fec.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980
  1. /*
  2. * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
  3. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
  4. *
  5. * This version of the driver is specific to the FADS implementation,
  6. * since the board contains control registers external to the processor
  7. * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
  8. * describes connections using the internal parallel port I/O, which
  9. * is basically all of Port D.
  10. *
  11. * Includes support for the following PHYs: QS6612, LXT970, LXT971/2.
  12. *
  13. * Right now, I am very wasteful with the buffers. I allocate memory
  14. * pages and then divide them into 2K frame buffers. This way I know I
  15. * have buffers large enough to hold one frame within one buffer descriptor.
  16. * Once I get this working, I will use 64 or 128 byte CPM buffers, which
  17. * will be much more memory efficient and will easily handle lots of
  18. * small packets.
  19. *
  20. * Much better multiple PHY support by Magnus Damm.
  21. * Copyright (c) 2000 Ericsson Radio Systems AB.
  22. *
  23. * Make use of MII for PHY control configurable.
  24. * Some fixes.
  25. * Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering.
  26. *
  27. * Support for AMD AM79C874 added.
  28. * Thomas Lange, thomas@corelatus.com
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/sched.h>
  32. #include <linux/string.h>
  33. #include <linux/ptrace.h>
  34. #include <linux/errno.h>
  35. #include <linux/ioport.h>
  36. #include <linux/slab.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/pci.h>
  39. #include <linux/init.h>
  40. #include <linux/delay.h>
  41. #include <linux/netdevice.h>
  42. #include <linux/etherdevice.h>
  43. #include <linux/skbuff.h>
  44. #include <linux/spinlock.h>
  45. #include <linux/bitops.h>
  46. #ifdef CONFIG_FEC_PACKETHOOK
  47. #include <linux/pkthook.h>
  48. #endif
  49. #include <asm/8xx_immap.h>
  50. #include <asm/pgtable.h>
  51. #include <asm/mpc8xx.h>
  52. #include <asm/irq.h>
  53. #include <asm/uaccess.h>
  54. #include <asm/commproc.h>
  55. #ifdef CONFIG_USE_MDIO
  56. /* Forward declarations of some structures to support different PHYs
  57. */
  58. typedef struct {
  59. uint mii_data;
  60. void (*funct)(uint mii_reg, struct net_device *dev);
  61. } phy_cmd_t;
  62. typedef struct {
  63. uint id;
  64. char *name;
  65. const phy_cmd_t *config;
  66. const phy_cmd_t *startup;
  67. const phy_cmd_t *ack_int;
  68. const phy_cmd_t *shutdown;
  69. } phy_info_t;
  70. #endif /* CONFIG_USE_MDIO */
  71. /* The number of Tx and Rx buffers. These are allocated from the page
  72. * pool. The code may assume these are power of two, so it is best
  73. * to keep them that size.
  74. * We don't need to allocate pages for the transmitter. We just use
  75. * the skbuffer directly.
  76. */
  77. #ifdef CONFIG_ENET_BIG_BUFFERS
  78. #define FEC_ENET_RX_PAGES 16
  79. #define FEC_ENET_RX_FRSIZE 2048
  80. #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
  81. #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
  82. #define TX_RING_SIZE 16 /* Must be power of two */
  83. #define TX_RING_MOD_MASK 15 /* for this to work */
  84. #else
  85. #define FEC_ENET_RX_PAGES 4
  86. #define FEC_ENET_RX_FRSIZE 2048
  87. #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
  88. #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
  89. #define TX_RING_SIZE 8 /* Must be power of two */
  90. #define TX_RING_MOD_MASK 7 /* for this to work */
  91. #endif
  92. /* Interrupt events/masks.
  93. */
  94. #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
  95. #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
  96. #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
  97. #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
  98. #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
  99. #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
  100. #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
  101. #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
  102. #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
  103. #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
  104. /*
  105. */
  106. #define FEC_ECNTRL_PINMUX 0x00000004
  107. #define FEC_ECNTRL_ETHER_EN 0x00000002
  108. #define FEC_ECNTRL_RESET 0x00000001
  109. #define FEC_RCNTRL_BC_REJ 0x00000010
  110. #define FEC_RCNTRL_PROM 0x00000008
  111. #define FEC_RCNTRL_MII_MODE 0x00000004
  112. #define FEC_RCNTRL_DRT 0x00000002
  113. #define FEC_RCNTRL_LOOP 0x00000001
  114. #define FEC_TCNTRL_FDEN 0x00000004
  115. #define FEC_TCNTRL_HBC 0x00000002
  116. #define FEC_TCNTRL_GTS 0x00000001
  117. /* Delay to wait for FEC reset command to complete (in us)
  118. */
  119. #define FEC_RESET_DELAY 50
  120. /* The FEC stores dest/src/type, data, and checksum for receive packets.
  121. */
  122. #define PKT_MAXBUF_SIZE 1518
  123. #define PKT_MINBUF_SIZE 64
  124. #define PKT_MAXBLR_SIZE 1520
  125. /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
  126. * tx_bd_base always point to the base of the buffer descriptors. The
  127. * cur_rx and cur_tx point to the currently available buffer.
  128. * The dirty_tx tracks the current buffer that is being sent by the
  129. * controller. The cur_tx and dirty_tx are equal under both completely
  130. * empty and completely full conditions. The empty/ready indicator in
  131. * the buffer descriptor determines the actual condition.
  132. */
  133. struct fec_enet_private {
  134. /* The saved address of a sent-in-place packet/buffer, for skfree(). */
  135. struct sk_buff* tx_skbuff[TX_RING_SIZE];
  136. ushort skb_cur;
  137. ushort skb_dirty;
  138. /* CPM dual port RAM relative addresses.
  139. */
  140. cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
  141. cbd_t *tx_bd_base;
  142. cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
  143. cbd_t *dirty_tx; /* The ring entries to be free()ed. */
  144. /* Virtual addresses for the receive buffers because we can't
  145. * do a __va() on them anymore.
  146. */
  147. unsigned char *rx_vaddr[RX_RING_SIZE];
  148. struct net_device_stats stats;
  149. uint tx_full;
  150. spinlock_t lock;
  151. #ifdef CONFIG_USE_MDIO
  152. uint phy_id;
  153. uint phy_id_done;
  154. uint phy_status;
  155. uint phy_speed;
  156. phy_info_t *phy;
  157. struct work_struct phy_task;
  158. uint sequence_done;
  159. uint phy_addr;
  160. #endif /* CONFIG_USE_MDIO */
  161. int link;
  162. int old_link;
  163. int full_duplex;
  164. #ifdef CONFIG_FEC_PACKETHOOK
  165. unsigned long ph_lock;
  166. fec_ph_func *ph_rxhandler;
  167. fec_ph_func *ph_txhandler;
  168. __u16 ph_proto;
  169. volatile __u32 *ph_regaddr;
  170. void *ph_priv;
  171. #endif
  172. };
  173. static int fec_enet_open(struct net_device *dev);
  174. static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
  175. #ifdef CONFIG_USE_MDIO
  176. static void fec_enet_mii(struct net_device *dev);
  177. #endif /* CONFIG_USE_MDIO */
  178. static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
  179. #ifdef CONFIG_FEC_PACKETHOOK
  180. static void fec_enet_tx(struct net_device *dev, __u32 regval);
  181. static void fec_enet_rx(struct net_device *dev, __u32 regval);
  182. #else
  183. static void fec_enet_tx(struct net_device *dev);
  184. static void fec_enet_rx(struct net_device *dev);
  185. #endif
  186. static int fec_enet_close(struct net_device *dev);
  187. static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
  188. static void set_multicast_list(struct net_device *dev);
  189. static void fec_restart(struct net_device *dev, int duplex);
  190. static void fec_stop(struct net_device *dev);
  191. static ushort my_enet_addr[3];
  192. #ifdef CONFIG_USE_MDIO
  193. /* MII processing. We keep this as simple as possible. Requests are
  194. * placed on the list (if there is room). When the request is finished
  195. * by the MII, an optional function may be called.
