dma-mapping.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. /*
  2. * PowerPC version derived from arch/arm/mm/consistent.c
  3. * Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
  4. *
  5. * Copyright (C) 2000 Russell King
  6. *
  7. * Consistent memory allocators. Used for DMA devices that want to
  8. * share uncached memory with the processor core. The function return
  9. * is the virtual address and 'dma_handle' is the physical address.
  10. * Mostly stolen from the ARM port, with some changes for PowerPC.
  11. * -- Dan
  12. *
  13. * Reorganized to get rid of the arch-specific consistent_* functions
  14. * and provide non-coherent implementations for the DMA API. -Matt
  15. *
  16. * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
  17. * implementation. This is pulled straight from ARM and barely
  18. * modified. -Matt
  19. *
  20. * This program is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License version 2 as
  22. * published by the Free Software Foundation.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/signal.h>
  26. #include <linux/sched.h>
  27. #include <linux/kernel.h>
  28. #include <linux/errno.h>
  29. #include <linux/string.h>
  30. #include <linux/types.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/mman.h>
  33. #include <linux/mm.h>
  34. #include <linux/swap.h>
  35. #include <linux/stddef.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/init.h>
  38. #include <linux/delay.h>
  39. #include <linux/bootmem.h>
  40. #include <linux/highmem.h>
  41. #include <linux/dma-mapping.h>
  42. #include <linux/hardirq.h>
  43. #include <asm/pgalloc.h>
  44. #include <asm/prom.h>
  45. #include <asm/io.h>
  46. #include <asm/mmu_context.h>
  47. #include <asm/pgtable.h>
  48. #include <asm/mmu.h>
  49. #include <asm/uaccess.h>
  50. #include <asm/smp.h>
  51. #include <asm/machdep.h>
  52. int map_page(unsigned long va, phys_addr_t pa, int flags);
  53. #include <asm/tlbflush.h>
  54. /*
  55. * This address range defaults to a value that is safe for all
  56. * platforms which currently set CONFIG_NOT_COHERENT_CACHE. It
  57. * can be further configured for specific applications under
  58. * the "Advanced Setup" menu. -Matt
  59. */
  60. #define CONSISTENT_BASE (CONFIG_CONSISTENT_START)
  61. #define CONSISTENT_END (CONFIG_CONSISTENT_START + CONFIG_CONSISTENT_SIZE)
  62. #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
  63. /*
  64. * This is the page table (2MB) covering uncached, DMA consistent allocations
  65. */
  66. static pte_t *consistent_pte;
  67. static DEFINE_SPINLOCK(consistent_lock);
  68. /*
  69. * VM region handling support.
  70. *
  71. * This should become something generic, handling VM region allocations for
  72. * vmalloc and similar (ioremap, module space, etc).
  73. *
  74. * I envisage vmalloc()'s supporting vm_struct becoming:
  75. *
  76. * struct vm_struct {
  77. * struct vm_region region;
  78. * unsigned long flags;
  79. * struct page **pages;
  80. * unsigned int nr_pages;
  81. * unsigned long phys_addr;
  82. * };
  83. *
  84. * get_vm_area() would then call vm_region_alloc with an appropriate
  85. * struct vm_region head (eg):
  86. *
  87. * struct vm_region vmalloc_head = {
  88. * .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
  89. * .vm_start = VMALLOC_START,
  90. * .vm_end = VMALLOC_END,
  91. * };
  92. *
  93. * However, vmalloc_head.vm_start is variable (typically, it is dependent on
  94. * the amount of RAM found at boot time.) I would imagine that get_vm_area()
  95. * would have to initialise this each time prior to calling vm_region_alloc().
  96. */
  97. struct vm_region {
  98. struct list_head vm_list;
  99. unsigned long vm_start;
  100. unsigned long vm_end;
  101. };
  102. static struct vm_region consistent_head = {
  103. .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
  104. .vm_start = CONSISTENT_BASE,
  105. .vm_end = CONSISTENT_END,
  106. };
  107. static struct vm_region *
  108. vm_region_alloc(struct vm_region *head, size_t size, gfp_t gfp)
  109. {
  110. unsigned long addr = head->vm_start, end = head->vm_end - size;
  111. unsigned long flags;
  112. struct vm_region *c, *new;
  113. new = kmalloc(sizeof(struct vm_region), gfp);
  114. if (!new)
  115. goto out;
  116. spin_lock_irqsave(&consistent_lock, flags);
  117. list_for_each_entry(c, &head->vm_list, vm_list) {
  118. if ((addr + size) < addr)
  119. goto nospc;
  120. if ((addr + size) <= c->vm_start)
  121. goto found;
  122. addr = c->vm_end;
  123. if (addr > end)
  124. goto nospc;
  125. }
  126. found:
  127. /*
  128. * Insert this entry _before_ the one we found.
