smpboot.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /*
  2. * SMP boot-related support
  3. *
  4. * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Copyright (C) 2001, 2004-2005 Intel Corp
  7. * Rohit Seth <rohit.seth@intel.com>
  8. * Suresh Siddha <suresh.b.siddha@intel.com>
  9. * Gordon Jin <gordon.jin@intel.com>
  10. * Ashok Raj <ashok.raj@intel.com>
  11. *
  12. * 01/05/16 Rohit Seth <rohit.seth@intel.com> Moved SMP booting functions from smp.c to here.
  13. * 01/04/27 David Mosberger <davidm@hpl.hp.com> Added ITC synching code.
  14. * 02/07/31 David Mosberger <davidm@hpl.hp.com> Switch over to hotplug-CPU boot-sequence.
  15. * smp_boot_cpus()/smp_commence() is replaced by
  16. * smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
  17. * 04/06/21 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  18. * 04/12/26 Jin Gordon <gordon.jin@intel.com>
  19. * 04/12/26 Rohit Seth <rohit.seth@intel.com>
  20. * Add multi-threading and multi-core detection
  21. * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
  22. * Setup cpu_sibling_map and cpu_core_map
  23. */
  24. #include <linux/module.h>
  25. #include <linux/acpi.h>
  26. #include <linux/bootmem.h>
  27. #include <linux/cpu.h>
  28. #include <linux/delay.h>
  29. #include <linux/init.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/irq.h>
  32. #include <linux/kernel.h>
  33. #include <linux/kernel_stat.h>
  34. #include <linux/mm.h>
  35. #include <linux/notifier.h>
  36. #include <linux/smp.h>
  37. #include <linux/smp_lock.h>
  38. #include <linux/spinlock.h>
  39. #include <linux/efi.h>
  40. #include <linux/percpu.h>
  41. #include <linux/bitops.h>
  42. #include <asm/atomic.h>
  43. #include <asm/cache.h>
  44. #include <asm/current.h>
  45. #include <asm/delay.h>
  46. #include <asm/ia32.h>
  47. #include <asm/io.h>
  48. #include <asm/irq.h>
  49. #include <asm/machvec.h>
  50. #include <asm/mca.h>
  51. #include <asm/page.h>
  52. #include <asm/pgalloc.h>
  53. #include <asm/pgtable.h>
  54. #include <asm/processor.h>
  55. #include <asm/ptrace.h>
  56. #include <asm/sal.h>
  57. #include <asm/system.h>
  58. #include <asm/tlbflush.h>
  59. #include <asm/unistd.h>
  60. #define SMP_DEBUG 0
  61. #if SMP_DEBUG
  62. #define Dprintk(x...) printk(x)
  63. #else
  64. #define Dprintk(x...)
  65. #endif
  66. #ifdef CONFIG_HOTPLUG_CPU
  67. #ifdef CONFIG_PERMIT_BSP_REMOVE
  68. #define bsp_remove_ok 1
  69. #else
  70. #define bsp_remove_ok 0
  71. #endif
  72. /*
  73. * Store all idle threads, this can be reused instead of creating
  74. * a new thread. Also avoids complicated thread destroy functionality
  75. * for idle threads.
  76. */
  77. struct task_struct *idle_thread_array[NR_CPUS];
  78. /*
  79. * Global array allocated for NR_CPUS at boot time
  80. */
  81. struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
  82. /*
  83. * start_ap in head.S uses this to store current booting cpu
  84. * info.
