wait
  28. * is no more a valid reason):
  29. * Since the MPC8xx has a programmable interrupt timer, I decided to
  30. * use that rather than the decrementer. Two reasons: 1.) the clock
  31. * frequency is low, causing 2.) a long wait in the timer interrupt
  32. * while ((d = get_dec()) == dval)
  33. * loop. The MPC8xx can be driven from a variety of input clocks,
  34. * so a number of assumptions have been made here because the kernel
  35. * parameter HZ is a constant. We assume (correctly, today :-) that
  36. * the MPC8xx on the MBX board is driven from a 32.768 kHz crystal.
  37. * This is then divided by 4, providing a 8192 Hz clock into the PIT.
  38. * Since it is not possible to get a nice 100 Hz clock out of this, without
  39. * creating a software PLL, I have set HZ to 128. -- Dan
  40. *
  41. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  42. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  43. */
  44. #include <linux/errno.h>
  45. #include <linux/sched.h>
  46. #include <linux/kernel.h>
  47. #include <linux/param.h>
  48. #include <linux/string.h>
  49. #include <linux/mm.h>
  50. #include <linux/module.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/timex.h>
  53. #include <linux/kernel_stat.h>
  54. #include <linux/mc146818rtc.h>
  55. #include <linux/time.h>
  56. #include <linux/init.h>
  57. #include <linux/profile.h>
  58. #include <asm/io.h>
  59. #include <asm/nvram.h>
  60. #include <asm/cache.h>
  61. #include <asm/8xx_immap.h>
  62. #include <asm/machdep.h>
  63. #include <asm/irq_regs.h>
  64. #include <asm/time.h>
  65. unsigned long disarm_decr[NR_CPUS];
  66. extern struct timezone sys_tz;
  67. /* keep track of when we need to update the rtc */
  68. time_t last_rtc_update;
  69. /* The decrementer counts down by 128 every 128ns on a 601. */
  70. #define DECREMENTER_COUNT_601 (1000000000 / HZ)
  71. unsigned tb_ticks_per_jiffy;
  72. unsigned tb_to_us;
  73. unsigned tb_last_stamp;
  74. unsigned long tb_to_ns_scale;
  75. /* used for timezone offset */
  76. static long timezone_offset;
  77. DEFINE_SPINLOCK(rtc_lock);
  78. EXPORT_SYMBOL(rtc_lock);
  79. /* Timer interrupt helper function */
  80. static inline int tb_delta(unsigned *jiffy_stamp) {
  81. int delta;
  82. if (__USE_RTC()) {
  83. delta = get_rtcl();
  84. if (delta < *jiffy_stamp) *jiffy_stamp -= 1000000000;
  85. delta -= *jiffy_stamp;
  86. } else {
  87. delta = get_tbl() - *jiffy_stamp;
  88. }
  89. return delta;
  90. }
  91. #ifdef CONFIG_SMP
  92. unsigned long profile_pc(struct pt_regs *regs)
  93. {
  94. unsigned long pc = instruction_pointer(regs);
  95. if (in_lock_functions(pc))
  96. return regs->link;
  97. return pc;
  98. }
  99. EXPORT_SYMBOL(profile_pc);
  100. #endif
  101. void wakeup_decrementer(void)
  102. {
  103. set_dec(tb_ticks_per_jiffy);
  104. /* No currently-supported powerbook has a 601,
  105. * so use get_tbl, not native
  106. */
  107. last_jiffy_stamp(0) = tb_last_stamp = get_tbl();
  108. }
  109. /*
  110. * timer_interrupt - gets called when the decrementer overflows,
  111. * with interrupts disabled.
  112. * We set it up to overflow again in 1/HZ seconds.
