process.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/module.h>
  19. #include <linux/notifier.h>
  20. #include <linux/personality.h>
  21. #include <linux/sched.h>
  22. #include <linux/slab.h>
  23. #include <linux/smp_lock.h>
  24. #include <linux/stddef.h>
  25. #include <linux/thread_info.h>
  26. #include <linux/unistd.h>
  27. #include <linux/efi.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/delay.h>
  30. #include <asm/cpu.h>
  31. #include <asm/delay.h>
  32. #include <asm/elf.h>
  33. #include <asm/ia32.h>
  34. #include <asm/irq.h>
  35. #include <asm/kdebug.h>
  36. #include <asm/pgalloc.h>
  37. #include <asm/processor.h>
  38. #include <asm/sal.h>
  39. #include <asm/tlbflush.h>
  40. #include <asm/uaccess.h>
  41. #include <asm/unwind.h>
  42. #include <asm/user.h>
  43. #include "entry.h"
  44. #ifdef CONFIG_PERFMON
  45. # include <asm/perfmon.h>
  46. #endif
  47. #include "sigframe.h"
  48. void (*ia64_mark_idle)(int);
  49. static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
  50. unsigned long boot_option_idle_override = 0;
  51. EXPORT_SYMBOL(boot_option_idle_override);
  52. void
  53. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  54. {
  55. unsigned long ip, sp, bsp;
  56. char buf[128]; /* don't make it so big that it overflows the stack! */
  57. printk("\nCall Trace:\n");
  58. do {
  59. unw_get_ip(info, &ip);
  60. if (ip == 0)
  61. break;
  62. unw_get_sp(info, &sp);
  63. unw_get_bsp(info, &bsp);
  64. snprintf(buf, sizeof(buf),
  65. " [<%016lx>] %%s\n"
  66. " sp=%016lx bsp=%016lx\n",
  67. ip, sp, bsp);
  68. print_symbol(buf, ip);
  69. } while (unw_unwind(info) >= 0);
  70. }
  71. void
  72. show_stack (struct task_struct *task, unsigned long *sp)
  73. {
  74. if (!task)
  75. unw_init_running(ia64_do_show_stack, NULL);
  76. else {
  77. struct unw_frame_info info;
  78. unw_init_from_blocked_task(&info, task);
  79. ia64_do_show_stack(&info, NULL);
  80. }
  81. }
  82. void
  83. dump_stack (void)
  84. {
  85. show_stack(NULL, NULL);
  86. }
  87. EXPORT_SYMBOL(dump_stack);
  88. void
  89. show_regs (struct pt_regs *regs)
  90. {
  91. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  92. print_modules();
  93. printk("\nPid: %d, CPU %d, comm: %20s\n", current->pid, smp_processor_id(), current->comm);
  94. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s\n",
  95. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted());
  96. print_symbol("ip is at %s\n", ip);
  97. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  98. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  99. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  100. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  101. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  102. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  103. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  104. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  105. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  106. regs->f6.u.bits[1], regs->f6.u.bits[0],
  107. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  108. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  109. regs->f8.u.bits[1], regs->f8.u.bits[0],
  110. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  111. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  112. regs->f10.u.bits[1], regs->f10.u.bits[0],
  113. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  114. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  115. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  116. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  117. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  118. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  119. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  120. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  121. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  122. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  123. if (user_mode(regs)) {
  124. /* print the stacked registers */
  125. unsigned long val, *bsp, ndirty;
  126. int i, sof, is_nat = 0;
  127. sof = regs->cr_ifs & 0x7f; /* size of frame */
  128. ndirty = (regs->loadrs >> 19);
  129. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  130. for (i = 0; i < sof; ++i) {
  131. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  132. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  133. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  134. }
  135. } else
  136. show_stack(NULL, NULL);
  137. }
  138. void
  139. do_notify_resume_user (sigset_t *oldset, struct sigscratch *scr, long in_syscall)
  140. {
  141. if (fsys_mode(current, &scr->pt)) {
  142. /* defer signal-handling etc. until we return to privilege-level 0. */
  143. if (!ia64_psr(&scr->pt)->lp)
  144. ia64_psr(&scr->pt)->lp = 1;
  145. return;
  146. }
  147. #ifdef CONFIG_PERFMON
  148. if (current->thread.pfm_needs_checking)
  149. pfm_handle_work();
  150. #endif
  151. /* deal with pending signal delivery */
  152. if (test_thread_flag(TIF_SIGPENDING))
  153. ia64_do_signal(oldset, scr, in_syscall);
  154. }
  155. static int pal_halt = 1;
  156. static int can_do_pal_halt = 1;
  157. static int __init nohalt_setup(char * str)
  158. {
  159. pal_halt = can_do_pal_halt = 0;
  160. return 1;
  161. }
  162. __setup("nohalt", nohalt_setup);
  163. void
  164. update_pal_halt_status(int status)
  165. {
  166. can_do_pal_halt = pal_halt && status;
  167. }
  168. /*
  169. * We use this if we don't have any better idle routine..