  85. */
  86. struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
  87. #define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
  88. #define get_idle_for_cpu(x) (idle_thread_array[(x)])
  89. #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
  90. #else
  91. #define get_idle_for_cpu(x) (NULL)
  92. #define set_idle_for_cpu(x,p)
  93. #define set_brendez_area(x)
  94. #endif
  95. /*
  96. * ITC synchronization related stuff:
  97. */
  98. #define MASTER (0)
  99. #define SLAVE (SMP_CACHE_BYTES/8)
  100. #define NUM_ROUNDS 64 /* magic value */
  101. #define NUM_ITERS 5 /* likewise */
  102. static DEFINE_SPINLOCK(itc_sync_lock);
  103. static volatile unsigned long go[SLAVE + 1];
  104. #define DEBUG_ITC_SYNC 0
  105. extern void __devinit calibrate_delay (void);
  106. extern void start_ap (void);
  107. extern unsigned long ia64_iobase;
  108. struct task_struct *task_for_booting_cpu;
  109. /*
  110. * State for each CPU
  111. */
  112. DEFINE_PER_CPU(int, cpu_state);
  113. /* Bitmasks of currently online, and possible CPUs */
  114. cpumask_t cpu_online_map;
  115. EXPORT_SYMBOL(cpu_online_map);
  116. cpumask_t cpu_possible_map = CPU_MASK_NONE;
  117. EXPORT_SYMBOL(cpu_possible_map);
  118. cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
  119. cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
  120. int smp_num_siblings = 1;
  121. int smp_num_cpucores = 1;
  122. /* which logical CPU number maps to which CPU (physical APIC ID) */
  123. volatile int ia64_cpu_to_sapicid[NR_CPUS];
  124. EXPORT_SYMBOL(ia64_cpu_to_sapicid);
  125. static volatile cpumask_t cpu_callin_map;
  126. struct smp_boot_data smp_boot_data __initdata;
  127. unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
  128. char __initdata no_int_routing;
  129. unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
  130. #ifdef CONFIG_FORCE_CPEI_RETARGET
  131. #define CPEI_OVERRIDE_DEFAULT (1)
  132. #else
  133. #define CPEI_OVERRIDE_DEFAULT (0)
  134. #endif
  135. unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
  136. static int __init
  137. cmdl_force_cpei(char *str)
  138. {
  139. int value=0;
  140. get_option (&str, &value);
  141. force_cpei_retarget = value;
  142. return 1;
  143. }
  144. __setup("force_cpei=", cmdl_force_cpei);
  145. static int __init
  146. nointroute (char *str)
  147. {
  148. no_int_routing = 1;
  149. printk ("no_int_routing on\n");
  150. return 1;
  151. }
  152. __setup("nointroute", nointroute);
  153. static void fix_b0_for_bsp(void)
  154. {
  155. #ifdef CONFIG_HOTPLUG_CPU
  156. int cpuid;
  157. static int fix_bsp_b0 = 1;
  158. cpuid = smp_processor_id();
  159. /*
  160. * Cache the b0 value on the first AP that comes up
  161. */
  162. if (!(fix_bsp_b0 && cpuid))
  163. return;
  164. sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
  165. printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
  166. fix_bsp_b0 = 0;
  167. #endif
  168. }
  169. void
  170. sync_master (void *arg)
  171. {
  172. unsigned long flags, i;
  173. go[MASTER] = 0;
  174. local_irq_save(flags);
  175. {
  176. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
  177. while (!go[MASTER])
  178. cpu_relax();
  179. go[MASTER] = 0;
  180. go[SLAVE] = ia64_get_itc();
  181. }
  182. }
  183. local_irq_restore(flags);
  184. }
  185. /*
  186. * Return the number of cycles by which our itc differs from the itc on the master
  187. * (time-keeper) CPU. A positive number indicates our itc is ahead of the master,
  188. * negative that it is behind.
