pci.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837
  1. /*
  2. * Copyright (C) 2001 Allan Trautman, IBM Corporation
  3. *
  4. * iSeries specific routines for PCI.
  5. *
  6. * Based on code from pci.c and iSeries_pci.c 32bit
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  21. */
  22. #include <linux/kernel.h>
  23. #include <linux/list.h>
  24. #include <linux/string.h>
  25. #include <linux/init.h>
  26. #include <linux/module.h>
  27. #include <linux/ide.h>
  28. #include <linux/pci.h>
  29. #include <asm/io.h>
  30. #include <asm/irq.h>
  31. #include <asm/prom.h>
  32. #include <asm/machdep.h>
  33. #include <asm/pci-bridge.h>
  34. #include <asm/iommu.h>
  35. #include <asm/abs_addr.h>
  36. #include <asm/firmware.h>
  37. #include <asm/iseries/hv_call_xm.h>
  38. #include <asm/iseries/mf.h>
  39. #include <asm/iseries/iommu.h>
  40. #include <asm/ppc-pci.h>
  41. #include "irq.h"
  42. #include "pci.h"
  43. #include "call_pci.h"
  44. /*
  45. * Forward declares of prototypes.
  46. */
  47. static struct device_node *find_Device_Node(int bus, int devfn);
  48. static int Pci_Retry_Max = 3; /* Only retry 3 times */
  49. static int Pci_Error_Flag = 1; /* Set Retry Error on. */
  50. static struct pci_ops iSeries_pci_ops;
  51. /*
  52. * Table defines
  53. * Each Entry size is 4 MB * 1024 Entries = 4GB I/O address space.
  54. */
  55. #define IOMM_TABLE_MAX_ENTRIES 1024
  56. #define IOMM_TABLE_ENTRY_SIZE 0x0000000000400000UL
  57. #define BASE_IO_MEMORY 0xE000000000000000UL
  58. static unsigned long max_io_memory = BASE_IO_MEMORY;
  59. static long current_iomm_table_entry;
  60. /*
  61. * Lookup Tables.
  62. */
  63. static struct device_node *iomm_table[IOMM_TABLE_MAX_ENTRIES];
  64. static u8 iobar_table[IOMM_TABLE_MAX_ENTRIES];
  65. static const char pci_io_text[] = "iSeries PCI I/O";
  66. static DEFINE_SPINLOCK(iomm_table_lock);
  67. /*
  68. * iomm_table_allocate_entry
  69. *
  70. * Adds pci_dev entry in address translation table
  71. *
  72. * - Allocates the number of entries required in table base on BAR
  73. * size.
  74. * - Allocates starting at BASE_IO_MEMORY and increases.
  75. * - The size is round up to be a multiple of entry size.
  76. * - CurrentIndex is incremented to keep track of the last entry.
  77. * - Builds the resource entry for allocated BARs.
  78. */
  79. static void iomm_table_allocate_entry(struct pci_dev *dev, int bar_num)
  80. {
  81. struct resource *bar_res = &dev->resource[bar_num];
  82. long bar_size = pci_resource_len(dev, bar_num);
  83. /*
  84. * No space to allocate, quick exit, skip Allocation.
  85. */
  86. if (bar_size == 0)
  87. return;
  88. /*
  89. * Set Resource values.
  90. */
  91. spin_lock(&iomm_table_lock);
  92. bar_res->name = pci_io_text;
  93. bar_res->start = BASE_IO_MEMORY +
  94. IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
  95. bar_res->end = bar_res->start + bar_size - 1;
  96. /*
  97. * Allocate the number of table entries needed for BAR.