  170. */
  171. void
  172. default_idle (void)
  173. {
  174. local_irq_enable();
  175. while (!need_resched()) {
  176. if (can_do_pal_halt)
  177. safe_halt();
  178. else
  179. cpu_relax();
  180. }
  181. }
  182. #ifdef CONFIG_HOTPLUG_CPU
  183. /* We don't actually take CPU down, just spin without interrupts. */
  184. static inline void play_dead(void)
  185. {
  186. extern void ia64_cpu_local_tick (void);
  187. unsigned int this_cpu = smp_processor_id();
  188. /* Ack it */
  189. __get_cpu_var(cpu_state) = CPU_DEAD;
  190. max_xtp();
  191. local_irq_disable();
  192. idle_task_exit();
  193. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  194. /*
  195. * The above is a point of no-return, the processor is
  196. * expected to be in SAL loop now.
  197. */
  198. BUG();
  199. }
  200. #else
  201. static inline void play_dead(void)
  202. {
  203. BUG();
  204. }
  205. #endif /* CONFIG_HOTPLUG_CPU */
  206. void cpu_idle_wait(void)
  207. {
  208. unsigned int cpu, this_cpu = get_cpu();
  209. cpumask_t map;
  210. set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
  211. put_cpu();
  212. cpus_clear(map);
  213. for_each_online_cpu(cpu) {
  214. per_cpu(cpu_idle_state, cpu) = 1;
  215. cpu_set(cpu, map);
  216. }
  217. __get_cpu_var(cpu_idle_state) = 0;
  218. wmb();
  219. do {
  220. ssleep(1);
  221. for_each_online_cpu(cpu) {
  222. if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
  223. cpu_clear(cpu, map);
  224. }
  225. cpus_and(map, map, cpu_online_map);
  226. } while (!cpus_empty(map));
  227. }
  228. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  229. void __attribute__((noreturn))
  230. cpu_idle (void)
  231. {
  232. void (*mark_idle)(int) = ia64_mark_idle;
  233. int cpu = smp_processor_id();
  234. /* endless idle loop with no priority at all */
  235. while (1) {
  236. if (can_do_pal_halt)
  237. current_thread_info()->status &= ~TS_POLLING;
  238. else
  239. current_thread_info()->status |= TS_POLLING;
  240. if (!need_resched()) {
  241. void (*idle)(void);
  242. #ifdef CONFIG_SMP
  243. min_xtp();
  244. #endif
  245. if (__get_cpu_var(cpu_idle_state))
  246. __get_cpu_var(cpu_idle_state) = 0;
  247. rmb();
  248. if (mark_idle)
  249. (*mark_idle)(1);
  250. idle = pm_idle;
  251. if (!idle)
  252. idle = default_idle;
  253. (*idle)();
  254. if (mark_idle)
  255. (*mark_idle)(0);
  256. #ifdef CONFIG_SMP
  257. normal_xtp();
  258. #endif
  259. }
  260. preempt_enable_no_resched();
  261. schedule();
  262. preempt_disable();
  263. check_pgt_cache();
  264. if (cpu_is_offline(cpu))
  265. play_dead();
  266. }
  267. }
  268. void
  269. ia64_save_extra (struct task_struct *task)
  270. {
  271. #ifdef CONFIG_PERFMON
  272. unsigned long info;
  273. #endif
  274. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  275. ia64_save_debug_regs(&task->thread.dbr[0]);
  276. #ifdef CONFIG_PERFMON
  277. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  278. pfm_save_regs(task);
  279. info = __get_cpu_var(pfm_syst_info);
  280. if (info & PFM_CPUINFO_SYST_WIDE)
  281. pfm_syst_wide_update_task(task, info, 0);
  282. #endif
  283. #ifdef CONFIG_IA32_SUPPORT
  284. if (IS_IA32_PROCESS(task_pt_regs(task)))
  285. ia32_save_state(task);
  286. #endif
  287. }
  288. void
  289. ia64_load_extra (struct task_struct *task)
  290. {
  291. #ifdef CONFIG_PERFMON
  292. unsigned long info;
  293. #endif
  294. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  295. ia64_load_debug_regs(&task->thread.dbr[0]);
  296. #ifdef CONFIG_PERFMON
  297. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  298. pfm_load_regs(task);
  299. info = __get_cpu_var(pfm_syst_info);
  300. if (info & PFM_CPUINFO_SYST_WIDE)
  301. pfm_syst_wide_update_task(task, info, 1);
  302. #endif
  303. #ifdef CONFIG_IA32_SUPPORT
  304. if (IS_IA32_PROCESS(task_pt_regs(task)))
  305. ia32_load_state(task);
  306. #endif
  307. }
  308. /*
  309. * Copy the state of an ia-64 thread.