  189. */
  190. static inline long
  191. get_delta (long *rt, long *master)
  192. {
  193. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  194. unsigned long tcenter, t0, t1, tm;
  195. long i;
  196. for (i = 0; i < NUM_ITERS; ++i) {
  197. t0 = ia64_get_itc();
  198. go[MASTER] = 1;
  199. while (!(tm = go[SLAVE]))
  200. cpu_relax();
  201. go[SLAVE] = 0;
  202. t1 = ia64_get_itc();
  203. if (t1 - t0 < best_t1 - best_t0)
  204. best_t0 = t0, best_t1 = t1, best_tm = tm;
  205. }
  206. *rt = best_t1 - best_t0;
  207. *master = best_tm - best_t0;
  208. /* average best_t0 and best_t1 without overflow: */
  209. tcenter = (best_t0/2 + best_t1/2);
  210. if (best_t0 % 2 + best_t1 % 2 == 2)
  211. ++tcenter;
  212. return tcenter - best_tm;
  213. }
  214. /*
  215. * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
  216. * (normally the time-keeper CPU). We use a closed loop to eliminate the possibility of
  217. * unaccounted-for errors (such as getting a machine check in the middle of a calibration
  218. * step). The basic idea is for the slave to ask the master what itc value it has and to
  219. * read its own itc before and after the master responds. Each iteration gives us three
  220. * timestamps:
  221. *
  222. * slave master
  223. *
  224. * t0 ---\
  225. * ---\
  226. * --->
  227. * tm
  228. * /---
  229. * /---
  230. * t1 <---
  231. *
  232. *
  233. * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
  234. * and t1. If we achieve this, the clocks are synchronized provided the interconnect
  235. * between the slave and the master is symmetric. Even if the interconnect were
  236. * asymmetric, we would still know that the synchronization error is smaller than the
  237. * roundtrip latency (t0 - t1).
  238. *
  239. * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
  240. * within one or two cycles. However, we can only *guarantee* that the synchronization is
  241. * accurate to within a round-trip time, which is typically in the range of several
  242. * hundred cycles (e.g., ~500 cycles). In practice, this means that the itc's are usually
  243. * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
  244. * than half a micro second or so.
  245. */
  246. void
  247. ia64_sync_itc (unsigned int master)
  248. {
  249. long i, delta, adj, adjust_latency = 0, done = 0;
  250. unsigned long flags, rt, master_time_stamp, bound;
  251. #if DEBUG_ITC_SYNC
  252. struct {
  253. long rt; /* roundtrip time */
  254. long master; /* master's timestamp */
  255. long diff; /* difference between midpoint and master's timestamp */
  256. long lat; /* estimate of itc adjustment latency */
  257. } t[NUM_ROUNDS];
  258. #endif
  259. /*
  260. * Make sure local timer ticks are disabled while we sync. If
  261. * they were enabled, we'd have to worry about nasty issues
  262. * like setting the ITC ahead of (or a long time before) the
  263. * next scheduled tick.
  264. */
  265. BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
  266. go[MASTER] = 1;
  267. if (smp_call_function_single(master, sync_master, NULL, 1, 0) < 0) {
  268. printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
  269. return;
  270. }
  271. while (go[MASTER])
  272. cpu_relax(); /* wait for master to be ready */
  273. spin_lock_irqsave(&itc_sync_lock, flags);
  274. {
  275. for (i = 0; i < NUM_ROUNDS; ++i) {
  276. delta = get_delta(&rt, &master_time_stamp);
  277. if (delta == 0) {
  278. done = 1; /* let's lock on to this... */
  279. bound = rt;
  280. }
  281. if (!done) {
  282. if (i > 0) {
  283. adjust_latency += -delta;
  284. adj = -delta + adjust_latency/4;
  285. } else
  286. adj = -delta;
  287. ia64_set_itc(ia64_get_itc() + adj);
  288. }
  289. #if DEBUG_ITC_SYNC
  290. t[i].rt = rt;
  291. t[i].master = master_time_stamp;
  292. t[i].diff = delta;
  293. t[i].lat = adjust_latency/4;
  294. #endif
  295. }
  296. }
  297. spin_unlock_irqrestore(&itc_sync_lock, flags);
  298. #if DEBUG_ITC_SYNC
  299. for (i = 0; i < NUM_ROUNDS; ++i)
  300. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  301. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  302. #endif
  303. printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
  304. "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
  305. }
  306. /*
  307. * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
  308. */
  309. static inline void __devinit
  310. smp_setup_percpu_timer (void)
  311. {
  312. }
  313. static void __devinit
  314. smp_callin (void)
  315. {
  316. int cpuid, phys_id, itc_master;
  317. extern void ia64_init_itm(void);
  318. extern volatile int time_keeper_id;
  319. #ifdef CONFIG_PERFMON
  320. extern void pfm_init_percpu(void);
  321. #endif
  322. cpuid = smp_processor_id();
  323. phys_id = hard_smp_processor_id();
  324. itc_master = time_keeper_id;
  325. if (cpu_online(cpuid)) {
  326. printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
  327. phys_id, cpuid);
  328. BUG();
  329. }
  330. fix_b0_for_bsp();
  331. lock_ipi_calllock();
  332. cpu_set(cpuid, cpu_online_map);
  333. unlock_ipi_calllock();
  334. per_cpu(cpu_state, cpuid) = CPU_ONLINE;
  335. smp_setup_percpu_timer();
  336. ia64_mca_cmc_vector_setup(); /* Setup vector on AP */
  337. #ifdef CONFIG_PERFMON
  338. pfm_init_percpu();
  339. #endif
  340. local_irq_enable();
  341. if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
  342. /*
  343. * Synchronize the ITC with the BP. Need to do this after irqs are
  344. * enabled because ia64_sync_itc() calls smp_call_function_single(), which
  345. * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
  346. * local_bh_enable(), which bugs out if irqs are not enabled...