  196. */
  197. typedef struct mii_list {
  198. uint mii_regval;
  199. void (*mii_func)(uint val, struct net_device *dev);
  200. struct mii_list *mii_next;
  201. } mii_list_t;
  202. #define NMII 20
  203. mii_list_t mii_cmds[NMII];
  204. mii_list_t *mii_free;
  205. mii_list_t *mii_head;
  206. mii_list_t *mii_tail;
  207. static int mii_queue(struct net_device *dev, int request,
  208. void (*func)(uint, struct net_device *));
  209. /* Make MII read/write commands for the FEC.
  210. */
  211. #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
  212. #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
  213. (VAL & 0xffff))
  214. #define mk_mii_end 0
  215. #endif /* CONFIG_USE_MDIO */
  216. /* Transmitter timeout.
  217. */
  218. #define TX_TIMEOUT (2*HZ)
  219. #ifdef CONFIG_USE_MDIO
  220. /* Register definitions for the PHY.
  221. */
  222. #define MII_REG_CR 0 /* Control Register */
  223. #define MII_REG_SR 1 /* Status Register */
  224. #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
  225. #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
  226. #define MII_REG_ANAR 4 /* A-N Advertisement Register */
  227. #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
  228. #define MII_REG_ANER 6 /* A-N Expansion Register */
  229. #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
  230. #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
  231. /* values for phy_status */
  232. #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
  233. #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
  234. #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
  235. #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
  236. #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
  237. #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
  238. #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
  239. #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
  240. #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
  241. #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
  242. #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
  243. #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
  244. #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
  245. #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
  246. #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
  247. #endif /* CONFIG_USE_MDIO */
  248. #ifdef CONFIG_FEC_PACKETHOOK
  249. int
  250. fec_register_ph(struct net_device *dev, fec_ph_func *rxfun, fec_ph_func *txfun,
  251. __u16 proto, volatile __u32 *regaddr, void *priv)
  252. {
  253. struct fec_enet_private *fep;
  254. int retval = 0;
  255. fep = dev->priv;
  256. if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
  257. /* Someone is messing with the packet hook */
  258. return -EAGAIN;
  259. }
  260. if (fep->ph_rxhandler != NULL || fep->ph_txhandler != NULL) {
  261. retval = -EBUSY;
  262. goto out;
  263. }
  264. fep->ph_rxhandler = rxfun;
  265. fep->ph_txhandler = txfun;
  266. fep->ph_proto = proto;
  267. fep->ph_regaddr = regaddr;
  268. fep->ph_priv = priv;
  269. out:
  270. fep->ph_lock = 0;
  271. return retval;
  272. }
  273. int
  274. fec_unregister_ph(struct net_device *dev)
  275. {
  276. struct fec_enet_private *fep;
  277. int retval = 0;
  278. fep = dev->priv;
  279. if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
  280. /* Someone is messing with the packet hook */
  281. return -EAGAIN;
  282. }
  283. fep->ph_rxhandler = fep->ph_txhandler = NULL;
  284. fep->ph_proto = 0;
  285. fep->ph_regaddr = NULL;
  286. fep->ph_priv = NULL;
  287. fep->ph_lock = 0;
  288. return retval;
  289. }
  290. EXPORT_SYMBOL(fec_register_ph);
  291. EXPORT_SYMBOL(fec_unregister_ph);
  292. #endif /* CONFIG_FEC_PACKETHOOK */
  293. static int
  294. fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
  295. {
  296. struct fec_enet_private *fep;
  297. volatile fec_t *fecp;
  298. volatile cbd_t *bdp;
  299. fep = dev->priv;
  300. fecp = (volatile fec_t*)dev->base_addr;
  301. if (!fep->link) {
  302. /* Link is down or autonegotiation is in progress. */
  303. return 1;
  304. }
  305. /* Fill in a Tx ring entry */
  306. bdp = fep->cur_tx;
  307. #ifndef final_version
  308. if (bdp->cbd_sc & BD_ENET_TX_READY) {
  309. /* Ooops. All transmit buffers are full. Bail out.
  310. * This should not happen, since dev->tbusy should be set.
  311. */
  312. printk("%s: tx queue full!.\n", dev->name);
  313. return 1;
  314. }
  315. #endif
  316. /* Clear all of the status flags.
  317. */
  318. bdp->cbd_sc &= ~BD_ENET_TX_STATS;
  319. /* Set buffer length and buffer pointer.
  320. */
  321. bdp->cbd_bufaddr = __pa(skb->data);
  322. bdp->cbd_datlen = skb->len;
  323. /* Save skb pointer.
  324. */
  325. fep->tx_skbuff[fep->skb_cur] = skb;
  326. fep->stats.tx_bytes += skb->len;
  327. fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
  328. /* Push the data cache so the CPM does not get stale memory
  329. * data.
  330. */
  331. flush_dcache_range((unsigned long)skb->data,
  332. (unsigned long)skb->data + skb->len);
  333. /* disable interrupts while triggering transmit */
  334. spin_lock_irq(&fep->lock);
  335. /* Send it on its way. Tell FEC its ready, interrupt when done,
  336. * its the last BD of the frame, and to put the CRC on the end.
  337. */
  338. bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
  339. | BD_ENET_TX_LAST | BD_ENET_TX_TC);
  340. dev->trans_start = jiffies;
  341. /* Trigger transmission start */
  342. fecp->fec_x_des_active = 0x01000000;
  343. /* If this was the last BD in the ring, start at the beginning again.
  344. */
  345. if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
  346. bdp = fep->tx_bd_base;
  347. } else {
  348. bdp++;
  349. }
  350. if (bdp->cbd_sc & BD_ENET_TX_READY) {
  351. netif_stop_queue(dev);
  352. fep->tx_full = 1;
  353. }
  354. fep->cur_tx = (cbd_t *)bdp;
  355. spin_unlock_irq(&fep->lock);
  356. return 0;
  357. }
  358. static void
  359. fec_timeout(struct net_device *dev)
  360. {
  361. struct fec_enet_private *fep = dev->priv;
  362. printk("%s: transmit timed out.\n", dev->name);
  363. fep->stats.tx_errors++;
  364. #ifndef final_version
  365. {
  366. int i;
  367. cbd_t *bdp;
  368. printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
  369. (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
  370. (unsigned long)fep->dirty_tx,
  371. (unsigned long)fep->cur_rx);
  372. bdp = fep->tx_bd_base;
  373. printk(" tx: %u buffers\n", TX_RING_SIZE);
  374. for (i = 0 ; i < TX_RING_SIZE; i++) {
  375. printk(" %08x: %04x %04x %08x\n",
  376. (uint) bdp,
  377. bdp->cbd_sc,
  378. bdp->cbd_datlen,
  379. bdp->cbd_bufaddr);
  380. bdp++;
  381. }
  382. bdp = fep->rx_bd_base;
  383. printk(" rx: %lu buffers\n", RX_RING_SIZE);
  384. for (i = 0 ; i < RX_RING_SIZE; i++) {
  385. printk(" %08x: %04x %04x %08x\n",
  386. (uint) bdp,
  387. bdp->cbd_sc,
  388. bdp->cbd_datlen,
  389. bdp->cbd_bufaddr);
  390. bdp++;
  391. }
  392. }
  393. #endif
  394. if (!fep->tx_full)
  395. netif_wake_queue(dev);
  396. }
  397. /* The interrupt handler.
  398. * This is called from the MPC core interrupt.
  399. */
  400. static irqreturn_t
  401. fec_enet_interrupt(int irq, void * dev_id)
  402. {
  403. struct net_device *dev = dev_id;
  404. volatile fec_t *fecp;
  405. uint int_events;
  406. #ifdef CONFIG_FEC_PACKETHOOK
  407. struct fec_enet_private *fep = dev->priv;
  408. __u32 regval;
  409. if (fep->ph_regaddr) regval = *fep->ph_regaddr;
  410. #endif
  411. fecp = (volatile fec_t*)dev->base_addr;
  412. /* Get the interrupt events that caused us to be here.
  413. */
  414. while ((int_events = fecp->fec_ievent) != 0) {
  415. fecp->fec_ievent = int_events;
  416. if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
  417. FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) {
  418. printk("FEC ERROR %x\n", int_events);
  419. }
  420. /* Handle receive event in its own function.