  113. */
  114. void timer_interrupt(struct pt_regs * regs)
  115. {
  116. struct pt_regs *old_regs;
  117. int next_dec;
  118. unsigned long cpu = smp_processor_id();
  119. unsigned jiffy_stamp = last_jiffy_stamp(cpu);
  120. extern void do_IRQ(struct pt_regs *);
  121. if (atomic_read(&ppc_n_lost_interrupts) != 0)
  122. do_IRQ(regs);
  123. old_regs = set_irq_regs(regs);
  124. irq_enter();
  125. while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) {
  126. jiffy_stamp += tb_ticks_per_jiffy;
  127. profile_tick(CPU_PROFILING);
  128. update_process_times(user_mode(regs));
  129. if (smp_processor_id())
  130. continue;
  131. /* We are in an interrupt, no need to save/restore flags */
  132. write_seqlock(&xtime_lock);
  133. tb_last_stamp = jiffy_stamp;
  134. do_timer(1);
  135. /*
  136. * update the rtc when needed, this should be performed on the
  137. * right fraction of a second. Half or full second ?
  138. * Full second works on mk48t59 clocks, others need testing.
  139. * Note that this update is basically only used through
  140. * the adjtimex system calls. Setting the HW clock in
  141. * any other way is a /dev/rtc and userland business.
  142. * This is still wrong by -0.5/+1.5 jiffies because of the
  143. * timer interrupt resolution and possible delay, but here we
  144. * hit a quantization limit which can only be solved by higher
  145. * resolution timers and decoupling time management from timer
  146. * interrupts. This is also wrong on the clocks
  147. * which require being written at the half second boundary.
  148. * We should have an rtc call that only sets the minutes and
  149. * seconds like on Intel to avoid problems with non UTC clocks.
  150. */
  151. if ( ppc_md.set_rtc_time && ntp_synced() &&
  152. xtime.tv_sec - last_rtc_update >= 659 &&
  153. abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ) {
  154. if (ppc_md.set_rtc_time(xtime.tv_sec+1 + timezone_offset) == 0)
  155. last_rtc_update = xtime.tv_sec+1;
  156. else
  157. /* Try again one minute later */
  158. last_rtc_update += 60;
  159. }
  160. write_sequnlock(&xtime_lock);
  161. }
  162. if ( !disarm_decr[smp_processor_id()] )
  163. set_dec(next_dec);
  164. last_jiffy_stamp(cpu) = jiffy_stamp;
  165. if (ppc_md.heartbeat && !ppc_md.heartbeat_count--)
  166. ppc_md.heartbeat();
  167. irq_exit();
  168. set_irq_regs(old_regs);
  169. }
  170. /*
  171. * This version of gettimeofday has microsecond resolution.
  172. */
  173. void do_gettimeofday(struct timeval *tv)
  174. {
  175. unsigned long flags;
  176. unsigned long seq;
  177. unsigned delta, usec, sec;
  178. do {
  179. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  180. sec = xtime.tv_sec;
  181. usec = (xtime.tv_nsec / 1000);
  182. delta = tb_ticks_since(tb_last_stamp);
  183. #ifdef CONFIG_SMP
  184. /* As long as timebases are not in sync, gettimeofday can only
  185. * have jiffy resolution on SMP.
  186. */
  187. if (!smp_tb_synchronized)
  188. delta = 0;
  189. #endif /* CONFIG_SMP */
  190. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  191. usec += mulhwu(tb_to_us, delta);
  192. while (usec >= 1000000) {
  193. sec++;
  194. usec -= 1000000;
  195. }
  196. tv->tv_sec = sec;
  197. tv->tv_usec = usec;
  198. }
  199. EXPORT_SYMBOL(do_gettimeofday);
  200. int do_settimeofday(struct timespec *tv)
  201. {
  202. time_t wtm_sec, new_sec = tv->tv_sec;
  203. long wtm_nsec, new_nsec = tv->tv_nsec;
  204. unsigned long flags;
  205. int tb_delta;
  206. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  207. return -EINVAL;
  208. write_seqlock_irqsave(&xtime_lock, flags);
  209. /* Updating the RTC is not the job of this code. If the time is
  210. * stepped under NTP, the RTC will be update after STA_UNSYNC
  211. * is cleared. Tool like clock/hwclock either copy the RTC
  212. * to the system time, in which case there is no point in writing
  213. * to the RTC again, or write to the RTC but then they don't call
  214. * settimeofday to perform this operation. Note also that
  215. * we don't touch the decrementer since:
  216. * a) it would lose timer interrupt synchronization on SMP
  217. * (if it is working one day)
  218. * b) it could make one jiffy spuriously shorter or longer
  219. * which would introduce another source of uncertainty potentially
  220. * harmful to relatively short timers.