  98. */
  99. while (bar_size > 0 ) {
  100. iomm_table[current_iomm_table_entry] = dev->sysdata;
  101. iobar_table[current_iomm_table_entry] = bar_num;
  102. bar_size -= IOMM_TABLE_ENTRY_SIZE;
  103. ++current_iomm_table_entry;
  104. }
  105. max_io_memory = BASE_IO_MEMORY +
  106. IOMM_TABLE_ENTRY_SIZE * current_iomm_table_entry;
  107. spin_unlock(&iomm_table_lock);
  108. }
  109. /*
  110. * allocate_device_bars
  111. *
  112. * - Allocates ALL pci_dev BAR's and updates the resources with the
  113. * BAR value. BARS with zero length will have the resources
  114. * The HvCallPci_getBarParms is used to get the size of the BAR
  115. * space. It calls iomm_table_allocate_entry to allocate
  116. * each entry.
  117. * - Loops through The Bar resources(0 - 5) including the ROM
  118. * is resource(6).
  119. */
  120. static void allocate_device_bars(struct pci_dev *dev)
  121. {
  122. int bar_num;
  123. for (bar_num = 0; bar_num <= PCI_ROM_RESOURCE; ++bar_num)
  124. iomm_table_allocate_entry(dev, bar_num);
  125. }
  126. /*
  127. * Log error information to system console.
  128. * Filter out the device not there errors.
  129. * PCI: EADs Connect Failed 0x18.58.10 Rc: 0x00xx
  130. * PCI: Read Vendor Failed 0x18.58.10 Rc: 0x00xx
  131. * PCI: Connect Bus Unit Failed 0x18.58.10 Rc: 0x00xx
  132. */
  133. static void pci_Log_Error(char *Error_Text, int Bus, int SubBus,
  134. int AgentId, int HvRc)
  135. {
  136. if (HvRc == 0x0302)
  137. return;
  138. printk(KERN_ERR "PCI: %s Failed: 0x%02X.%02X.%02X Rc: 0x%04X",
  139. Error_Text, Bus, SubBus, AgentId, HvRc);
  140. }
  141. /*
  142. * iSeries_pcibios_init
  143. *
  144. * Description:
  145. * This function checks for all possible system PCI host bridges that connect
  146. * PCI buses. The system hypervisor is queried as to the guest partition
  147. * ownership status. A pci_controller is built for any bus which is partially
  148. * owned or fully owned by this guest partition.
  149. */
  150. void iSeries_pcibios_init(void)
  151. {
  152. struct pci_controller *phb;
  153. struct device_node *root = of_find_node_by_path("/");
  154. struct device_node *node = NULL;
  155. if (root == NULL) {
  156. printk(KERN_CRIT "iSeries_pcibios_init: can't find root "
  157. "of device tree\n");
  158. return;
  159. }
  160. while ((node = of_get_next_child(root, node)) != NULL) {
  161. HvBusNumber bus;
  162. const u32 *busp;
  163. if ((node->type == NULL) || (strcmp(node->type, "pci") != 0))
  164. continue;
  165. busp = get_property(node, "bus-range", NULL);
  166. if (busp == NULL)
  167. continue;
  168. bus = *busp;
  169. printk("bus %d appears to exist\n", bus);
  170. phb = pcibios_alloc_controller(node);
  171. if (phb == NULL)
  172. continue;
  173. phb->pci_mem_offset = phb->local_number = bus;
  174. phb->first_busno = bus;
  175. phb->last_busno = bus;
  176. phb->ops = &iSeries_pci_ops;
  177. }
  178. of_node_put(root);
  179. pci_devs_phb_init();
  180. }
  181. /*
  182. * iSeries_pci_final_fixup(void)
  183. */
  184. void __init iSeries_pci_final_fixup(void)
  185. {
  186. struct pci_dev *pdev = NULL;
  187. struct device_node *node;
  188. int DeviceCount = 0;
  189. /* Fix up at the device node and pci_dev relationship */
  190. mf_display_src(0xC9000100);
  191. printk("pcibios_final_fixup\n");
  192. for_each_pci_dev(pdev) {