  421. */
  422. if (int_events & FEC_ENET_RXF) {
  423. #ifdef CONFIG_FEC_PACKETHOOK
  424. fec_enet_rx(dev, regval);
  425. #else
  426. fec_enet_rx(dev);
  427. #endif
  428. }
  429. /* Transmit OK, or non-fatal error. Update the buffer
  430. descriptors. FEC handles all errors, we just discover
  431. them as part of the transmit process.
  432. */
  433. if (int_events & FEC_ENET_TXF) {
  434. #ifdef CONFIG_FEC_PACKETHOOK
  435. fec_enet_tx(dev, regval);
  436. #else
  437. fec_enet_tx(dev);
  438. #endif
  439. }
  440. if (int_events & FEC_ENET_MII) {
  441. #ifdef CONFIG_USE_MDIO
  442. fec_enet_mii(dev);
  443. #else
  444. printk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__,__LINE__,__FUNCTION__);
  445. #endif /* CONFIG_USE_MDIO */
  446. }
  447. }
  448. return IRQ_RETVAL(IRQ_HANDLED);
  449. }
  450. static void
  451. #ifdef CONFIG_FEC_PACKETHOOK
  452. fec_enet_tx(struct net_device *dev, __u32 regval)
  453. #else
  454. fec_enet_tx(struct net_device *dev)
  455. #endif
  456. {
  457. struct fec_enet_private *fep;
  458. volatile cbd_t *bdp;
  459. struct sk_buff *skb;
  460. fep = dev->priv;
  461. /* lock while transmitting */
  462. spin_lock(&fep->lock);
  463. bdp = fep->dirty_tx;
  464. while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
  465. if (bdp == fep->cur_tx && fep->tx_full == 0) break;
  466. skb = fep->tx_skbuff[fep->skb_dirty];
  467. /* Check for errors. */
  468. if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
  469. BD_ENET_TX_RL | BD_ENET_TX_UN |
  470. BD_ENET_TX_CSL)) {
  471. fep->stats.tx_errors++;
  472. if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
  473. fep->stats.tx_heartbeat_errors++;
  474. if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
  475. fep->stats.tx_window_errors++;
  476. if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
  477. fep->stats.tx_aborted_errors++;
  478. if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
  479. fep->stats.tx_fifo_errors++;
  480. if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
  481. fep->stats.tx_carrier_errors++;
  482. } else {
  483. #ifdef CONFIG_FEC_PACKETHOOK
  484. /* Packet hook ... */
  485. if (fep->ph_txhandler &&
  486. ((struct ethhdr *)skb->data)->h_proto
  487. == fep->ph_proto) {
  488. fep->ph_txhandler((__u8*)skb->data, skb->len,
  489. regval, fep->ph_priv);
  490. }
  491. #endif
  492. fep->stats.tx_packets++;
  493. }
  494. #ifndef final_version
  495. if (bdp->cbd_sc & BD_ENET_TX_READY)
  496. printk("HEY! Enet xmit interrupt and TX_READY.\n");
  497. #endif
  498. /* Deferred means some collisions occurred during transmit,
  499. * but we eventually sent the packet OK.
  500. */
  501. if (bdp->cbd_sc & BD_ENET_TX_DEF)
  502. fep->stats.collisions++;
  503. /* Free the sk buffer associated with this last transmit.
  504. */
  505. #if 0
  506. printk("TXI: %x %x %x\n", bdp, skb, fep->skb_dirty);
  507. #endif
  508. dev_kfree_skb_irq (skb/*, FREE_WRITE*/);
  509. fep->tx_skbuff[fep->skb_dirty] = NULL;
  510. fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
  511. /* Update pointer to next buffer descriptor to be transmitted.
  512. */
  513. if (bdp->cbd_sc & BD_ENET_TX_WRAP)
  514. bdp = fep->tx_bd_base;
  515. else
  516. bdp++;
  517. /* Since we have freed up a buffer, the ring is no longer
  518. * full.
  519. */
  520. if (fep->tx_full) {
  521. fep->tx_full = 0;
  522. if (netif_queue_stopped(dev))
  523. netif_wake_queue(dev);
  524. }
  525. #ifdef CONFIG_FEC_PACKETHOOK
  526. /* Re-read register. Not exactly guaranteed to be correct,
  527. but... */
  528. if (fep->ph_regaddr) regval = *fep->ph_regaddr;
  529. #endif
  530. }
  531. fep->dirty_tx = (cbd_t *)bdp;
  532. spin_unlock(&fep->lock);
  533. }
  534. /* During a receive, the cur_rx points to the current incoming buffer.
  535. * When we update through the ring, if the next incoming buffer has
  536. * not been given to the system, we just set the empty indicator,
  537. * effectively tossing the packet.
  538. */
  539. static void
  540. #ifdef CONFIG_FEC_PACKETHOOK
  541. fec_enet_rx(struct net_device *dev, __u32 regval)
  542. #else
  543. fec_enet_rx(struct net_device *dev)
  544. #endif
  545. {
  546. struct fec_enet_private *fep;
  547. volatile fec_t *fecp;
  548. volatile cbd_t *bdp;
  549. struct sk_buff *skb;
  550. ushort pkt_len;
  551. __u8 *data;
  552. fep = dev->priv;
  553. fecp = (volatile fec_t*)dev->base_addr;
  554. /* First, grab all of the stats for the incoming packet.
  555. * These get messed up if we get called due to a busy condition.
  556. */
  557. bdp = fep->cur_rx;
  558. while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
  559. #ifndef final_version
  560. /* Since we have allocated space to hold a complete frame,
  561. * the last indicator should be set.
  562. */
  563. if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
  564. printk("FEC ENET: rcv is not +last\n");
  565. #endif
  566. /* Check for errors. */
  567. if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
  568. BD_ENET_RX_CR | BD_ENET_RX_OV)) {
  569. fep->stats.rx_errors++;
  570. if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
  571. /* Frame too long or too short. */
  572. fep->stats.rx_length_errors++;
  573. }
  574. if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
  575. fep->stats.rx_frame_errors++;
  576. if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
  577. fep->stats.rx_crc_errors++;
  578. if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
  579. fep->stats.rx_crc_errors++;
  580. }
  581. /* Report late collisions as a frame error.
  582. * On this error, the BD is closed, but we don't know what we
  583. * have in the buffer. So, just drop this frame on the floor.
  584. */
  585. if (bdp->cbd_sc & BD_ENET_RX_CL) {
  586. fep->stats.rx_errors++;
  587. fep->stats.rx_frame_errors++;
  588. goto rx_processing_done;
  589. }
  590. /* Process the incoming frame.
  591. */
  592. fep->stats.rx_packets++;
  593. pkt_len = bdp->cbd_datlen;
  594. fep->stats.rx_bytes += pkt_len;
  595. data = fep->rx_vaddr[bdp - fep->rx_bd_base];
  596. #ifdef CONFIG_FEC_PACKETHOOK
  597. /* Packet hook ... */
  598. if (fep->ph_rxhandler) {
  599. if (((struct ethhdr *)data)->h_proto == fep->ph_proto) {
  600. switch (fep->ph_rxhandler(data, pkt_len, regval,
  601. fep->ph_priv)) {
  602. case 1:
  603. goto rx_processing_done;
  604. break;
  605. case 0:
  606. break;
  607. default:
  608. fep->stats.rx_errors++;
  609. goto rx_processing_done;
  610. }
  611. }
  612. }
  613. /* If it wasn't filtered - copy it to an sk buffer. */
  614. #endif
  615. /* This does 16 byte alignment, exactly what we need.
  616. * The packet length includes FCS, but we don't want to
  617. * include that when passing upstream as it messes up
  618. * bridging applications.
  619. */
  620. skb = dev_alloc_skb(pkt_len-4);
  621. if (skb == NULL) {
  622. printk("%s: Memory squeeze, dropping packet.\n", dev->name);
  623. fep->stats.rx_dropped++;
  624. } else {
  625. skb->dev = dev;
  626. skb_put(skb,pkt_len-4); /* Make room */
  627. eth_copy_and_sum(skb, data, pkt_len-4, 0);
  628. skb->protocol=eth_type_trans(skb,dev);
  629. netif_rx(skb);
  630. }
  631. rx_processing_done:
  632. /* Clear the status flags for this buffer.
  633. */
  634. bdp->cbd_sc &= ~BD_ENET_RX_STATS;
  635. /* Mark the buffer empty.
