srat.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362
  1. /*
  2. * Some of the code in this file has been gleaned from the 64 bit
  3. * discontigmem support code base.
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. *
  24. * Send feedback to Pat Gaughen <gone@us.ibm.com>
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/bootmem.h>
  28. #include <linux/mmzone.h>
  29. #include <linux/acpi.h>
  30. #include <linux/nodemask.h>
  31. #include <asm/srat.h>
  32. #include <asm/topology.h>
  33. #include <asm/smp.h>
  34. /*
  35. * proximity macros and definitions
  36. */
  37. #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
  38. #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
  39. #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
  40. #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
  41. /* bitmap length; _PXM is at most 255 */
  42. #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
  43. static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
  44. #define MAX_CHUNKS_PER_NODE 3
  45. #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
  46. struct node_memory_chunk_s {
  47. unsigned long start_pfn;
  48. unsigned long end_pfn;
  49. u8 pxm; // proximity domain of node
  50. u8 nid; // which cnode contains this chunk?
  51. u8 bank; // which mem bank on this node
  52. };
  53. static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
  54. static int num_memory_chunks; /* total number of memory chunks */
  55. static u8 __initdata apicid_to_pxm[MAX_APICID];
  56. extern void * boot_ioremap(unsigned long, unsigned long);
  57. /* Identify CPU proximity domains */
  58. static void __init parse_cpu_affinity_structure(char *p)
  59. {
  60. struct acpi_table_processor_affinity *cpu_affinity =
  61. (struct acpi_table_processor_affinity *) p;
  62. if (!cpu_affinity->flags.enabled)
  63. return; /* empty entry */
  64. /* mark this node as "seen" in node bitmap */
  65. BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain);
  66. apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain;
  67. printk("CPU 0x%02X in proximity domain 0x%02X\n",
  68. cpu_affinity->apic_id, cpu_affinity->proximity_domain);
  69. }
  70. /*
  71. * Identify memory proximity domains and hot-remove capabilities.
  72. * Fill node memory chunk list structure.
  73. */
  74. static void __init parse_memory_affinity_structure (char *sratp)
  75. {
  76. unsigned long long paddr, size;
  77. unsigned long start_pfn, end_pfn;
  78. u8 pxm;
  79. struct node_memory_chunk_s *p, *q, *pend;
  80. struct acpi_table_memory_affinity *memory_affinity =
  81. (struct acpi_table_memory_affinity *) sratp;
  82. if (!memory_affinity->flags.enabled)
  83. return; /* empty entry */
  84. /* mark this node as "seen" in node bitmap */
  85. BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain);
  86. /* calculate info for memory chunk structure */
  87. paddr = memory_affinity->base_addr_hi;
  88. paddr = (paddr << 32) | memory_affinity->base_addr_lo;
  89. size = memory_affinity->length_hi;
  90. size = (size << 32) | memory_affinity->length_lo;
  91. start_pfn = paddr >> PAGE_SHIFT;
  92. end_pfn = (paddr + size) >> PAGE_SHIFT;
  93. pxm = memory_affinity->proximity_domain;
  94. if (num_memory_chunks >= MAXCHUNKS) {
  95. printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
  96. size/(1024*1024), paddr);
  97. return;
  98. }
  99. /* Insertion sort based on base address */
  100. pend = &node_memory_chunk[num_memory_chunks];
  101. for (p = &node_memory_chunk[0]; p < pend; p++) {
  102. if (start_pfn < p->start_pfn)
  103. break;
  104. }
  105. if (p < pend) {
  106. for (q = pend; q >= p; q--)
  107. *(q + 1) = *q;
  108. }
  109. p->start_pfn = start_pfn;
  110. p->end_pfn = end_pfn;
  111. p->pxm = pxm;
  112. num_memory_chunks++;
  113. printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
  114. start_pfn, end_pfn,
  115. memory_affinity->memory_type,
  116. memory_affinity->proximity_domain,
  117. (memory_affinity->flags.hot_pluggable ?
  118. "enabled and removable" : "enabled" ) );
  119. }
  120. /*
  121. * The SRAT table always lists ascending addresses, so can always
  122. * assume that the first "start" address that you see is the real
  123. * start of the node, and that the current "end" address is after
  124. * the previous one.
  125. */
  126. static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
  127. {
  128. /*
  129. * Only add present memory as told by the e820.
  130. * There is no guarantee from the SRAT that the memory it
  131. * enumerates is present at boot time because it represents
  132. * *possible* memory hotplug areas the same as normal RAM.
  133. */
  134. if (memory_chunk->start_pfn >= max_pfn) {
  135. printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",
  136. memory_chunk->start_pfn, memory_chunk->end_pfn);
  137. return;
  138. }
  139. if (memory_chunk->nid != nid)
  140. return;
  141. if (!node_has_online_mem(nid))
  142. node_start_pfn[nid] = memory_chunk->start_pfn;
  143. if (node_start_pfn[nid] > memory_chunk->start_pfn)
  144. node_start_pfn[nid] = memory_chunk->start_pfn;
  145. if (node_end_pfn[nid] < memory_chunk->end_pfn)
  146. node_end_pfn[nid] = memory_chunk->end_pfn;
  147. }
  148. /* Parse the ACPI Static Resource Affinity Table */
  149. static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
  150. {
  151. u8 *start, *end, *p;
  152. int i, j, nid;
  153. start = (u8 *)(&(sratp->reserved) + 1); /* skip header */
  154. p = start;
  155. end = (u8 *)sratp + sratp->header.length;
  156. memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */
  157. memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
  158. num_memory_chunks = 0;
  159. while (p < end) {
  160. switch (*p) {
  161. case ACPI_SRAT_PROCESSOR_AFFINITY:
  162. parse_cpu_affinity_structure(p);
  163. break;
  164. case ACPI_SRAT_MEMORY_AFFINITY:
  165. parse_memory_affinity_structure(p);
  166. break;
  167. default:
  168. printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);
  169. break;
  170. }
  171. p += p[1];
  172. if (p[1] == 0) {
  173. printk("acpi20_parse_srat: Entry length value is zero;"
  174. " can't parse any further!\n");
  175. break;
  176. }
  177. }
  178. if (num_memory_chunks == 0) {
  179. printk("could not finy any ACPI SRAT memory areas.\n");
  180. goto out_fail;
  181. }
  182. /* Calculate total number of nodes in system from PXM bitmap and create
  183. * a set of sequential node IDs starting at zero. (ACPI doesn't seem
  184. * to specify the range of _PXM values.)