  193. node = find_Device_Node(pdev->bus->number, pdev->devfn);
  194. printk("pci dev %p (%x.%x), node %p\n", pdev,
  195. pdev->bus->number, pdev->devfn, node);
  196. if (node != NULL) {
  197. struct pci_dn *pdn = PCI_DN(node);
  198. const u32 *agent;
  199. agent = get_property(node, "linux,agent-id", NULL);
  200. if ((pdn != NULL) && (agent != NULL)) {
  201. u8 irq = iSeries_allocate_IRQ(pdn->busno, 0,
  202. pdn->bussubno);
  203. int err;
  204. err = HvCallXm_connectBusUnit(pdn->busno, pdn->bussubno,
  205. *agent, irq);
  206. if (err)
  207. pci_Log_Error("Connect Bus Unit",
  208. pdn->busno, pdn->bussubno, *agent, err);
  209. else {
  210. err = HvCallPci_configStore8(pdn->busno, pdn->bussubno,
  211. *agent,
  212. PCI_INTERRUPT_LINE,
  213. irq);
  214. if (err)
  215. pci_Log_Error("PciCfgStore Irq Failed!",
  216. pdn->busno, pdn->bussubno, *agent, err);
  217. }
  218. if (!err)
  219. pdev->irq = irq;
  220. }
  221. ++DeviceCount;
  222. pdev->sysdata = (void *)node;
  223. PCI_DN(node)->pcidev = pdev;
  224. allocate_device_bars(pdev);
  225. iSeries_Device_Information(pdev, DeviceCount);
  226. iommu_devnode_init_iSeries(node);
  227. } else
  228. printk("PCI: Device Tree not found for 0x%016lX\n",
  229. (unsigned long)pdev);
  230. }
  231. iSeries_activate_IRQs();
  232. mf_display_src(0xC9000200);
  233. }
  234. /*
  235. * Look down the chain to find the matching Device Device
  236. */
  237. static struct device_node *find_Device_Node(int bus, int devfn)
  238. {
  239. struct device_node *node;
  240. for (node = NULL; (node = of_find_all_nodes(node)); ) {
  241. struct pci_dn *pdn = PCI_DN(node);
  242. if (pdn && (bus == pdn->busno) && (devfn == pdn->devfn))
  243. return node;
  244. }
  245. return NULL;
  246. }
  247. #if 0
  248. /*
  249. * Returns the device node for the passed pci_dev
  250. * Sanity Check Node PciDev to passed pci_dev
  251. * If none is found, returns a NULL which the client must handle.
  252. */
  253. static struct device_node *get_Device_Node(struct pci_dev *pdev)
  254. {
  255. struct device_node *node;
  256. node = pdev->sysdata;
  257. if (node == NULL || PCI_DN(node)->pcidev != pdev)
  258. node = find_Device_Node(pdev->bus->number, pdev->devfn);
  259. return node;
  260. }
  261. #endif
  262. /*
  263. * Config space read and write functions.
  264. * For now at least, we look for the device node for the bus and devfn
  265. * that we are asked to access. It may be possible to translate the devfn
  266. * to a subbus and deviceid more directly.
  267. */
  268. static u64 hv_cfg_read_func[4] = {
  269. HvCallPciConfigLoad8, HvCallPciConfigLoad16,
  270. HvCallPciConfigLoad32, HvCallPciConfigLoad32
  271. };
  272. static u64 hv_cfg_write_func[4] = {
  273. HvCallPciConfigStore8, HvCallPciConfigStore16,
  274. HvCallPciConfigStore32, HvCallPciConfigStore32
  275. };
  276. /*
  277. * Read PCI config space
  278. */
  279. static int iSeries_pci_read_config(struct pci_bus *bus, unsigned int devfn,
  280. int offset, int size, u32 *val)
  281. {
  282. struct device_node *node = find_Device_Node(bus->number, devfn);
  283. u64 fn;
  284. struct HvCallPci_LoadReturn ret;
  285. if (node == NULL)
  286. return PCIBIOS_DEVICE_NOT_FOUND;
  287. if (offset > 255) {
  288. *val = ~0;
  289. return PCIBIOS_BAD_REGISTER_NUMBER;
  290. }