  636. */
  637. bdp->cbd_sc |= BD_ENET_RX_EMPTY;
  638. /* Update BD pointer to next entry.
  639. */
  640. if (bdp->cbd_sc & BD_ENET_RX_WRAP)
  641. bdp = fep->rx_bd_base;
  642. else
  643. bdp++;
  644. #if 1
  645. /* Doing this here will keep the FEC running while we process
  646. * incoming frames. On a heavily loaded network, we should be
  647. * able to keep up at the expense of system resources.
  648. */
  649. fecp->fec_r_des_active = 0x01000000;
  650. #endif
  651. #ifdef CONFIG_FEC_PACKETHOOK
  652. /* Re-read register. Not exactly guaranteed to be correct,
  653. but... */
  654. if (fep->ph_regaddr) regval = *fep->ph_regaddr;
  655. #endif
  656. } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
  657. fep->cur_rx = (cbd_t *)bdp;
  658. #if 0
  659. /* Doing this here will allow us to process all frames in the
  660. * ring before the FEC is allowed to put more there. On a heavily
  661. * loaded network, some frames may be lost. Unfortunately, this
  662. * increases the interrupt overhead since we can potentially work
  663. * our way back to the interrupt return only to come right back
  664. * here.
  665. */
  666. fecp->fec_r_des_active = 0x01000000;
  667. #endif
  668. }
  669. #ifdef CONFIG_USE_MDIO
  670. static void
  671. fec_enet_mii(struct net_device *dev)
  672. {
  673. struct fec_enet_private *fep;
  674. volatile fec_t *ep;
  675. mii_list_t *mip;
  676. uint mii_reg;
  677. fep = (struct fec_enet_private *)dev->priv;
  678. ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
  679. mii_reg = ep->fec_mii_data;
  680. if ((mip = mii_head) == NULL) {
  681. printk("MII and no head!\n");
  682. return;
  683. }
  684. if (mip->mii_func != NULL)
  685. (*(mip->mii_func))(mii_reg, dev);
  686. mii_head = mip->mii_next;
  687. mip->mii_next = mii_free;
  688. mii_free = mip;
  689. if ((mip = mii_head) != NULL) {
  690. ep->fec_mii_data = mip->mii_regval;
  691. }
  692. }
  693. static int
  694. mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
  695. {
  696. struct fec_enet_private *fep;
  697. unsigned long flags;
  698. mii_list_t *mip;
  699. int retval;
  700. /* Add PHY address to register command.
  701. */
  702. fep = dev->priv;
  703. regval |= fep->phy_addr << 23;
  704. retval = 0;
  705. /* lock while modifying mii_list */
  706. spin_lock_irqsave(&fep->lock, flags);
  707. if ((mip = mii_free) != NULL) {
  708. mii_free = mip->mii_next;
  709. mip->mii_regval = regval;
  710. mip->mii_func = func;
  711. mip->mii_next = NULL;
  712. if (mii_head) {
  713. mii_tail->mii_next = mip;
  714. mii_tail = mip;
  715. } else {
  716. mii_head = mii_tail = mip;
  717. (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
  718. }
  719. } else {
  720. retval = 1;
  721. }
  722. spin_unlock_irqrestore(&fep->lock, flags);
  723. return(retval);
  724. }
  725. static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
  726. {
  727. int k;
  728. if(!c)
  729. return;
  730. for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
  731. mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
  732. }
  733. static void mii_parse_sr(uint mii_reg, struct net_device *dev)
  734. {
  735. struct fec_enet_private *fep = dev->priv;
  736. volatile uint *s = &(fep->phy_status);
  737. *s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
  738. if (mii_reg & 0x0004)
  739. *s |= PHY_STAT_LINK;
  740. if (mii_reg & 0x0010)
  741. *s |= PHY_STAT_FAULT;
  742. if (mii_reg & 0x0020)
  743. *s |= PHY_STAT_ANC;
  744. fep->link = (*s & PHY_STAT_LINK) ? 1 : 0;
  745. }
  746. static void mii_parse_cr(uint mii_reg, struct net_device *dev)
  747. {
  748. struct fec_enet_private *fep = dev->priv;
  749. volatile uint *s = &(fep->phy_status);
  750. *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
  751. if (mii_reg & 0x1000)
  752. *s |= PHY_CONF_ANE;
  753. if (mii_reg & 0x4000)
  754. *s |= PHY_CONF_LOOP;
  755. }
  756. static void mii_parse_anar(uint mii_reg, struct net_device *dev)
  757. {
  758. struct fec_enet_private *fep = dev->priv;
  759. volatile uint *s = &(fep->phy_status);
  760. *s &= ~(PHY_CONF_SPMASK);
  761. if (mii_reg & 0x0020)
  762. *s |= PHY_CONF_10HDX;
  763. if (mii_reg & 0x0040)
  764. *s |= PHY_CONF_10FDX;
  765. if (mii_reg & 0x0080)
  766. *s |= PHY_CONF_100HDX;
  767. if (mii_reg & 0x00100)
  768. *s |= PHY_CONF_100FDX;
  769. }
  770. #if 0
  771. static void mii_disp_reg(uint mii_reg, struct net_device *dev)
  772. {
  773. printk("reg %u = 0x%04x\n", (mii_reg >> 18) & 0x1f, mii_reg & 0xffff);
  774. }
  775. #endif
  776. /* ------------------------------------------------------------------------- */
  777. /* The Level one LXT970 is used by many boards */
  778. #ifdef CONFIG_FEC_LXT970
  779. #define MII_LXT970_MIRROR 16 /* Mirror register */
  780. #define MII_LXT970_IER 17 /* Interrupt Enable Register */
  781. #define MII_LXT970_ISR 18 /* Interrupt Status Register */
  782. #define MII_LXT970_CONFIG 19 /* Configuration Register */
  783. #define MII_LXT970_CSR 20 /* Chip Status Register */
  784. static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
  785. {
  786. struct fec_enet_private *fep = dev->priv;
  787. volatile uint *s = &(fep->phy_status);
  788. *s &= ~(PHY_STAT_SPMASK);
  789. if (mii_reg & 0x0800) {
  790. if (mii_reg & 0x1000)
  791. *s |= PHY_STAT_100FDX;
  792. else
  793. *s |= PHY_STAT_100HDX;
  794. }
  795. else {
  796. if (mii_reg & 0x1000)
  797. *s |= PHY_STAT_10FDX;
  798. else
  799. *s |= PHY_STAT_10HDX;
  800. }
  801. }
  802. static phy_info_t phy_info_lxt970 = {
  803. 0x07810000,
  804. "LXT970",
  805. (const phy_cmd_t []) { /* config */
  806. #if 0
  807. // { mk_mii_write(MII_REG_ANAR, 0x0021), NULL },
  808. /* Set default operation of 100-TX....for some reason
  809. * some of these bits are set on power up, which is wrong.
  810. */
  811. { mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
  812. #endif
  813. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  814. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  815. { mk_mii_end, }
  816. },
  817. (const phy_cmd_t []) { /* startup - enable interrupts */
  818. { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
  819. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  820. { mk_mii_end, }
  821. },
  822. (const phy_cmd_t []) { /* ack_int */
  823. /* read SR and ISR to acknowledge */
  824. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  825. { mk_mii_read(MII_LXT970_ISR), NULL },
  826. /* find out the current status */
  827. { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
  828. { mk_mii_end, }
  829. },
  830. (const phy_cmd_t []) { /* shutdown - disable interrupts */
  831. { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
  832. { mk_mii_end, }
  833. },
  834. };
  835. #endif /* CONFIG_FEC_LXT970 */
  836. /* ------------------------------------------------------------------------- */
  837. /* The Level one LXT971 is used on some of my custom boards */
  838. #ifdef CONFIG_FEC_LXT971
  839. /* register definitions for the 971 */
  840. #define MII_LXT971_PCR 16 /* Port Control Register */
  841. #define MII_LXT971_SR2 17 /* Status Register 2 */
  842. #define MII_LXT971_IER 18 /* Interrupt Enable Register */
  843. #define MII_LXT971_ISR 19 /* Interrupt Status Register */
  844. #define MII_LXT971_LCR 20 /* LED Control Register */
  845. #define MII_LXT971_TCR 30 /* Transmit Control Register */
  846. /*
  847. * I had some nice ideas of running the MDIO faster...