  310. *
  311. * We get here through the following call chain:
  312. *
  313. * from user-level: from kernel:
  314. *
  315. * <clone syscall> <some kernel call frames>
  316. * sys_clone :
  317. * do_fork do_fork
  318. * copy_thread copy_thread
  319. *
  320. * This means that the stack layout is as follows:
  321. *
  322. * +---------------------+ (highest addr)
  323. * | struct pt_regs |
  324. * +---------------------+
  325. * | struct switch_stack |
  326. * +---------------------+
  327. * | |
  328. * | memory stack |
  329. * | | <-- sp (lowest addr)
  330. * +---------------------+
  331. *
  332. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  333. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  334. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  335. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  336. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  337. * so there is nothing to worry about.
  338. */
  339. int
  340. copy_thread (int nr, unsigned long clone_flags,
  341. unsigned long user_stack_base, unsigned long user_stack_size,
  342. struct task_struct *p, struct pt_regs *regs)
  343. {
  344. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  345. struct switch_stack *child_stack, *stack;
  346. unsigned long rbs, child_rbs, rbs_size;
  347. struct pt_regs *child_ptregs;
  348. int retval = 0;
  349. #ifdef CONFIG_SMP
  350. /*
  351. * For SMP idle threads, fork_by_hand() calls do_fork with
  352. * NULL regs.
  353. */
  354. if (!regs)
  355. return 0;
  356. #endif
  357. stack = ((struct switch_stack *) regs) - 1;
  358. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  359. child_stack = (struct switch_stack *) child_ptregs - 1;
  360. /* copy parent's switch_stack & pt_regs to child: */
  361. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  362. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  363. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  364. rbs_size = stack->ar_bspstore - rbs;
  365. /* copy the parent's register backing store to the child: */
  366. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  367. if (likely(user_mode(child_ptregs))) {
  368. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  369. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  370. if (user_stack_base) {
  371. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  372. child_ptregs->ar_bspstore = user_stack_base;
  373. child_ptregs->ar_rnat = 0;
  374. child_ptregs->loadrs = 0;
  375. }
  376. } else {
  377. /*
  378. * Note: we simply preserve the relative position of
  379. * the stack pointer here. There is no need to
  380. * allocate a scratch area here, since that will have
  381. * been taken care of by the caller of sys_clone()
  382. * already.
  383. */
  384. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  385. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  386. }
  387. child_stack->ar_bspstore = child_rbs + rbs_size;
  388. if (IS_IA32_PROCESS(regs))
  389. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  390. else
  391. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  392. /* copy parts of thread_struct: */
  393. p->thread.ksp = (unsigned long) child_stack - 16;
  394. /* stop some PSR bits from being inherited.
  395. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  396. * therefore we must specify them explicitly here and not include them in
  397. * IA64_PSR_BITS_TO_CLEAR.
  398. */
  399. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  400. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  401. /*
  402. * NOTE: The calling convention considers all floating point
  403. * registers in the high partition (fph) to be scratch. Since
  404. * the only way to get to this point is through a system call,
  405. * we know that the values in fph are all dead. Hence, there
  406. * is no need to inherit the fph state from the parent to the
  407. * child and all we have to do is to make sure that
  408. * IA64_THREAD_FPH_VALID is cleared in the child.
  409. *
  410. * XXX We could push this optimization a bit further by
  411. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  412. * However, it's not clear this is worth doing. Also, it
  413. * would be a slight deviation from the normal Linux system
  414. * call behavior where scratch registers are preserved across
  415. * system calls (unless used by the system call itself).