  347. */
  348. Dprintk("Going to syncup ITC with ITC Master.\n");
  349. ia64_sync_itc(itc_master);
  350. }
  351. /*
  352. * Get our bogomips.
  353. */
  354. ia64_init_itm();
  355. calibrate_delay();
  356. local_cpu_data->loops_per_jiffy = loops_per_jiffy;
  357. #ifdef CONFIG_IA32_SUPPORT
  358. ia32_gdt_init();
  359. #endif
  360. /*
  361. * Allow the master to continue.
  362. */
  363. cpu_set(cpuid, cpu_callin_map);
  364. Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
  365. }
  366. /*
  367. * Activate a secondary processor. head.S calls this.
  368. */
  369. int __devinit
  370. start_secondary (void *unused)
  371. {
  372. /* Early console may use I/O ports */
  373. ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
  374. Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
  375. efi_map_pal_code();
  376. cpu_init();
  377. preempt_disable();
  378. smp_callin();
  379. cpu_idle();
  380. return 0;
  381. }
  382. struct pt_regs * __devinit idle_regs(struct pt_regs *regs)
  383. {
  384. return NULL;
  385. }
  386. struct create_idle {
  387. struct task_struct *idle;
  388. struct completion done;
  389. int cpu;
  390. };
  391. void
  392. do_fork_idle(void *_c_idle)
  393. {
  394. struct create_idle *c_idle = _c_idle;
  395. c_idle->idle = fork_idle(c_idle->cpu);
  396. complete(&c_idle->done);
  397. }
  398. static int __devinit
  399. do_boot_cpu (int sapicid, int cpu)
  400. {
  401. int timeout;
  402. struct create_idle c_idle = {
  403. .cpu = cpu,
  404. .done = COMPLETION_INITIALIZER(c_idle.done),
  405. };
  406. DECLARE_WORK(work, do_fork_idle, &c_idle);
  407. c_idle.idle = get_idle_for_cpu(cpu);
  408. if (c_idle.idle) {
  409. init_idle(c_idle.idle, cpu);
  410. goto do_rest;
  411. }
  412. /*
  413. * We can't use kernel_thread since we must avoid to reschedule the child.