  848. * The 971 should support 8MHz and I tried it, but things acted really
  849. * weird, so 2.5 MHz ought to be enough for anyone...
  850. */
  851. static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
  852. {
  853. struct fec_enet_private *fep = dev->priv;
  854. volatile uint *s = &(fep->phy_status);
  855. *s &= ~(PHY_STAT_SPMASK);
  856. if (mii_reg & 0x4000) {
  857. if (mii_reg & 0x0200)
  858. *s |= PHY_STAT_100FDX;
  859. else
  860. *s |= PHY_STAT_100HDX;
  861. }
  862. else {
  863. if (mii_reg & 0x0200)
  864. *s |= PHY_STAT_10FDX;
  865. else
  866. *s |= PHY_STAT_10HDX;
  867. }
  868. if (mii_reg & 0x0008)
  869. *s |= PHY_STAT_FAULT;
  870. }
  871. static phy_info_t phy_info_lxt971 = {
  872. 0x0001378e,
  873. "LXT971",
  874. (const phy_cmd_t []) { /* config */
  875. // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
  876. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  877. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  878. { mk_mii_end, }
  879. },
  880. (const phy_cmd_t []) { /* startup - enable interrupts */
  881. { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
  882. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  883. /* Somehow does the 971 tell me that the link is down
  884. * the first read after power-up.
  885. * read here to get a valid value in ack_int */
  886. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  887. { mk_mii_end, }
  888. },
  889. (const phy_cmd_t []) { /* ack_int */
  890. /* find out the current status */
  891. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  892. { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
  893. /* we only need to read ISR to acknowledge */
  894. { mk_mii_read(MII_LXT971_ISR), NULL },
  895. { mk_mii_end, }
  896. },
  897. (const phy_cmd_t []) { /* shutdown - disable interrupts */
  898. { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
  899. { mk_mii_end, }
  900. },
  901. };
  902. #endif /* CONFIG_FEC_LXT970 */
  903. /* ------------------------------------------------------------------------- */
  904. /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
  905. #ifdef CONFIG_FEC_QS6612
  906. /* register definitions */
  907. #define MII_QS6612_MCR 17 /* Mode Control Register */
  908. #define MII_QS6612_FTR 27 /* Factory Test Register */
  909. #define MII_QS6612_MCO 28 /* Misc. Control Register */
  910. #define MII_QS6612_ISR 29 /* Interrupt Source Register */
  911. #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
  912. #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
  913. static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
  914. {
  915. struct fec_enet_private *fep = dev->priv;
  916. volatile uint *s = &(fep->phy_status);
  917. *s &= ~(PHY_STAT_SPMASK);
  918. switch((mii_reg >> 2) & 7) {
  919. case 1: *s |= PHY_STAT_10HDX; break;
  920. case 2: *s |= PHY_STAT_100HDX; break;
  921. case 5: *s |= PHY_STAT_10FDX; break;
  922. case 6: *s |= PHY_STAT_100FDX; break;
  923. }
  924. }
  925. static phy_info_t phy_info_qs6612 = {
  926. 0x00181440,
  927. "QS6612",
  928. (const phy_cmd_t []) { /* config */
  929. // { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */
  930. /* The PHY powers up isolated on the RPX,
  931. * so send a command to allow operation.
  932. */
  933. { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
  934. /* parse cr and anar to get some info */
  935. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  936. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  937. { mk_mii_end, }
  938. },
  939. (const phy_cmd_t []) { /* startup - enable interrupts */
  940. { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
  941. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  942. { mk_mii_end, }
  943. },
  944. (const phy_cmd_t []) { /* ack_int */
  945. /* we need to read ISR, SR and ANER to acknowledge */
  946. { mk_mii_read(MII_QS6612_ISR), NULL },
  947. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  948. { mk_mii_read(MII_REG_ANER), NULL },
  949. /* read pcr to get info */
  950. { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
  951. { mk_mii_end, }
  952. },
  953. (const phy_cmd_t []) { /* shutdown - disable interrupts */
  954. { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
  955. { mk_mii_end, }
  956. },
  957. };
  958. #endif /* CONFIG_FEC_QS6612 */
  959. /* ------------------------------------------------------------------------- */
  960. /* The Advanced Micro Devices AM79C874 is used on the ICU862 */
  961. #ifdef CONFIG_FEC_AM79C874
  962. /* register definitions for the 79C874 */
  963. #define MII_AM79C874_MFR 16 /* Miscellaneous Features Register */
  964. #define MII_AM79C874_ICSR 17 /* Interrupt Control/Status Register */
  965. #define MII_AM79C874_DR 18 /* Diagnostic Register */
  966. #define MII_AM79C874_PMLR 19 /* Power Management & Loopback Register */
  967. #define MII_AM79C874_MCR 21 /* Mode Control Register */
  968. #define MII_AM79C874_DC 23 /* Disconnect Counter */
  969. #define MII_AM79C874_REC 24 /* Receiver Error Counter */
  970. static void mii_parse_amd79c874_dr(uint mii_reg, struct net_device *dev, uint data)
  971. {
  972. volatile struct fec_enet_private *fep = dev->priv;
  973. uint s = fep->phy_status;
  974. s &= ~(PHY_STAT_SPMASK);
  975. /* Register 18: Bit 10 is data rate, 11 is Duplex */
  976. switch ((mii_reg >> 10) & 3) {
  977. case 0: s |= PHY_STAT_10HDX; break;
  978. case 1: s |= PHY_STAT_100HDX; break;
  979. case 2: s |= PHY_STAT_10FDX; break;
  980. case 3: s |= PHY_STAT_100FDX; break;
  981. }
  982. fep->phy_status = s;
  983. }
  984. static phy_info_t phy_info_amd79c874 = {
  985. 0x00022561,
  986. "AM79C874",
  987. (const phy_cmd_t []) { /* config */
  988. // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
  989. { mk_mii_read(MII_REG_CR), mii_parse_cr },
  990. { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
  991. { mk_mii_end, }
  992. },
  993. (const phy_cmd_t []) { /* startup - enable interrupts */
  994. { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
  995. { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
  996. { mk_mii_end, }
  997. },
  998. (const phy_cmd_t []) { /* ack_int */
  999. /* find out the current status */
  1000. { mk_mii_read(MII_REG_SR), mii_parse_sr },
  1001. { mk_mii_read(MII_AM79C874_DR), mii_parse_amd79c874_dr },
  1002. /* we only need to read ICSR to acknowledge */
  1003. { mk_mii_read(MII_AM79C874_ICSR), NULL },
  1004. { mk_mii_end, }
  1005. },
  1006. (const phy_cmd_t []) { /* shutdown - disable interrupts */
  1007. { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
  1008. { mk_mii_end, }
  1009. },
  1010. };
  1011. #endif /* CONFIG_FEC_AM79C874 */
  1012. static phy_info_t *phy_info[] = {
  1013. #ifdef CONFIG_FEC_LXT970
  1014. &phy_info_lxt970,
  1015. #endif /* CONFIG_FEC_LXT970 */
  1016. #ifdef CONFIG_FEC_LXT971
  1017. &phy_info_lxt971,
  1018. #endif /* CONFIG_FEC_LXT971 */
  1019. #ifdef CONFIG_FEC_QS6612
  1020. &phy_info_qs6612,
  1021. #endif /* CONFIG_FEC_QS6612 */
  1022. #ifdef CONFIG_FEC_AM79C874
  1023. &phy_info_amd79c874,
  1024. #endif /* CONFIG_FEC_AM79C874 */
  1025. NULL
  1026. };
  1027. static void mii_display_status(struct net_device *dev)
  1028. {
  1029. struct fec_enet_private *fep = dev->priv;
  1030. volatile uint *s = &(fep->phy_status);
  1031. if (!fep->link && !fep->old_link) {
  1032. /* Link is still down - don't print anything */
  1033. return;
  1034. }