  221. */
  222. /* This works perfectly on SMP only if the tb are in sync but
  223. * guarantees an error < 1 jiffy even if they are off by eons,
  224. * still reasonable when gettimeofday resolution is 1 jiffy.
  225. */
  226. tb_delta = tb_ticks_since(last_jiffy_stamp(smp_processor_id()));
  227. new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
  228. wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
  229. wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
  230. set_normalized_timespec(&xtime, new_sec, new_nsec);
  231. set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
  232. /* In case of a large backwards jump in time with NTP, we want the
  233. * clock to be updated as soon as the PLL is again in lock.
  234. */
  235. last_rtc_update = new_sec - 658;
  236. ntp_clear();
  237. write_sequnlock_irqrestore(&xtime_lock, flags);
  238. clock_was_set();
  239. return 0;
  240. }
  241. EXPORT_SYMBOL(do_settimeofday);
  242. /* This function is only called on the boot processor */
  243. void __init time_init(void)
  244. {
  245. time_t sec, old_sec;
  246. unsigned old_stamp, stamp, elapsed;
  247. if (ppc_md.time_init != NULL)
  248. timezone_offset = ppc_md.time_init();
  249. if (__USE_RTC()) {
  250. /* 601 processor: dec counts down by 128 every 128ns */
  251. tb_ticks_per_jiffy = DECREMENTER_COUNT_601;
  252. /* mulhwu_scale_factor(1000000000, 1000000) is 0x418937 */
  253. tb_to_us = 0x418937;
  254. } else {
  255. ppc_md.calibrate_decr();
  256. tb_to_ns_scale = mulhwu(tb_to_us, 1000 << 10);
  257. }
  258. /* Now that the decrementer is calibrated, it can be used in case the
  259. * clock is stuck, but the fact that we have to handle the 601
  260. * makes things more complex. Repeatedly read the RTC until the
  261. * next second boundary to try to achieve some precision. If there
  262. * is no RTC, we still need to set tb_last_stamp and
  263. * last_jiffy_stamp(cpu 0) to the current stamp.
  264. */
  265. stamp = get_native_tbl();
  266. if (ppc_md.get_rtc_time) {
  267. sec = ppc_md.get_rtc_time();
  268. elapsed = 0;
  269. do {
  270. old_stamp = stamp;
  271. old_sec = sec;
  272. stamp = get_native_tbl();
  273. if (__USE_RTC() && stamp < old_stamp)
  274. old_stamp -= 1000000000;
  275. elapsed += stamp - old_stamp;
  276. sec = ppc_md.get_rtc_time();
  277. } while ( sec == old_sec && elapsed < 2*HZ*tb_ticks_per_jiffy);
  278. if (sec==old_sec)
  279. printk("Warning: real time clock seems stuck!\n");
  280. xtime.tv_sec = sec;
  281. xtime.tv_nsec = 0;
  282. /* No update now, we just read the time from the RTC ! */
  283. last_rtc_update = xtime.tv_sec;
  284. }
  285. last_jiffy_stamp(0) = tb_last_stamp = stamp;
  286. /* Not exact, but the timer interrupt takes care of this */
  287. set_dec(tb_ticks_per_jiffy);
  288. /* If platform provided a timezone (pmac), we correct the time */
  289. if (timezone_offset) {
  290. sys_tz.tz_minuteswest = -timezone_offset / 60;
  291. sys_tz.tz_dsttime = 0;
  292. xtime.tv_sec -= timezone_offset;
  293. }
  294. set_normalized_timespec(&wall_to_monotonic,
  295. -xtime.tv_sec, -xtime.tv_nsec);
  296. }
  297. #define FEBRUARY 2
  298. #define STARTOFTIME 1970
  299. #define SECDAY 86400L