  129. */
  130. list_add_tail(&new->vm_list, &c->vm_list);
  131. new->vm_start = addr;
  132. new->vm_end = addr + size;
  133. spin_unlock_irqrestore(&consistent_lock, flags);
  134. return new;
  135. nospc:
  136. spin_unlock_irqrestore(&consistent_lock, flags);
  137. kfree(new);
  138. out:
  139. return NULL;
  140. }
  141. static struct vm_region *vm_region_find(struct vm_region *head, unsigned long addr)
  142. {
  143. struct vm_region *c;
  144. list_for_each_entry(c, &head->vm_list, vm_list) {
  145. if (c->vm_start == addr)
  146. goto out;
  147. }
  148. c = NULL;
  149. out:
  150. return c;
  151. }
  152. /*
  153. * Allocate DMA-coherent memory space and return both the kernel remapped
  154. * virtual and bus address for that space.
  155. */
  156. void *
  157. __dma_alloc_coherent(size_t size, dma_addr_t *handle, gfp_t gfp)
  158. {
  159. struct page *page;
  160. struct vm_region *c;
  161. unsigned long order;
  162. u64 mask = 0x00ffffff, limit; /* ISA default */
  163. if (!consistent_pte) {
  164. printk(KERN_ERR "%s: not initialised\n", __func__);
  165. dump_stack();
  166. return NULL;
  167. }
  168. size = PAGE_ALIGN(size);
  169. limit = (mask + 1) & ~mask;
  170. if ((limit && size >= limit) || size >= (CONSISTENT_END - CONSISTENT_BASE)) {
  171. printk(KERN_WARNING "coherent allocation too big (requested %#x mask %#Lx)\n",
  172. size, mask);
  173. return NULL;
  174. }
  175. order = get_order(size);
  176. if (mask != 0xffffffff)
  177. gfp |= GFP_DMA;
  178. page = alloc_pages(gfp, order);
  179. if (!page)
  180. goto no_page;
  181. /*
  182. * Invalidate any data that might be lurking in the
  183. * kernel direct-mapped region for device DMA.
  184. */
  185. {
  186. unsigned long kaddr = (unsigned long)page_address(page);
  187. memset(page_address(page), 0, size);
  188. flush_dcache_range(kaddr, kaddr + size);
  189. }
  190. /*
  191. * Allocate a virtual address in the consistent mapping region.
  192. */
  193. c = vm_region_alloc(&consistent_head, size,
  194. gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
  195. if (c) {
  196. unsigned long vaddr = c->vm_start;
  197. pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
  198. struct page *end = page + (1 << order);
  199. split_page(page, order);
  200. /*
  201. * Set the "dma handle"
  202. */
  203. *handle = page_to_bus(page);
  204. do {
  205. BUG_ON(!pte_none(*pte));
  206. SetPageReserved(page);
  207. set_pte_at(&init_mm, vaddr,
  208. pte, mk_pte(page, pgprot_noncached(PAGE_KERNEL)));
  209. page++;
  210. pte++;
  211. vaddr += PAGE_SIZE;
  212. } while (size -= PAGE_SIZE);
  213. /*
  214. * Free the otherwise unused pages.
  215. */
  216. while (page < end) {
  217. __free_page(page);
  218. page++;
  219. }
  220. return (void *)c->vm_start;
  221. }
  222. if (page)
  223. __free_pages(page, order);
  224. no_page:
  225. return NULL;
  226. }
  227. EXPORT_SYMBOL(__dma_alloc_coherent);
  228. /*
  229. * free a page as defined by the above mapping.
  230. */
  231. void __dma_free_coherent(size_t size, void *vaddr)
  232. {
  233. struct vm_region *c;
  234. unsigned long flags, addr;
  235. pte_t *ptep;
  236. size = PAGE_ALIGN(size);
  237. spin_lock_irqsave(&consistent_lock, flags);
  238. c = vm_region_find(&consistent_head, (unsigned long)vaddr);
  239. if (!c)
  240. goto no_area;
  241. if ((c->vm_end - c->vm_start) != size) {
  242. printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
  243. __func__, c->vm_end - c->vm_start, size);
  244. dump_stack();
  245. size = c->vm_end - c->vm_start;
  246. }
  247. ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
  248. addr = c->vm_start;
  249. do {
  250. pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
  251. unsigned long pfn;
  252. ptep++;
  253. addr += PAGE_SIZE;
  254. if (!pte_none(pte) && pte_present(pte)) {
  255. pfn = pte_pfn(pte);
  256. if (pfn_valid(pfn)) {
  257. struct page *page = pfn_to_page(pfn);
  258. ClearPageReserved(page);
  259. __free_page(page);
  260. continue;
  261. }
  262. }
  263. printk(KERN_CRIT "%s: bad page in kernel page table\n",
  264. __func__);
  265. } while (size -= PAGE_SIZE);
  266. flush_tlb_kernel_range(c->vm_start, c->vm_end);
  267. list_del(&c->vm_list);
  268. spin_unlock_irqrestore(&consistent_lock, flags);
  269. kfree(c);
  270. return;
  271. no_area:
  272. spin_unlock_irqrestore(&consistent_lock, flags);
  273. printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
  274. __func__, vaddr);
  275. dump_stack();
  276. }
  277. EXPORT_SYMBOL(__dma_free_coherent);
  278. /*
  279. * Initialise the consistent memory allocation.