  1035. printk("%s: status: ", dev->name);
  1036. if (!fep->link) {
  1037. printk("link down");
  1038. } else {
  1039. printk("link up");
  1040. switch(*s & PHY_STAT_SPMASK) {
  1041. case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
  1042. case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
  1043. case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
  1044. case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
  1045. default:
  1046. printk(", Unknown speed/duplex");
  1047. }
  1048. if (*s & PHY_STAT_ANC)
  1049. printk(", auto-negotiation complete");
  1050. }
  1051. if (*s & PHY_STAT_FAULT)
  1052. printk(", remote fault");
  1053. printk(".\n");
  1054. }
  1055. static void mii_display_config(void *priv)
  1056. {
  1057. struct net_device *dev = (struct net_device *)priv;
  1058. struct fec_enet_private *fep = dev->priv;
  1059. volatile uint *s = &(fep->phy_status);
  1060. printk("%s: config: auto-negotiation ", dev->name);
  1061. if (*s & PHY_CONF_ANE)
  1062. printk("on");
  1063. else
  1064. printk("off");
  1065. if (*s & PHY_CONF_100FDX)
  1066. printk(", 100FDX");
  1067. if (*s & PHY_CONF_100HDX)
  1068. printk(", 100HDX");
  1069. if (*s & PHY_CONF_10FDX)
  1070. printk(", 10FDX");
  1071. if (*s & PHY_CONF_10HDX)
  1072. printk(", 10HDX");
  1073. if (!(*s & PHY_CONF_SPMASK))
  1074. printk(", No speed/duplex selected?");
  1075. if (*s & PHY_CONF_LOOP)
  1076. printk(", loopback enabled");
  1077. printk(".\n");
  1078. fep->sequence_done = 1;
  1079. }
  1080. static void mii_relink(void *priv)
  1081. {
  1082. struct net_device *dev = (struct net_device *)priv;
  1083. struct fec_enet_private *fep = dev->priv;
  1084. int duplex;
  1085. fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
  1086. mii_display_status(dev);
  1087. fep->old_link = fep->link;
  1088. if (fep->link) {
  1089. duplex = 0;
  1090. if (fep->phy_status
  1091. & (PHY_STAT_100FDX | PHY_STAT_10FDX))
  1092. duplex = 1;
  1093. fec_restart(dev, duplex);
  1094. }
  1095. else
  1096. fec_stop(dev);
  1097. #if 0
  1098. enable_irq(fep->mii_irq);
  1099. #endif
  1100. }
  1101. static void mii_queue_relink(uint mii_reg, struct net_device *dev)
  1102. {
  1103. struct fec_enet_private *fep = dev->priv;
  1104. INIT_WORK(&fep->phy_task, mii_relink, (void *)dev);
  1105. schedule_work(&fep->phy_task);
  1106. }
  1107. static void mii_queue_config(uint mii_reg, struct net_device *dev)
  1108. {
  1109. struct fec_enet_private *fep = dev->priv;
  1110. INIT_WORK(&fep->phy_task, mii_display_config, (void *)dev);
  1111. schedule_work(&fep->phy_task);
  1112. }
  1113. phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
  1114. { mk_mii_end, } };
  1115. phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
  1116. { mk_mii_end, } };
  1117. /* Read remainder of PHY ID.
  1118. */
  1119. static void
  1120. mii_discover_phy3(uint mii_reg, struct net_device *dev)
  1121. {
  1122. struct fec_enet_private *fep;
  1123. int i;
  1124. fep = dev->priv;
  1125. fep->phy_id |= (mii_reg & 0xffff);
  1126. for(i = 0; phy_info[i]; i++)
  1127. if(phy_info[i]->id == (fep->phy_id >> 4))
  1128. break;
  1129. if(!phy_info[i])
  1130. panic("%s: PHY id 0x%08x is not supported!\n",
  1131. dev->name, fep->phy_id);
  1132. fep->phy = phy_info[i];
  1133. fep->phy_id_done = 1;
  1134. printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
  1135. dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
  1136. }
  1137. /* Scan all of the MII PHY addresses looking for someone to respond
  1138. * with a valid ID. This usually happens quickly.
  1139. */
  1140. static void
  1141. mii_discover_phy(uint mii_reg, struct net_device *dev)
  1142. {
  1143. struct fec_enet_private *fep;
  1144. uint phytype;
  1145. fep = dev->priv;
  1146. if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
  1147. /* Got first part of ID, now get remainder.
  1148. */
  1149. fep->phy_id = phytype << 16;
  1150. mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3);
  1151. } else {
  1152. fep->phy_addr++;
  1153. if (fep->phy_addr < 32) {
  1154. mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
  1155. mii_discover_phy);
  1156. } else {
  1157. printk("fec: No PHY device found.\n");
  1158. }
  1159. }
  1160. }
  1161. #endif /* CONFIG_USE_MDIO */
  1162. /* This interrupt occurs when the PHY detects a link change.
  1163. */
  1164. static
  1165. #ifdef CONFIG_RPXCLASSIC
  1166. void mii_link_interrupt(void *dev_id)
  1167. #else
  1168. irqreturn_t mii_link_interrupt(int irq, void * dev_id)
  1169. #endif
  1170. {
  1171. #ifdef CONFIG_USE_MDIO
  1172. struct net_device *dev = dev_id;
  1173. struct fec_enet_private *fep = dev->priv;
  1174. volatile immap_t *immap = (immap_t *)IMAP_ADDR;
  1175. volatile fec_t *fecp = &(immap->im_cpm.cp_fec);
  1176. unsigned int ecntrl = fecp->fec_ecntrl;
  1177. /* We need the FEC enabled to access the MII
  1178. */
  1179. if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
  1180. fecp->fec_ecntrl |= FEC_ECNTRL_ETHER_EN;
  1181. }
  1182. #endif /* CONFIG_USE_MDIO */
  1183. #if 0
  1184. disable_irq(fep->mii_irq); /* disable now, enable later */
  1185. #endif
  1186. #ifdef CONFIG_USE_MDIO
  1187. mii_do_cmd(dev, fep->phy->ack_int);
  1188. mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
  1189. if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
  1190. fecp->fec_ecntrl = ecntrl; /* restore old settings */
  1191. }
  1192. #else
  1193. printk("%s[%d] %s: unexpected Link interrupt\n", __FILE__,__LINE__,__FUNCTION__);
  1194. #endif /* CONFIG_USE_MDIO */
  1195. #ifndef CONFIG_RPXCLASSIC
  1196. return IRQ_RETVAL(IRQ_HANDLED);
  1197. #endif /* CONFIG_RPXCLASSIC */
  1198. }
  1199. static int
  1200. fec_enet_open(struct net_device *dev)
  1201. {
  1202. struct fec_enet_private *fep = dev->priv;
  1203. /* I should reset the ring buffers here, but I don't yet know
  1204. * a simple way to do that.
  1205. */
  1206. #ifdef CONFIG_USE_MDIO
  1207. fep->sequence_done = 0;
  1208. fep->link = 0;
  1209. if (fep->phy) {
  1210. mii_do_cmd(dev, fep->phy->ack_int);
  1211. mii_do_cmd(dev, fep->phy->config);
  1212. mii_do_cmd(dev, phy_cmd_config); /* display configuration */
  1213. while(!fep->sequence_done)
  1214. schedule();
  1215. mii_do_cmd(dev, fep->phy->startup);
  1216. netif_start_queue(dev);
  1217. return 0; /* Success */
  1218. }
  1219. return -ENODEV; /* No PHY we understand */
  1220. #else
  1221. fep->link = 1;
  1222. netif_start_queue(dev);
  1223. return 0; /* Success */
  1224. #endif /* CONFIG_USE_MDIO */
  1225. }
  1226. static int
  1227. fec_enet_close(struct net_device *dev)
  1228. {
  1229. /* Don't know what to do yet.
  1230. */
  1231. netif_stop_queue(dev);
  1232. fec_stop(dev);
  1233. return 0;
  1234. }
  1235. static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
  1236. {
  1237. struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
  1238. return &fep->stats;
  1239. }
  1240. /* Set or clear the multicast filter for this adaptor.
  1241. * Skeleton taken from sunlance driver.
  1242. * The CPM Ethernet implementation allows Multicast as well as individual
  1243. * MAC address filtering. Some of the drivers check to make sure it is
  1244. * a group multicast address, and discard those that are not. I guess I
  1245. * will do the same for now, but just remove the test if you want
  1246. * individual filtering as well (do the upper net layers want or support
  1247. * this kind of feature?).