  414. */
  415. if (!keventd_up() || current_is_keventd())
  416. work.func(work.data);
  417. else {
  418. schedule_work(&work);
  419. wait_for_completion(&c_idle.done);
  420. }
  421. if (IS_ERR(c_idle.idle))
  422. panic("failed fork for CPU %d", cpu);
  423. set_idle_for_cpu(cpu, c_idle.idle);
  424. do_rest:
  425. task_for_booting_cpu = c_idle.idle;
  426. Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
  427. set_brendez_area(cpu);
  428. platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
  429. /*
  430. * Wait 10s total for the AP to start
  431. */
  432. Dprintk("Waiting on callin_map ...");
  433. for (timeout = 0; timeout < 100000; timeout++) {
  434. if (cpu_isset(cpu, cpu_callin_map))
  435. break; /* It has booted */
  436. udelay(100);
  437. }
  438. Dprintk("\n");
  439. if (!cpu_isset(cpu, cpu_callin_map)) {
  440. printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
  441. ia64_cpu_to_sapicid[cpu] = -1;
  442. cpu_clear(cpu, cpu_online_map); /* was set in smp_callin() */
  443. return -EINVAL;
  444. }
  445. return 0;
  446. }
  447. static int __init
  448. decay (char *str)
  449. {
  450. int ticks;
  451. get_option (&str, &ticks);
  452. return 1;
  453. }
  454. __setup("decay=", decay);
  455. /*
  456. * Initialize the logical CPU number to SAPICID mapping
  457. */
  458. void __init
  459. smp_build_cpu_map (void)
  460. {
  461. int sapicid, cpu, i;
  462. int boot_cpu_id = hard_smp_processor_id();
  463. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  464. ia64_cpu_to_sapicid[cpu] = -1;
  465. }
  466. ia64_cpu_to_sapicid[0] = boot_cpu_id;
  467. cpus_clear(cpu_present_map);
  468. cpu_set(0, cpu_present_map);
  469. cpu_set(0, cpu_possible_map);
  470. for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
  471. sapicid = smp_boot_data.cpu_phys_id[i];
  472. if (sapicid == boot_cpu_id)
  473. continue;
  474. cpu_set(cpu, cpu_present_map);
  475. cpu_set(cpu, cpu_possible_map);
  476. ia64_cpu_to_sapicid[cpu] = sapicid;
  477. cpu++;
  478. }
  479. }
  480. /*
  481. * Cycle through the APs sending Wakeup IPIs to boot each.
  482. */
  483. void __init
  484. smp_prepare_cpus (unsigned int max_cpus)
  485. {
  486. int boot_cpu_id = hard_smp_processor_id();
  487. /*
  488. * Initialize the per-CPU profiling counter/multiplier
  489. */
  490. smp_setup_percpu_timer();
  491. /*
  492. * We have the boot CPU online for sure.
  493. */
  494. cpu_set(0, cpu_online_map);
  495. cpu_set(0, cpu_callin_map);
  496. local_cpu_data->loops_per_jiffy = loops_per_jiffy;
  497. ia64_cpu_to_sapicid[0] = boot_cpu_id;
  498. printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
  499. current_thread_info()->cpu = 0;
  500. /*
  501. * If SMP should be disabled, then really disable it!
  502. */
  503. if (!max_cpus) {
  504. printk(KERN_INFO "SMP mode deactivated.\n");
  505. cpus_clear(cpu_online_map);
  506. cpus_clear(cpu_present_map);
  507. cpus_clear(cpu_possible_map);
  508. cpu_set(0, cpu_online_map);
  509. cpu_set(0, cpu_present_map);
  510. cpu_set(0, cpu_possible_map);
  511. return;
  512. }
  513. }
  514. void __devinit smp_prepare_boot_cpu(void)
  515. {
  516. cpu_set(smp_processor_id(), cpu_online_map);
  517. cpu_set(smp_processor_id(), cpu_callin_map);
  518. per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
  519. }
  520. #ifdef CONFIG_HOTPLUG_CPU
  521. static inline void
  522. clear_cpu_sibling_map(int cpu)
  523. {
  524. int i;
  525. for_each_cpu_mask(i, cpu_sibling_map[cpu])
  526. cpu_clear(cpu, cpu_sibling_map[i]);
  527. for_each_cpu_mask(i, cpu_core_map[cpu])
  528. cpu_clear(cpu, cpu_core_map[i]);
  529. cpu_sibling_map[cpu] = cpu_core_map[cpu] = CPU_MASK_NONE;
  530. }
  531. static void
  532. remove_siblinginfo(int cpu)
  533. {
  534. int last = 0;
  535. if (cpu_data(cpu)->threads_per_core == 1 &&
  536. cpu_data(cpu)->cores_per_socket == 1) {
  537. cpu_clear(cpu, cpu_core_map[cpu]);
  538. cpu_clear(cpu, cpu_sibling_map[cpu]);
  539. return;
  540. }
  541. last = (cpus_weight(cpu_core_map[cpu]) == 1 ? 1 : 0);
  542. /* remove it from all sibling map's */
  543. clear_cpu_sibling_map(cpu);
  544. }
  545. extern void fixup_irqs(void);
  546. int migrate_platform_irqs(unsigned int cpu)
  547. {
  548. int new_cpei_cpu;
  549. irq_desc_t *desc = NULL;
  550. cpumask_t mask;
  551. int retval = 0;
  552. /*
  553. * dont permit CPEI target to removed.