  416. */
  417. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  418. | IA64_THREAD_PM_VALID)
  419. # define THREAD_FLAGS_TO_SET 0
  420. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  421. | THREAD_FLAGS_TO_SET);
  422. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  423. #ifdef CONFIG_IA32_SUPPORT
  424. /*
  425. * If we're cloning an IA32 task then save the IA32 extra
  426. * state from the current task to the new task
  427. */
  428. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  429. ia32_save_state(p);
  430. if (clone_flags & CLONE_SETTLS)
  431. retval = ia32_clone_tls(p, child_ptregs);
  432. /* Copy partially mapped page list */
  433. if (!retval)
  434. retval = ia32_copy_partial_page_list(p, clone_flags);
  435. }
  436. #endif
  437. #ifdef CONFIG_PERFMON
  438. if (current->thread.pfm_context)
  439. pfm_inherit(p, child_ptregs);
  440. #endif
  441. return retval;
  442. }
  443. static void
  444. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  445. {
  446. unsigned long mask, sp, nat_bits = 0, ip, ar_rnat, urbs_end, cfm;
  447. elf_greg_t *dst = arg;
  448. struct pt_regs *pt;
  449. char nat;
  450. int i;
  451. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  452. if (unw_unwind_to_user(info) < 0)
  453. return;
  454. unw_get_sp(info, &sp);
  455. pt = (struct pt_regs *) (sp + 16);
  456. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  457. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  458. return;
  459. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  460. &ar_rnat);
  461. /*
  462. * coredump format:
  463. * r0-r31
  464. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  465. * predicate registers (p0-p63)
  466. * b0-b7
  467. * ip cfm user-mask
  468. * ar.rsc ar.bsp ar.bspstore ar.rnat
  469. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  470. */
  471. /* r0 is zero */
  472. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  473. unw_get_gr(info, i, &dst[i], &nat);
  474. if (nat)
  475. nat_bits |= mask;
  476. mask <<= 1;
  477. }
  478. dst[32] = nat_bits;
  479. unw_get_pr(info, &dst[33]);
  480. for (i = 0; i < 8; ++i)
  481. unw_get_br(info, i, &dst[34 + i]);
  482. unw_get_rp(info, &ip);
  483. dst[42] = ip + ia64_psr(pt)->ri;
  484. dst[43] = cfm;
  485. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  486. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  487. /*
  488. * For bsp and bspstore, unw_get_ar() would return the kernel
  489. * addresses, but we need the user-level addresses instead:
  490. */
  491. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  492. dst[47] = pt->ar_bspstore;
  493. dst[48] = ar_rnat;
  494. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  495. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  496. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  497. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  498. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  499. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  500. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  501. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  502. }
  503. void
  504. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  505. {
  506. elf_fpreg_t *dst = arg;
  507. int i;
  508. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  509. if (unw_unwind_to_user(info) < 0)
  510. return;
  511. /* f0 is 0.0, f1 is 1.0 */
  512. for (i = 2; i < 32; ++i)
  513. unw_get_fr(info, i, dst + i);
  514. ia64_flush_fph(task);
  515. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  516. memcpy(dst + 32, task->thread.fph, 96*16);
  517. }
  518. void
  519. do_copy_regs (struct unw_frame_info *info, void *arg)
  520. {
  521. do_copy_task_regs(current, info, arg);
  522. }
  523. void
  524. do_dump_fpu (struct unw_frame_info *info, void *arg)
  525. {
  526. do_dump_task_fpu(current, info, arg);
  527. }
  528. int
  529. dump_task_regs(struct task_struct *task, elf_gregset_t *regs)
  530. {
  531. struct unw_frame_info tcore_info;
  532. if (current == task) {
  533. unw_init_running(do_copy_regs, regs);
  534. } else {
  535. memset(&tcore_info, 0, sizeof(tcore_info));
  536. unw_init_from_blocked_task(&tcore_info, task);
  537. do_copy_task_regs(task, &tcore_info, regs);
  538. }
  539. return 1;
  540. }
  541. void
  542. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  543. {
  544. unw_init_running(do_copy_regs, dst);
  545. }
  546. int
  547. dump_task_fpu (struct task_struct *task, elf_fpregset_t *dst)
  548. {
  549. struct unw_frame_info tcore_info;
  550. if (current == task) {
  551. unw_init_running(do_dump_fpu, dst);
  552. } else {
  553. memset(&tcore_info, 0, sizeof(tcore_info));
  554. unw_init_from_blocked_task(&tcore_info, task);
  555. do_dump_task_fpu(task, &tcore_info, dst);
  556. }
  557. return 1;
  558. }
  559. int
  560. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  561. {
  562. unw_init_running(do_dump_fpu, dst);