  1248. */
  1249. static void set_multicast_list(struct net_device *dev)
  1250. {
  1251. struct fec_enet_private *fep;
  1252. volatile fec_t *ep;
  1253. fep = (struct fec_enet_private *)dev->priv;
  1254. ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
  1255. if (dev->flags&IFF_PROMISC) {
  1256. /* Log any net taps. */
  1257. printk("%s: Promiscuous mode enabled.\n", dev->name);
  1258. ep->fec_r_cntrl |= FEC_RCNTRL_PROM;
  1259. } else {
  1260. ep->fec_r_cntrl &= ~FEC_RCNTRL_PROM;
  1261. if (dev->flags & IFF_ALLMULTI) {
  1262. /* Catch all multicast addresses, so set the
  1263. * filter to all 1's.
  1264. */
  1265. ep->fec_hash_table_high = 0xffffffff;
  1266. ep->fec_hash_table_low = 0xffffffff;
  1267. }
  1268. #if 0
  1269. else {
  1270. /* Clear filter and add the addresses in the list.
  1271. */
  1272. ep->sen_gaddr1 = 0;
  1273. ep->sen_gaddr2 = 0;
  1274. ep->sen_gaddr3 = 0;
  1275. ep->sen_gaddr4 = 0;
  1276. dmi = dev->mc_list;
  1277. for (i=0; i<dev->mc_count; i++) {
  1278. /* Only support group multicast for now.
  1279. */
  1280. if (!(dmi->dmi_addr[0] & 1))
  1281. continue;
  1282. /* The address in dmi_addr is LSB first,
  1283. * and taddr is MSB first. We have to
  1284. * copy bytes MSB first from dmi_addr.
  1285. */
  1286. mcptr = (u_char *)dmi->dmi_addr + 5;
  1287. tdptr = (u_char *)&ep->sen_taddrh;
  1288. for (j=0; j<6; j++)
  1289. *tdptr++ = *mcptr--;
  1290. /* Ask CPM to run CRC and set bit in
  1291. * filter mask.
  1292. */
  1293. cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
  1294. /* this delay is necessary here -- Cort */
  1295. udelay(10);
  1296. while (cpmp->cp_cpcr & CPM_CR_FLG);
  1297. }
  1298. }
  1299. #endif
  1300. }
  1301. }
  1302. /* Initialize the FEC Ethernet on 860T.
  1303. */
  1304. static int __init fec_enet_init(void)
  1305. {
  1306. struct net_device *dev;
  1307. struct fec_enet_private *fep;
  1308. int i, j, k, err;
  1309. unsigned char *eap, *iap, *ba;
  1310. dma_addr_t mem_addr;
  1311. volatile cbd_t *bdp;
  1312. cbd_t *cbd_base;
  1313. volatile immap_t *immap;
  1314. volatile fec_t *fecp;
  1315. bd_t *bd;
  1316. #ifdef CONFIG_SCC_ENET
  1317. unsigned char tmpaddr[6];
  1318. #endif
  1319. immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
  1320. bd = (bd_t *)__res;
  1321. dev = alloc_etherdev(sizeof(*fep));
  1322. if (!dev)
  1323. return -ENOMEM;
  1324. fep = dev->priv;
  1325. fecp = &(immap->im_cpm.cp_fec);
  1326. /* Whack a reset. We should wait for this.
  1327. */
  1328. fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
  1329. for (i = 0;
  1330. (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
  1331. ++i) {
  1332. udelay(1);
  1333. }
  1334. if (i == FEC_RESET_DELAY) {
  1335. printk ("FEC Reset timeout!\n");
  1336. }
  1337. /* Set the Ethernet address. If using multiple Enets on the 8xx,
  1338. * this needs some work to get unique addresses.
  1339. */
  1340. eap = (unsigned char *)my_enet_addr;
  1341. iap = bd->bi_enetaddr;
  1342. #ifdef CONFIG_SCC_ENET
  1343. /*
  1344. * If a board has Ethernet configured both on a SCC and the
  1345. * FEC, it needs (at least) 2 MAC addresses (we know that Sun
  1346. * disagrees, but anyway). For the FEC port, we create
  1347. * another address by setting one of the address bits above
  1348. * something that would have (up to now) been allocated.
  1349. */
  1350. for (i=0; i<6; i++)
  1351. tmpaddr[i] = *iap++;
  1352. tmpaddr[3] |= 0x80;
  1353. iap = tmpaddr;
  1354. #endif
  1355. for (i=0; i<6; i++) {
  1356. dev->dev_addr[i] = *eap++ = *iap++;
  1357. }
  1358. /* Allocate memory for buffer descriptors.
  1359. */
  1360. if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
  1361. printk("FEC init error. Need more space.\n");
  1362. printk("FEC initialization failed.\n");
  1363. return 1;
  1364. }
  1365. cbd_base = (cbd_t *)dma_alloc_coherent(dev->class_dev.dev, PAGE_SIZE,
  1366. &mem_addr, GFP_KERNEL);
  1367. /* Set receive and transmit descriptor base.
  1368. */
  1369. fep->rx_bd_base = cbd_base;
  1370. fep->tx_bd_base = cbd_base + RX_RING_SIZE;
  1371. fep->skb_cur = fep->skb_dirty = 0;
  1372. /* Initialize the receive buffer descriptors.
  1373. */
  1374. bdp = fep->rx_bd_base;
  1375. k = 0;
  1376. for (i=0; i<FEC_ENET_RX_PAGES; i++) {
  1377. /* Allocate a page.
  1378. */
  1379. ba = (unsigned char *)dma_alloc_coherent(dev->class_dev.dev,
  1380. PAGE_SIZE,
  1381. &mem_addr,
  1382. GFP_KERNEL);
  1383. /* BUG: no check for failure */
  1384. /* Initialize the BD for every fragment in the page.
  1385. */
  1386. for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
  1387. bdp->cbd_sc = BD_ENET_RX_EMPTY;
  1388. bdp->cbd_bufaddr = mem_addr;
  1389. fep->rx_vaddr[k++] = ba;
  1390. mem_addr += FEC_ENET_RX_FRSIZE;
  1391. ba += FEC_ENET_RX_FRSIZE;
  1392. bdp++;
  1393. }
  1394. }
  1395. /* Set the last buffer to wrap.
  1396. */
  1397. bdp--;
  1398. bdp->cbd_sc |= BD_SC_WRAP;
  1399. #ifdef CONFIG_FEC_PACKETHOOK
  1400. fep->ph_lock = 0;
  1401. fep->ph_rxhandler = fep->ph_txhandler = NULL;
  1402. fep->ph_proto = 0;
  1403. fep->ph_regaddr = NULL;
  1404. fep->ph_priv = NULL;
  1405. #endif
  1406. /* Install our interrupt handler.
  1407. */
  1408. if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
  1409. panic("Could not allocate FEC IRQ!");
  1410. #ifdef CONFIG_RPXCLASSIC
  1411. /* Make Port C, bit 15 an input that causes interrupts.
  1412. */
  1413. immap->im_ioport.iop_pcpar &= ~0x0001;
  1414. immap->im_ioport.iop_pcdir &= ~0x0001;
  1415. immap->im_ioport.iop_pcso &= ~0x0001;
  1416. immap->im_ioport.iop_pcint |= 0x0001;
  1417. cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
  1418. /* Make LEDS reflect Link status.
  1419. */
  1420. *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
  1421. #endif
  1422. #ifdef PHY_INTERRUPT
  1423. ((immap_t *)IMAP_ADDR)->im_siu_conf.sc_siel |=
  1424. (0x80000000 >> PHY_INTERRUPT);
  1425. if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) != 0)
  1426. panic("Could not allocate MII IRQ!");
  1427. #endif
  1428. dev->base_addr = (unsigned long)fecp;
  1429. /* The FEC Ethernet specific entries in the device structure. */
  1430. dev->open = fec_enet_open;
  1431. dev->hard_start_xmit = fec_enet_start_xmit;
  1432. dev->tx_timeout = fec_timeout;
  1433. dev->watchdog_timeo = TX_TIMEOUT;
  1434. dev->stop = fec_enet_close;
  1435. dev->get_stats = fec_enet_get_stats;
  1436. dev->set_multicast_list = set_multicast_list;
  1437. #ifdef CONFIG_USE_MDIO
  1438. for (i=0; i<NMII-1; i++)
  1439. mii_cmds[i].mii_next = &mii_cmds[i+1];
  1440. mii_free = mii_cmds;
  1441. #endif /* CONFIG_USE_MDIO */
  1442. /* Configure all of port D for MII.