  291. fn = hv_cfg_read_func[(size - 1) & 3];
  292. HvCall3Ret16(fn, &ret, iseries_ds_addr(node), offset, 0);
  293. if (ret.rc != 0) {
  294. *val = ~0;
  295. return PCIBIOS_DEVICE_NOT_FOUND; /* or something */
  296. }
  297. *val = ret.value;
  298. return 0;
  299. }
  300. /*
  301. * Write PCI config space
  302. */
  303. static int iSeries_pci_write_config(struct pci_bus *bus, unsigned int devfn,
  304. int offset, int size, u32 val)
  305. {
  306. struct device_node *node = find_Device_Node(bus->number, devfn);
  307. u64 fn;
  308. u64 ret;
  309. if (node == NULL)
  310. return PCIBIOS_DEVICE_NOT_FOUND;
  311. if (offset > 255)
  312. return PCIBIOS_BAD_REGISTER_NUMBER;
  313. fn = hv_cfg_write_func[(size - 1) & 3];
  314. ret = HvCall4(fn, iseries_ds_addr(node), offset, val, 0);
  315. if (ret != 0)
  316. return PCIBIOS_DEVICE_NOT_FOUND;
  317. return 0;
  318. }
  319. static struct pci_ops iSeries_pci_ops = {
  320. .read = iSeries_pci_read_config,
  321. .write = iSeries_pci_write_config
  322. };
  323. /*
  324. * Check Return Code
  325. * -> On Failure, print and log information.
  326. * Increment Retry Count, if exceeds max, panic partition.
  327. *
  328. * PCI: Device 23.90 ReadL I/O Error( 0): 0x1234
  329. * PCI: Device 23.90 ReadL Retry( 1)
  330. * PCI: Device 23.90 ReadL Retry Successful(1)
  331. */
  332. static int CheckReturnCode(char *TextHdr, struct device_node *DevNode,
  333. int *retry, u64 ret)
  334. {
  335. if (ret != 0) {
  336. struct pci_dn *pdn = PCI_DN(DevNode);
  337. (*retry)++;
  338. printk("PCI: %s: Device 0x%04X:%02X I/O Error(%2d): 0x%04X\n",
  339. TextHdr, pdn->busno, pdn->devfn,
  340. *retry, (int)ret);
  341. /*
  342. * Bump the retry and check for retry count exceeded.
  343. * If, Exceeded, panic the system.
  344. */
  345. if (((*retry) > Pci_Retry_Max) &&
  346. (Pci_Error_Flag > 0)) {
  347. mf_display_src(0xB6000103);
  348. panic_timeout = 0;
  349. panic("PCI: Hardware I/O Error, SRC B6000103, "
  350. "Automatic Reboot Disabled.\n");
  351. }
  352. return -1; /* Retry Try */
  353. }
  354. return 0;
  355. }
  356. /*
  357. * Translate the I/O Address into a device node, bar, and bar offset.
  358. * Note: Make sure the passed variable end up on the stack to avoid
  359. * the exposure of being device global.
  360. */
  361. static inline struct device_node *xlate_iomm_address(
  362. const volatile void __iomem *IoAddress,
  363. u64 *dsaptr, u64 *BarOffsetPtr)
  364. {
  365. unsigned long OrigIoAddr;
  366. unsigned long BaseIoAddr;
  367. unsigned long TableIndex;
  368. struct device_node *DevNode;
  369. OrigIoAddr = (unsigned long __force)IoAddress;
  370. if ((OrigIoAddr < BASE_IO_MEMORY) || (OrigIoAddr >= max_io_memory))
  371. return NULL;
  372. BaseIoAddr = OrigIoAddr - BASE_IO_MEMORY;
  373. TableIndex = BaseIoAddr / IOMM_TABLE_ENTRY_SIZE;
  374. DevNode = iomm_table[TableIndex];
  375. if (DevNode != NULL) {
  376. int barnum = iobar_table[TableIndex];
  377. *dsaptr = iseries_ds_addr(DevNode) | (barnum << 24);
  378. *BarOffsetPtr = BaseIoAddr % IOMM_TABLE_ENTRY_SIZE;
  379. } else
  380. panic("PCI: Invalid PCI IoAddress detected!\n");
  381. return DevNode;
  382. }
  383. /*
  384. * Read MM I/O Instructions for the iSeries
  385. * On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
  386. * else, data is returned in big Endian format.