  300. #define SECYR (SECDAY * 365)
  301. /*
  302. * Note: this is wrong for 2100, but our signed 32-bit time_t will
  303. * have overflowed long before that, so who cares. -- paulus
  304. */
  305. #define leapyear(year) ((year) % 4 == 0)
  306. #define days_in_year(a) (leapyear(a) ? 366 : 365)
  307. #define days_in_month(a) (month_days[(a) - 1])
  308. static int month_days[12] = {
  309. 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
  310. };
  311. void to_tm(int tim, struct rtc_time * tm)
  312. {
  313. register int i;
  314. register long hms, day, gday;
  315. gday = day = tim / SECDAY;
  316. hms = tim % SECDAY;
  317. /* Hours, minutes, seconds are easy */
  318. tm->tm_hour = hms / 3600;
  319. tm->tm_min = (hms % 3600) / 60;
  320. tm->tm_sec = (hms % 3600) % 60;
  321. /* Number of years in days */
  322. for (i = STARTOFTIME; day >= days_in_year(i); i++)
  323. day -= days_in_year(i);
  324. tm->tm_year = i;
  325. /* Number of months in days left */
  326. if (leapyear(tm->tm_year))
  327. days_in_month(FEBRUARY) = 29;
  328. for (i = 1; day >= days_in_month(i); i++)
  329. day -= days_in_month(i);
  330. days_in_month(FEBRUARY) = 28;
  331. tm->tm_mon = i;
  332. /* Days are what is left over (+1) from all that. */
  333. tm->tm_mday = day + 1;
  334. /*
  335. * Determine the day of week. Jan. 1, 1970 was a Thursday.
  336. */
  337. tm->tm_wday = (gday + 4) % 7;
  338. }
  339. /* Auxiliary function to compute scaling factors */
  340. /* Actually the choice of a timebase running at 1/4 the of the bus
  341. * frequency giving resolution of a few tens of nanoseconds is quite nice.
  342. * It makes this computation very precise (27-28 bits typically) which
  343. * is optimistic considering the stability of most processor clock
  344. * oscillators and the precision with which the timebase frequency
  345. * is measured but does not harm.
  346. */
  347. unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) {
  348. unsigned mlt=0, tmp, err;
  349. /* No concern for performance, it's done once: use a stupid
  350. * but safe and compact method to find the multiplier.
  351. */
  352. for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
  353. if (mulhwu(inscale, mlt|tmp) < outscale) mlt|=tmp;
  354. }
  355. /* We might still be off by 1 for the best approximation.
  356. * A side effect of this is that if outscale is too large
  357. * the returned value will be zero.
  358. * Many corner cases have been checked and seem to work,
  359. * some might have been forgotten in the test however.
  360. */
  361. err = inscale*(mlt+1);
  362. if (err <= inscale/2) mlt++;
  363. return mlt;
  364. }
  365. unsigned long long sched_clock(void)
  366. {
  367. unsigned long lo, hi, hi2;
  368. unsigned long long tb;
  369. if (!__USE_RTC()) {
  370. do {
  371. hi = get_tbu();
  372. lo = get_tbl();
  373. hi2 = get_tbu();
  374. } while (hi2 != hi);
  375. tb = ((unsigned long long) hi << 32) | lo;
  376. tb = (tb * tb_to_ns_scale) >> 10;
  377. } else {
  378. do {
  379. hi = get_rtcu();
  380. lo = get_rtcl();
  381. hi2 = get_rtcu();
  382. } while (hi2 != hi);
  383. tb = ((unsigned long long) hi) * 1000000000 + lo;
  384. }
  385. return tb;
  386. }