  280. */
  281. static int __init dma_alloc_init(void)
  282. {
  283. pgd_t *pgd;
  284. pmd_t *pmd;
  285. pte_t *pte;
  286. int ret = 0;
  287. do {
  288. pgd = pgd_offset(&init_mm, CONSISTENT_BASE);
  289. pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE);
  290. if (!pmd) {
  291. printk(KERN_ERR "%s: no pmd tables\n", __func__);
  292. ret = -ENOMEM;
  293. break;
  294. }
  295. WARN_ON(!pmd_none(*pmd));
  296. pte = pte_alloc_kernel(pmd, CONSISTENT_BASE);
  297. if (!pte) {
  298. printk(KERN_ERR "%s: no pte tables\n", __func__);
  299. ret = -ENOMEM;
  300. break;
  301. }
  302. consistent_pte = pte;
  303. } while (0);
  304. return ret;
  305. }
  306. core_initcall(dma_alloc_init);
  307. /*
  308. * make an area consistent.
  309. */
  310. void __dma_sync(void *vaddr, size_t size, int direction)
  311. {
  312. unsigned long start = (unsigned long)vaddr;
  313. unsigned long end = start + size;
  314. switch (direction) {
  315. case DMA_NONE:
  316. BUG();
  317. case DMA_FROM_DEVICE: /* invalidate only */
  318. invalidate_dcache_range(start, end);
  319. break;
  320. case DMA_TO_DEVICE: /* writeback only */
  321. clean_dcache_range(start, end);
  322. break;
  323. case DMA_BIDIRECTIONAL: /* writeback and invalidate */
  324. flush_dcache_range(start, end);
  325. break;
  326. }
  327. }
  328. EXPORT_SYMBOL(__dma_sync);
  329. #ifdef CONFIG_HIGHMEM
  330. /*
  331. * __dma_sync_page() implementation for systems using highmem.
  332. * In this case, each page of a buffer must be kmapped/kunmapped
  333. * in order to have a virtual address for __dma_sync(). This must
  334. * not sleep so kmap_atomic()/kunmap_atomic() are used.
  335. *
  336. * Note: yes, it is possible and correct to have a buffer extend
  337. * beyond the first page.
  338. */
  339. static inline void __dma_sync_page_highmem(struct page *page,
  340. unsigned long offset, size_t size, int direction)
  341. {
  342. size_t seg_size = min((size_t)(PAGE_SIZE - offset), size);
  343. size_t cur_size = seg_size;
  344. unsigned long flags, start, seg_offset = offset;
  345. int nr_segs = 1 + ((size - seg_size) + PAGE_SIZE - 1)/PAGE_SIZE;
  346. int seg_nr = 0;
  347. local_irq_save(flags);
  348. do {
  349. start = (unsigned long)kmap_atomic(page + seg_nr,
  350. KM_PPC_SYNC_PAGE) + seg_offset;
  351. /* Sync this buffer segment */
  352. __dma_sync((void *)start, seg_size, direction);
  353. kunmap_atomic((void *)start, KM_PPC_SYNC_PAGE);
  354. seg_nr++;
  355. /* Calculate next buffer segment size */
  356. seg_size = min((size_t)PAGE_SIZE, size - cur_size);
  357. /* Add the segment size to our running total */
  358. cur_size += seg_size;
  359. seg_offset = 0;
  360. } while (seg_nr < nr_segs);
  361. local_irq_restore(flags);
  362. }
  363. #endif /* CONFIG_HIGHMEM */
  364. /*
  365. * __dma_sync_page makes memory consistent. identical to __dma_sync, but
  366. * takes a struct page instead of a virtual address
  367. */
  368. void __dma_sync_page(struct page *page, unsigned long offset,
  369. size_t size, int direction)
  370. {
  371. #ifdef CONFIG_HIGHMEM
  372. __dma_sync_page_highmem(page, offset, size, direction);
  373. #else
  374. unsigned long start = (unsigned long)page_address(page) + offset;
  375. __dma_sync((void *)start, size, direction);
  376. #endif
  377. }
  378. EXPORT_SYMBOL(__dma_sync_page);