  563. return 1; /* f0-f31 are always valid so we always return 1 */
  564. }
  565. long
  566. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  567. struct pt_regs *regs)
  568. {
  569. char *fname;
  570. int error;
  571. fname = getname(filename);
  572. error = PTR_ERR(fname);
  573. if (IS_ERR(fname))
  574. goto out;
  575. error = do_execve(fname, argv, envp, regs);
  576. putname(fname);
  577. out:
  578. return error;
  579. }
  580. pid_t
  581. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  582. {
  583. extern void start_kernel_thread (void);
  584. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  585. struct {
  586. struct switch_stack sw;
  587. struct pt_regs pt;
  588. } regs;
  589. memset(&regs, 0, sizeof(regs));
  590. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  591. regs.pt.r1 = helper_fptr[1]; /* set GP */
  592. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  593. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  594. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  595. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  596. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  597. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  598. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  599. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  600. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  601. }
  602. EXPORT_SYMBOL(kernel_thread);
  603. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  604. int
  605. kernel_thread_helper (int (*fn)(void *), void *arg)
  606. {
  607. #ifdef CONFIG_IA32_SUPPORT
  608. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  609. /* A kernel thread is always a 64-bit process. */
  610. current->thread.map_base = DEFAULT_MAP_BASE;
  611. current->thread.task_size = DEFAULT_TASK_SIZE;
  612. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  613. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  614. }
  615. #endif
  616. return (*fn)(arg);
  617. }
  618. /*
  619. * Flush thread state. This is called when a thread does an execve().
  620. */
  621. void
  622. flush_thread (void)
  623. {
  624. /* drop floating-point and debug-register state if it exists: */
  625. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  626. ia64_drop_fpu(current);
  627. #ifdef CONFIG_IA32_SUPPORT
  628. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  629. ia32_drop_partial_page_list(current);
  630. current->thread.task_size = IA32_PAGE_OFFSET;
  631. set_fs(USER_DS);
  632. }
  633. #endif
  634. }
  635. /*
  636. * Clean up state associated with current thread. This is called when
  637. * the thread calls exit().
  638. */
  639. void
  640. exit_thread (void)
  641. {
  642. ia64_drop_fpu(current);
  643. #ifdef CONFIG_PERFMON
  644. /* if needed, stop monitoring and flush state to perfmon context */
  645. if (current->thread.pfm_context)
  646. pfm_exit_thread(current);
  647. /* free debug register resources */
  648. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  649. pfm_release_debug_registers(current);
  650. #endif
  651. if (IS_IA32_PROCESS(task_pt_regs(current)))
  652. ia32_drop_partial_page_list(current);
  653. }
  654. unsigned long
  655. get_wchan (struct task_struct *p)
  656. {
  657. struct unw_frame_info info;
  658. unsigned long ip;
  659. int count = 0;
  660. /*
  661. * Note: p may not be a blocked task (it could be current or
  662. * another process running on some other CPU. Rather than
  663. * trying to determine if p is really blocked, we just assume
  664. * it's blocked and rely on the unwind routines to fail
  665. * gracefully if the process wasn't really blocked after all.
  666. * --davidm 99/12/15
  667. */
  668. unw_init_from_blocked_task(&info, p);
  669. do {
  670. if (unw_unwind(&info) < 0)
  671. return 0;
  672. unw_get_ip(&info, &ip);
  673. if (!in_sched_functions(ip))
  674. return ip;
  675. } while (count++ < 16);
  676. return 0;
  677. }
  678. void
  679. cpu_halt (void)
  680. {
  681. pal_power_mgmt_info_u_t power_info[8];
  682. unsigned long min_power;
  683. int i, min_power_state;
  684. if (ia64_pal_halt_info(power_info) != 0)
  685. return;
  686. min_power_state = 0;
  687. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  688. for (i = 1; i < 8; ++i)
  689. if (power_info[i].pal_power_mgmt_info_s.im
  690. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  691. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  692. min_power_state = i;
  693. }
  694. while (1)
  695. ia64_pal_halt(min_power_state);
  696. }
  697. void
  698. machine_restart (char *restart_cmd)
  699. {
  700. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  701. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  702. }
  703. void
  704. machine_halt (void)
  705. {
  706. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  707. cpu_halt();
  708. }
  709. void
  710. machine_power_off (void)
  711. {
  712. if (pm_power_off)
  713. pm_power_off();
  714. machine_halt();
  715. }