  554. */
  555. if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
  556. printk ("CPU (%d) is CPEI Target\n", cpu);
  557. if (can_cpei_retarget()) {
  558. /*
  559. * Now re-target the CPEI to a different processor
  560. */
  561. new_cpei_cpu = any_online_cpu(cpu_online_map);
  562. mask = cpumask_of_cpu(new_cpei_cpu);
  563. set_cpei_target_cpu(new_cpei_cpu);
  564. desc = irq_desc + ia64_cpe_irq;
  565. /*
  566. * Switch for now, immediatly, we need to do fake intr
  567. * as other interrupts, but need to study CPEI behaviour with
  568. * polling before making changes.
  569. */
  570. if (desc) {
  571. desc->chip->disable(ia64_cpe_irq);
  572. desc->chip->set_affinity(ia64_cpe_irq, mask);
  573. desc->chip->enable(ia64_cpe_irq);
  574. printk ("Re-targetting CPEI to cpu %d\n", new_cpei_cpu);
  575. }
  576. }
  577. if (!desc) {
  578. printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
  579. retval = -EBUSY;
  580. }
  581. }
  582. return retval;
  583. }
  584. /* must be called with cpucontrol mutex held */
  585. int __cpu_disable(void)
  586. {
  587. int cpu = smp_processor_id();
  588. /*
  589. * dont permit boot processor for now
  590. */
  591. if (cpu == 0 && !bsp_remove_ok) {
  592. printk ("Your platform does not support removal of BSP\n");
  593. return (-EBUSY);
  594. }
  595. cpu_clear(cpu, cpu_online_map);
  596. if (migrate_platform_irqs(cpu)) {
  597. cpu_set(cpu, cpu_online_map);
  598. return (-EBUSY);
  599. }
  600. remove_siblinginfo(cpu);
  601. cpu_clear(cpu, cpu_online_map);
  602. fixup_irqs();
  603. local_flush_tlb_all();
  604. cpu_clear(cpu, cpu_callin_map);
  605. return 0;
  606. }
  607. void __cpu_die(unsigned int cpu)
  608. {
  609. unsigned int i;
  610. for (i = 0; i < 100; i++) {
  611. /* They ack this in play_dead by setting CPU_DEAD */
  612. if (per_cpu(cpu_state, cpu) == CPU_DEAD)
  613. {
  614. printk ("CPU %d is now offline\n", cpu);
  615. return;
  616. }
  617. msleep(100);
  618. }
  619. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  620. }
  621. #else /* !CONFIG_HOTPLUG_CPU */
  622. int __cpu_disable(void)
  623. {
  624. return -ENOSYS;
  625. }
  626. void __cpu_die(unsigned int cpu)
  627. {
  628. /* We said "no" in __cpu_disable */
  629. BUG();
  630. }
  631. #endif /* CONFIG_HOTPLUG_CPU */
  632. void
  633. smp_cpus_done (unsigned int dummy)
  634. {
  635. int cpu;
  636. unsigned long bogosum = 0;
  637. /*
  638. * Allow the user to impress friends.