  1443. */
  1444. immap->im_ioport.iop_pdpar = 0x1fff;
  1445. /* Bits moved from Rev. D onward.
  1446. */
  1447. if ((mfspr(SPRN_IMMR) & 0xffff) < 0x0501)
  1448. immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
  1449. else
  1450. immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
  1451. #ifdef CONFIG_USE_MDIO
  1452. /* Set MII speed to 2.5 MHz
  1453. */
  1454. fecp->fec_mii_speed = fep->phy_speed =
  1455. (( (bd->bi_intfreq + 500000) / 2500000 / 2 ) & 0x3F ) << 1;
  1456. #else
  1457. fecp->fec_mii_speed = 0; /* turn off MDIO */
  1458. #endif /* CONFIG_USE_MDIO */
  1459. err = register_netdev(dev);
  1460. if (err) {
  1461. free_netdev(dev);
  1462. return err;
  1463. }
  1464. printk ("%s: FEC ENET Version 0.2, FEC irq %d"
  1465. #ifdef PHY_INTERRUPT
  1466. ", MII irq %d"
  1467. #endif
  1468. ", addr ",
  1469. dev->name, FEC_INTERRUPT
  1470. #ifdef PHY_INTERRUPT
  1471. , PHY_INTERRUPT
  1472. #endif
  1473. );
  1474. for (i=0; i<6; i++)
  1475. printk("%02x%c", dev->dev_addr[i], (i==5) ? '\n' : ':');
  1476. #ifdef CONFIG_USE_MDIO /* start in full duplex mode, and negotiate speed */
  1477. fec_restart (dev, 1);
  1478. #else /* always use half duplex mode only */
  1479. fec_restart (dev, 0);
  1480. #endif
  1481. #ifdef CONFIG_USE_MDIO
  1482. /* Queue up command to detect the PHY and initialize the
  1483. * remainder of the interface.
  1484. */
  1485. fep->phy_id_done = 0;
  1486. fep->phy_addr = 0;
  1487. mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
  1488. #endif /* CONFIG_USE_MDIO */
  1489. return 0;
  1490. }
  1491. module_init(fec_enet_init);
  1492. /* This function is called to start or restart the FEC during a link
  1493. * change. This only happens when switching between half and full
  1494. * duplex.
  1495. */
  1496. static void
  1497. fec_restart(struct net_device *dev, int duplex)
  1498. {
  1499. struct fec_enet_private *fep;
  1500. int i;
  1501. volatile cbd_t *bdp;
  1502. volatile immap_t *immap;
  1503. volatile fec_t *fecp;
  1504. immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
  1505. fecp = &(immap->im_cpm.cp_fec);
  1506. fep = dev->priv;
  1507. /* Whack a reset. We should wait for this.
  1508. */
  1509. fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
  1510. for (i = 0;
  1511. (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
  1512. ++i) {
  1513. udelay(1);
  1514. }
  1515. if (i == FEC_RESET_DELAY) {
  1516. printk ("FEC Reset timeout!\n");
  1517. }
  1518. /* Set station address.
  1519. */
  1520. fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
  1521. fecp->fec_addr_high = my_enet_addr[2];
  1522. /* Reset all multicast.
  1523. */
  1524. fecp->fec_hash_table_high = 0;
  1525. fecp->fec_hash_table_low = 0;
  1526. /* Set maximum receive buffer size.
  1527. */
  1528. fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
  1529. fecp->fec_r_hash = PKT_MAXBUF_SIZE;
  1530. /* Set receive and transmit descriptor base.
  1531. */
  1532. fecp->fec_r_des_start = iopa((uint)(fep->rx_bd_base));
  1533. fecp->fec_x_des_start = iopa((uint)(fep->tx_bd_base));
  1534. fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
  1535. fep->cur_rx = fep->rx_bd_base;
  1536. /* Reset SKB transmit buffers.
  1537. */
  1538. fep->skb_cur = fep->skb_dirty = 0;
  1539. for (i=0; i<=TX_RING_MOD_MASK; i++) {
  1540. if (fep->tx_skbuff[i] != NULL) {
  1541. dev_kfree_skb(fep->tx_skbuff[i]);
  1542. fep->tx_skbuff[i] = NULL;
  1543. }
  1544. }
  1545. /* Initialize the receive buffer descriptors.
  1546. */
  1547. bdp = fep->rx_bd_base;
  1548. for (i=0; i<RX_RING_SIZE; i++) {
  1549. /* Initialize the BD for every fragment in the page.
  1550. */
  1551. bdp->cbd_sc = BD_ENET_RX_EMPTY;
  1552. bdp++;
  1553. }
  1554. /* Set the last buffer to wrap.
  1555. */
  1556. bdp--;
  1557. bdp->cbd_sc |= BD_SC_WRAP;
  1558. /* ...and the same for transmmit.
  1559. */
  1560. bdp = fep->tx_bd_base;
  1561. for (i=0; i<TX_RING_SIZE; i++) {
  1562. /* Initialize the BD for every fragment in the page.
  1563. */
  1564. bdp->cbd_sc = 0;
  1565. bdp->cbd_bufaddr = 0;
  1566. bdp++;
  1567. }
  1568. /* Set the last buffer to wrap.
  1569. */
  1570. bdp--;
  1571. bdp->cbd_sc |= BD_SC_WRAP;
  1572. /* Enable MII mode.
  1573. */
  1574. if (duplex) {
  1575. fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE; /* MII enable */
  1576. fecp->fec_x_cntrl = FEC_TCNTRL_FDEN; /* FD enable */
  1577. }
  1578. else {
  1579. fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT;
  1580. fecp->fec_x_cntrl = 0;
  1581. }
  1582. fep->full_duplex = duplex;
  1583. /* Enable big endian and don't care about SDMA FC.
  1584. */
  1585. fecp->fec_fun_code = 0x78000000;
  1586. #ifdef CONFIG_USE_MDIO
  1587. /* Set MII speed.
  1588. */
  1589. fecp->fec_mii_speed = fep->phy_speed;
  1590. #endif /* CONFIG_USE_MDIO */
  1591. /* Clear any outstanding interrupt.
  1592. */
  1593. fecp->fec_ievent = 0xffc0;
  1594. fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
  1595. /* Enable interrupts we wish to service.
  1596. */
  1597. fecp->fec_imask = ( FEC_ENET_TXF | FEC_ENET_TXB |
  1598. FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII );
  1599. /* And last, enable the transmit and receive processing.
  1600. */
  1601. fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN;
  1602. fecp->fec_r_des_active = 0x01000000;
  1603. }
  1604. static void
  1605. fec_stop(struct net_device *dev)
  1606. {
  1607. volatile immap_t *immap;
  1608. volatile fec_t *fecp;
  1609. struct fec_enet_private *fep;
  1610. int i;
  1611. immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
  1612. fecp = &(immap->im_cpm.cp_fec);
  1613. if ((fecp->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0)
  1614. return; /* already down */
  1615. fep = dev->priv;
  1616. fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
  1617. for (i = 0;
  1618. ((fecp->fec_ievent & 0x10000000) == 0) && (i < FEC_RESET_DELAY);
  1619. ++i) {
  1620. udelay(1);
  1621. }
  1622. if (i == FEC_RESET_DELAY) {
  1623. printk ("FEC timeout on graceful transmit stop\n");
  1624. }
  1625. /* Clear outstanding MII command interrupts.
  1626. */
  1627. fecp->fec_ievent = FEC_ENET_MII;
  1628. /* Enable MII command finished interrupt
  1629. */
  1630. fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
  1631. fecp->fec_imask = FEC_ENET_MII;
  1632. #ifdef CONFIG_USE_MDIO
  1633. /* Set MII speed.
  1634. */
  1635. fecp->fec_mii_speed = fep->phy_speed;
  1636. #endif /* CONFIG_USE_MDIO */
  1637. /* Disable FEC
  1638. */
  1639. fecp->fec_ecntrl &= ~(FEC_ECNTRL_ETHER_EN);
  1640. }