  387. *
  388. * iSeries_Read_Byte = Read Byte ( 8 bit)
  389. * iSeries_Read_Word = Read Word (16 bit)
  390. * iSeries_Read_Long = Read Long (32 bit)
  391. */
  392. static u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
  393. {
  394. u64 BarOffset;
  395. u64 dsa;
  396. int retry = 0;
  397. struct HvCallPci_LoadReturn ret;
  398. struct device_node *DevNode =
  399. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  400. if (DevNode == NULL) {
  401. static unsigned long last_jiffies;
  402. static int num_printed;
  403. if ((jiffies - last_jiffies) > 60 * HZ) {
  404. last_jiffies = jiffies;
  405. num_printed = 0;
  406. }
  407. if (num_printed++ < 10)
  408. printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress);
  409. return 0xff;
  410. }
  411. do {
  412. HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);
  413. } while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0);
  414. return (u8)ret.value;
  415. }
  416. static u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
  417. {
  418. u64 BarOffset;
  419. u64 dsa;
  420. int retry = 0;
  421. struct HvCallPci_LoadReturn ret;
  422. struct device_node *DevNode =
  423. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  424. if (DevNode == NULL) {
  425. static unsigned long last_jiffies;
  426. static int num_printed;
  427. if ((jiffies - last_jiffies) > 60 * HZ) {
  428. last_jiffies = jiffies;
  429. num_printed = 0;
  430. }
  431. if (num_printed++ < 10)
  432. printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress);
  433. return 0xffff;
  434. }
  435. do {
  436. HvCall3Ret16(HvCallPciBarLoad16, &ret, dsa,
  437. BarOffset, 0);
  438. } while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0);
  439. return swab16((u16)ret.value);
  440. }
  441. static u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
  442. {
  443. u64 BarOffset;
  444. u64 dsa;
  445. int retry = 0;
  446. struct HvCallPci_LoadReturn ret;
  447. struct device_node *DevNode =
  448. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  449. if (DevNode == NULL) {
  450. static unsigned long last_jiffies;
  451. static int num_printed;
  452. if ((jiffies - last_jiffies) > 60 * HZ) {
  453. last_jiffies = jiffies;
  454. num_printed = 0;
  455. }
  456. if (num_printed++ < 10)
  457. printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress);
  458. return 0xffffffff;
  459. }
  460. do {
  461. HvCall3Ret16(HvCallPciBarLoad32, &ret, dsa,
  462. BarOffset, 0);
  463. } while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0);
  464. return swab32((u32)ret.value);
  465. }
  466. /*
  467. * Write MM I/O Instructions for the iSeries
  468. *
  469. * iSeries_Write_Byte = Write Byte (8 bit)
  470. * iSeries_Write_Word = Write Word(16 bit)
  471. * iSeries_Write_Long = Write Long(32 bit)
  472. */
  473. static void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress)
  474. {
  475. u64 BarOffset;
  476. u64 dsa;
  477. int retry = 0;
  478. u64 rc;
  479. struct device_node *DevNode =
  480. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  481. if (DevNode == NULL) {
  482. static unsigned long last_jiffies;
  483. static int num_printed;
  484. if ((jiffies - last_jiffies) > 60 * HZ) {
  485. last_jiffies = jiffies;
  486. num_printed = 0;
  487. }
  488. if (num_printed++ < 10)
  489. printk(KERN_ERR "iSeries_Write_Byte: invalid access at IO address %p\n", IoAddress);
  490. return;
  491. }
  492. do {
  493. rc = HvCall4(HvCallPciBarStore8, dsa, BarOffset, data, 0);
  494. } while (CheckReturnCode("WWB", DevNode, &retry, rc) != 0);
  495. }
  496. static void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress)
  497. {
  498. u64 BarOffset;
  499. u64 dsa;
  500. int retry = 0;