  185. */
  186. /*
  187. * MCD - we no longer HAVE to number nodes sequentially. PXM domain
  188. * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
  189. * 32, so we will continue numbering them in this manner until MAX_NUMNODES
  190. * approaches MAX_PXM_DOMAINS for i386.
  191. */
  192. nodes_clear(node_online_map);
  193. for (i = 0; i < MAX_PXM_DOMAINS; i++) {
  194. if (BMAP_TEST(pxm_bitmap, i)) {
  195. int nid = acpi_map_pxm_to_node(i);
  196. node_set_online(nid);
  197. }
  198. }
  199. BUG_ON(num_online_nodes() == 0);
  200. /* set cnode id in memory chunk structure */
  201. for (i = 0; i < num_memory_chunks; i++)
  202. node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm);
  203. printk("pxm bitmap: ");
  204. for (i = 0; i < sizeof(pxm_bitmap); i++) {
  205. printk("%02X ", pxm_bitmap[i]);
  206. }
  207. printk("\n");
  208. printk("Number of logical nodes in system = %d\n", num_online_nodes());
  209. printk("Number of memory chunks in system = %d\n", num_memory_chunks);
  210. for (i = 0; i < MAX_APICID; i++)
  211. apicid_2_node[i] = pxm_to_node(apicid_to_pxm[i]);
  212. for (j = 0; j < num_memory_chunks; j++){
  213. struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
  214. printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
  215. j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
  216. node_read_chunk(chunk->nid, chunk);
  217. add_active_range(chunk->nid, chunk->start_pfn, chunk->end_pfn);
  218. }
  219. for_each_online_node(nid) {
  220. unsigned long start = node_start_pfn[nid];
  221. unsigned long end = node_end_pfn[nid];
  222. memory_present(nid, start, end);
  223. node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
  224. }
  225. return 1;
  226. out_fail:
  227. return 0;
  228. }
  229. int __init get_memcfg_from_srat(void)
  230. {
  231. struct acpi_table_header *header = NULL;
  232. struct acpi_table_rsdp *rsdp = NULL;
  233. struct acpi_table_rsdt *rsdt = NULL;
  234. struct acpi_pointer *rsdp_address = NULL;
  235. struct acpi_table_rsdt saved_rsdt;
  236. int tables = 0;
  237. int i = 0;
  238. if (ACPI_FAILURE(acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING,
  239. rsdp_address))) {
  240. printk("%s: System description tables not found\n",
  241. __FUNCTION__);
  242. goto out_err;
  243. }
  244. if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) {
  245. printk("%s: assigning address to rsdp\n", __FUNCTION__);
  246. rsdp = (struct acpi_table_rsdp *)
  247. (u32)rsdp_address->pointer.physical;
  248. } else {
  249. printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__);
  250. goto out_err;
  251. }
  252. if (!rsdp) {
  253. printk("%s: Didn't find ACPI root!\n", __FUNCTION__);
  254. goto out_err;
  255. }
  256. printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,
  257. rsdp->oem_id);
  258. if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) {
  259. printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);
  260. goto out_err;
  261. }
  262. rsdt = (struct acpi_table_rsdt *)
  263. boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt));
  264. if (!rsdt) {
  265. printk(KERN_WARNING
  266. "%s: ACPI: Invalid root system description tables (RSDT)\n",
  267. __FUNCTION__);
  268. goto out_err;
  269. }
  270. header = & rsdt->header;
  271. if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) {
  272. printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");
  273. goto out_err;
  274. }
  275. /*
  276. * The number of tables is computed by taking the
  277. * size of all entries (header size minus total
  278. * size of RSDT) divided by the size of each entry
  279. * (4-byte table pointers).
  280. */
  281. tables = (header->length - sizeof(struct acpi_table_header)) / 4;
  282. if (!tables)
  283. goto out_err;
  284. memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));
  285. if (saved_rsdt.header.length > sizeof(saved_rsdt)) {
  286. printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",
  287. saved_rsdt.header.length);
  288. goto out_err;
  289. }
  290. printk("Begin SRAT table scan....\n");
  291. for (i = 0; i < tables; i++) {
  292. /* Map in header, then map in full table length. */
  293. header = (struct acpi_table_header *)
  294. boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header));
  295. if (!header)
  296. break;
  297. header = (struct acpi_table_header *)
  298. boot_ioremap(saved_rsdt.entry[i], header->length);
  299. if (!header)
  300. break;
  301. if (strncmp((char *) &header->signature, "SRAT", 4))
  302. continue;
  303. /* we've found the srat table. don't need to look at any more tables */
  304. return acpi20_parse_srat((struct acpi_table_srat *)header);
  305. }
  306. out_err:
  307. remove_all_active_ranges();
  308. printk("failed to get NUMA memory information from SRAT table\n");
  309. return 0;
  310. }