  639. */
  640. for_each_online_cpu(cpu) {
  641. bogosum += cpu_data(cpu)->loops_per_jiffy;
  642. }
  643. printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
  644. (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
  645. }
  646. static inline void __devinit
  647. set_cpu_sibling_map(int cpu)
  648. {
  649. int i;
  650. for_each_online_cpu(i) {
  651. if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
  652. cpu_set(i, cpu_core_map[cpu]);
  653. cpu_set(cpu, cpu_core_map[i]);
  654. if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
  655. cpu_set(i, cpu_sibling_map[cpu]);
  656. cpu_set(cpu, cpu_sibling_map[i]);
  657. }
  658. }
  659. }
  660. }
  661. int __devinit
  662. __cpu_up (unsigned int cpu)
  663. {
  664. int ret;
  665. int sapicid;
  666. sapicid = ia64_cpu_to_sapicid[cpu];
  667. if (sapicid == -1)
  668. return -EINVAL;
  669. /*
  670. * Already booted cpu? not valid anymore since we dont
  671. * do idle loop tightspin anymore.
  672. */
  673. if (cpu_isset(cpu, cpu_callin_map))
  674. return -EINVAL;
  675. per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
  676. /* Processor goes to start_secondary(), sets online flag */
  677. ret = do_boot_cpu(sapicid, cpu);
  678. if (ret < 0)
  679. return ret;
  680. if (cpu_data(cpu)->threads_per_core == 1 &&
  681. cpu_data(cpu)->cores_per_socket == 1) {
  682. cpu_set(cpu, cpu_sibling_map[cpu]);
  683. cpu_set(cpu, cpu_core_map[cpu]);
  684. return 0;
  685. }
  686. set_cpu_sibling_map(cpu);
  687. return 0;
  688. }
  689. /*
  690. * Assume that CPU's have been discovered by some platform-dependent interface. For
  691. * SoftSDV/Lion, that would be ACPI.
  692. *
  693. * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
  694. */
  695. void __init
  696. init_smp_config(void)
  697. {
  698. struct fptr {
  699. unsigned long fp;
  700. unsigned long gp;
  701. } *ap_startup;
  702. long sal_ret;
  703. /* Tell SAL where to drop the AP's. */
  704. ap_startup = (struct fptr *) start_ap;
  705. sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
  706. ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
  707. if (sal_ret < 0)
  708. printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
  709. ia64_sal_strerror(sal_ret));
  710. }
  711. /*
  712. * identify_siblings(cpu) gets called from identify_cpu. This populates the
  713. * information related to logical execution units in per_cpu_data structure.
  714. */
  715. void __devinit
  716. identify_siblings(struct cpuinfo_ia64 *c)
  717. {
  718. s64 status;
  719. u16 pltid;
  720. pal_logical_to_physical_t info;
  721. if (smp_num_cpucores == 1 && smp_num_siblings == 1)
  722. return;
  723. if ((status = ia64_pal_logical_to_phys(-1, &info)) != PAL_STATUS_SUCCESS) {
  724. printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
  725. status);
  726. return;
  727. }
  728. if ((status = ia64_sal_physical_id_info(&pltid)) != PAL_STATUS_SUCCESS) {
  729. printk(KERN_ERR "ia64_sal_pltid failed with %ld\n", status);
  730. return;
  731. }
  732. c->socket_id = (pltid << 8) | info.overview_ppid;
  733. c->cores_per_socket = info.overview_cpp;
  734. c->threads_per_core = info.overview_tpc;
  735. c->num_log = info.overview_num_log;
  736. c->core_id = info.log1_cid;
  737. c->thread_id = info.log1_tid;
  738. }
  739. /*
  740. * returns non zero, if multi-threading is enabled
  741. * on at least one physical package. Due to hotplug cpu
  742. * and (maxcpus=), all threads may not necessarily be enabled
  743. * even though the processor supports multi-threading.
  744. */
  745. int is_multithreading_enabled(void)
  746. {
  747. int i, j;
  748. for_each_present_cpu(i) {
  749. for_each_present_cpu(j) {
  750. if (j == i)
  751. continue;
  752. if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
  753. if (cpu_data(j)->core_id == cpu_data(i)->core_id)
  754. return 1;
  755. }
  756. }
  757. }
  758. return 0;
  759. }
  760. EXPORT_SYMBOL_GPL(is_multithreading_enabled);