  501. u64 rc;
  502. struct device_node *DevNode =
  503. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  504. if (DevNode == NULL) {
  505. static unsigned long last_jiffies;
  506. static int num_printed;
  507. if ((jiffies - last_jiffies) > 60 * HZ) {
  508. last_jiffies = jiffies;
  509. num_printed = 0;
  510. }
  511. if (num_printed++ < 10)
  512. printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress);
  513. return;
  514. }
  515. do {
  516. rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0);
  517. } while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0);
  518. }
  519. static void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress)
  520. {
  521. u64 BarOffset;
  522. u64 dsa;
  523. int retry = 0;
  524. u64 rc;
  525. struct device_node *DevNode =
  526. xlate_iomm_address(IoAddress, &dsa, &BarOffset);
  527. if (DevNode == NULL) {
  528. static unsigned long last_jiffies;
  529. static int num_printed;
  530. if ((jiffies - last_jiffies) > 60 * HZ) {
  531. last_jiffies = jiffies;
  532. num_printed = 0;
  533. }
  534. if (num_printed++ < 10)
  535. printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress);
  536. return;
  537. }
  538. do {
  539. rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0);
  540. } while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0);
  541. }
  542. extern unsigned char __raw_readb(const volatile void __iomem *addr)
  543. {
  544. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  545. return *(volatile unsigned char __force *)addr;
  546. }
  547. EXPORT_SYMBOL(__raw_readb);
  548. extern unsigned short __raw_readw(const volatile void __iomem *addr)
  549. {
  550. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  551. return *(volatile unsigned short __force *)addr;
  552. }
  553. EXPORT_SYMBOL(__raw_readw);
  554. extern unsigned int __raw_readl(const volatile void __iomem *addr)
  555. {
  556. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  557. return *(volatile unsigned int __force *)addr;
  558. }
  559. EXPORT_SYMBOL(__raw_readl);
  560. extern unsigned long __raw_readq(const volatile void __iomem *addr)
  561. {
  562. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  563. return *(volatile unsigned long __force *)addr;
  564. }
  565. EXPORT_SYMBOL(__raw_readq);
  566. extern void __raw_writeb(unsigned char v, volatile void __iomem *addr)
  567. {
  568. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  569. *(volatile unsigned char __force *)addr = v;
  570. }
  571. EXPORT_SYMBOL(__raw_writeb);
  572. extern void __raw_writew(unsigned short v, volatile void __iomem *addr)
  573. {
  574. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  575. *(volatile unsigned short __force *)addr = v;
  576. }
  577. EXPORT_SYMBOL(__raw_writew);
  578. extern void __raw_writel(unsigned int v, volatile void __iomem *addr)
  579. {
  580. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  581. *(volatile unsigned int __force *)addr = v;
  582. }
  583. EXPORT_SYMBOL(__raw_writel);
  584. extern void __raw_writeq(unsigned long v, volatile void __iomem *addr)
  585. {
  586. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  587. *(volatile unsigned long __force *)addr = v;
  588. }
  589. EXPORT_SYMBOL(__raw_writeq);
  590. int in_8(const volatile unsigned char __iomem *addr)
  591. {
  592. if (firmware_has_feature(FW_FEATURE_ISERIES))
  593. return iSeries_Read_Byte(addr);
  594. return __in_8(addr);
  595. }
  596. EXPORT_SYMBOL(in_8);
  597. void out_8(volatile unsigned char __iomem *addr, int val)
  598. {
  599. if (firmware_has_feature(FW_FEATURE_ISERIES))
  600. iSeries_Write_Byte(val, addr);
  601. else
  602. __out_8(addr, val);
  603. }
  604. EXPORT_SYMBOL(out_8);
  605. int in_le16(const volatile unsigned short __iomem *addr)
  606. {
  607. if (firmware_has_feature(FW_FEATURE_ISERIES))
  608. return iSeries_Read_Word(addr);
  609. return __in_le16(addr);
  610. }
  611. EXPORT_SYMBOL(in_le16);
  612. int in_be16(const volatile unsigned short __iomem *addr)
  613. {
  614. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  615. return __in_be16(addr);
  616. }
  617. EXPORT_SYMBOL(in_be16);
  618. void out_le16(volatile unsigned short __iomem *addr, int val)
  619. {
  620. if (firmware_has_feature(FW_FEATURE_ISERIES))
  621. iSeries_Write_Word(val, addr);
  622. else
  623. __out_le16(addr, val);
  624. }
  625. EXPORT_SYMBOL(out_le16);
  626. void out_be16(volatile unsigned short __iomem *addr, int val)
  627. {
  628. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  629. __out_be16(addr, val);
  630. }
  631. EXPORT_SYMBOL(out_be16);
  632. unsigned in_le32(const volatile unsigned __iomem *addr)
  633. {
  634. if (firmware_has_feature(FW_FEATURE_ISERIES))
  635. return iSeries_Read_Long(addr);
  636. return __in_le32(addr);
  637. }
  638. EXPORT_SYMBOL(in_le32);
  639. unsigned in_be32(const volatile unsigned __iomem *addr)
  640. {
  641. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  642. return __in_be32(addr);
  643. }
  644. EXPORT_SYMBOL(in_be32);
  645. void out_le32(volatile unsigned __iomem *addr, int val)
  646. {
  647. if (firmware_has_feature(FW_FEATURE_ISERIES))
  648. iSeries_Write_Long(val, addr);
  649. else
  650. __out_le32(addr, val);
  651. }
  652. EXPORT_SYMBOL(out_le32);
  653. void out_be32(volatile unsigned __iomem *addr, int val)
  654. {
  655. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  656. __out_be32(addr, val);
  657. }
  658. EXPORT_SYMBOL(out_be32);
  659. unsigned long in_le64(const volatile unsigned long __iomem *addr)
  660. {
  661. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  662. return __in_le64(addr);
  663. }
  664. EXPORT_SYMBOL(in_le64);
  665. unsigned long in_be64(const volatile unsigned long __iomem *addr)
  666. {
  667. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  668. return __in_be64(addr);
  669. }
  670. EXPORT_SYMBOL(in_be64);
  671. void out_le64(volatile unsigned long __iomem *addr, unsigned long val)
  672. {
  673. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  674. __out_le64(addr, val);
  675. }
  676. EXPORT_SYMBOL(out_le64);
  677. void out_be64(volatile unsigned long __iomem *addr, unsigned long val)
  678. {
  679. BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
  680. __out_be64(addr, val);
  681. }
  682. EXPORT_SYMBOL(out_be64);
  683. void memset_io(volatile void __iomem *addr, int c, unsigned long n)
  684. {
  685. if (firmware_has_feature(FW_FEATURE_ISERIES)) {
  686. volatile char __iomem *d = addr;
  687. while (n-- > 0) {
  688. iSeries_Write_Byte(c, d++);
  689. }
  690. } else
  691. eeh_memset_io(addr, c, n);
  692. }
  693. EXPORT_SYMBOL(memset_io);
  694. void memcpy_fromio(void *dest, const volatile void __iomem *src,
  695. unsigned long n)
  696. {
  697. if (firmware_has_feature(FW_FEATURE_ISERIES)) {
  698. char *d = dest;
  699. const volatile char __iomem *s = src;
  700. while (n-- > 0) {
  701. *d++ = iSeries_Read_Byte(s++);
  702. }
  703. } else
  704. eeh_memcpy_fromio(dest, src, n);
  705. }
  706. EXPORT_SYMBOL(memcpy_fromio);
  707. void memcpy_toio(volatile void __iomem *dest, const void *src, unsigned long n)
  708. {
  709. if (firmware_has_feature(FW_FEATURE_ISERIES)) {
  710. const char *s = src;
  711. volatile char __iomem *d = dest;
  712. while (n-- > 0) {
  713. iSeries_Write_Byte(*s++, d++);
  714. }
  715. } else
  716. eeh_memcpy_toio(dest, src, n);
  717. }
  718. EXPORT_SYMBOL(memcpy_toio);