single_cpdo.c 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. /*
  2. NetWinder Floating Point Emulator
  3. (c) Rebel.COM, 1998,1999
  4. Direct questions, comments to Scott Bambrough <scottb@netwinder.org>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; if not, write to the Free Software
  15. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  16. */
  17. #include "fpa11.h"
  18. #include "softfloat.h"
  19. #include "fpopcode.h"
  20. float32 float32_exp(float32 Fm);
  21. float32 float32_ln(float32 Fm);
  22. float32 float32_sin(float32 rFm);
  23. float32 float32_cos(float32 rFm);
  24. float32 float32_arcsin(float32 rFm);
  25. float32 float32_arctan(float32 rFm);
  26. float32 float32_log(float32 rFm);
  27. float32 float32_tan(float32 rFm);
  28. float32 float32_arccos(float32 rFm);
  29. float32 float32_pow(float32 rFn,float32 rFm);
  30. float32 float32_pol(float32 rFn,float32 rFm);
  31. unsigned int SingleCPDO(const unsigned int opcode)
  32. {
  33. FPA11 *fpa11 = GET_FPA11();
  34. float32 rFm, rFn = 0; //FIXME - should be zero?
  35. unsigned int Fd, Fm, Fn, nRc = 1;
  36. Fm = getFm(opcode);
  37. if (CONSTANT_FM(opcode))
  38. {
  39. rFm = getSingleConstant(Fm);
  40. }
  41. else
  42. {
  43. switch (fpa11->fType[Fm])
  44. {
  45. case typeSingle:
  46. rFm = fpa11->fpreg[Fm].fSingle;
  47. break;
  48. default: return 0;
  49. }
  50. }
  51. if (!MONADIC_INSTRUCTION(opcode))
  52. {
  53. Fn = getFn(opcode);
  54. switch (fpa11->fType[Fn])
  55. {
  56. case typeSingle:
  57. rFn = fpa11->fpreg[Fn].fSingle;
  58. break;
  59. default: return 0;
  60. }
  61. }
  62. Fd = getFd(opcode);
  63. switch (opcode & MASK_ARITHMETIC_OPCODE)
  64. {
  65. /* dyadic opcodes */
  66. case ADF_CODE:
  67. fpa11->fpreg[Fd].fSingle = float32_add(rFn,rFm);
  68. break;
  69. case MUF_CODE:
  70. case FML_CODE:
  71. fpa11->fpreg[Fd].fSingle = float32_mul(rFn,rFm);
  72. break;
  73. case SUF_CODE:
  74. fpa11->fpreg[Fd].fSingle = float32_sub(rFn,rFm);
  75. break;
  76. case RSF_CODE:
  77. fpa11->fpreg[Fd].fSingle = float32_sub(rFm,rFn);
  78. break;
  79. case DVF_CODE:
  80. case FDV_CODE:
  81. fpa11->fpreg[Fd].fSingle = float32_div(rFn,rFm);
  82. break;
  83. case RDF_CODE:
  84. case FRD_CODE:
  85. fpa11->fpreg[Fd].fSingle = float32_div(rFm,rFn);
  86. break;
  87. #if 0
  88. case POW_CODE:
  89. fpa11->fpreg[Fd].fSingle = float32_pow(rFn,rFm);
  90. break;
  91. case RPW_CODE:
  92. fpa11->fpreg[Fd].fSingle = float32_pow(rFm,rFn);
  93. break;
  94. #endif
  95. case RMF_CODE:
  96. fpa11->fpreg[Fd].fSingle = float32_rem(rFn,rFm);
  97. break;
  98. #if 0
  99. case POL_CODE:
  100. fpa11->fpreg[Fd].fSingle = float32_pol(rFn,rFm);
  101. break;
  102. #endif
  103. /* monadic opcodes */
  104. case MVF_CODE:
  105. fpa11->fpreg[Fd].fSingle = rFm;
  106. break;
  107. case MNF_CODE:
  108. rFm ^= 0x80000000;
  109. fpa11->fpreg[Fd].fSingle = rFm;
  110. break;
  111. case ABS_CODE:
  112. rFm &= 0x7fffffff;
  113. fpa11->fpreg[Fd].fSingle = rFm;
  114. break;
  115. case RND_CODE:
  116. case URD_CODE:
  117. fpa11->fpreg[Fd].fSingle = float32_round_to_int(rFm);
  118. break;
  119. case SQT_CODE:
  120. fpa11->fpreg[Fd].fSingle = float32_sqrt(rFm);
  121. break;
  122. #if 0
  123. case LOG_CODE:
  124. fpa11->fpreg[Fd].fSingle = float32_log(rFm);
  125. break;
  126. case LGN_CODE:
  127. fpa11->fpreg[Fd].fSingle = float32_ln(rFm);
  128. break;
  129. case EXP_CODE:
  130. fpa11->fpreg[Fd].fSingle = float32_exp(rFm);
  131. break;
  132. case SIN_CODE:
  133. fpa11->fpreg[Fd].fSingle = float32_sin(rFm);
  134. break;
  135. case COS_CODE:
  136. fpa11->fpreg[Fd].fSingle = float32_cos(rFm);
  137. break;
  138. case TAN_CODE:
  139. fpa11->fpreg[Fd].fSingle = float32_tan(rFm);
  140. break;
  141. case ASN_CODE:
  142. fpa11->fpreg[Fd].fSingle = float32_arcsin(rFm);
  143. break;
  144. case ACS_CODE:
  145. fpa11->fpreg[Fd].fSingle = float32_arccos(rFm);
  146. break;
  147. case ATN_CODE:
  148. fpa11->fpreg[Fd].fSingle = float32_arctan(rFm);
  149. break;
  150. #endif
  151. case NRM_CODE:
  152. break;
  153. default:
  154. {
  155. nRc = 0;
  156. }
  157. }
  158. if (0 != nRc) fpa11->fType[Fd] = typeSingle;
  159. return nRc;
  160. }
  161. #if 0
  162. float32 float32_exp(float32 Fm)
  163. {
  164. //series
  165. }
  166. float32 float32_ln(float32 Fm)
  167. {
  168. //series
  169. }
  170. float32 float32_sin(float32 rFm)
  171. {
  172. //series
  173. }
  174. float32 float32_cos(float32 rFm)
  175. {
  176. //series
  177. }
  178. float32 float32_arcsin(float32 rFm)
  179. {
  180. //series
  181. }
  182. float32 float32_arctan(float32 rFm)
  183. {
  184. //series
  185. }
  186. float32 float32_arccos(float32 rFm)
  187. {
  188. //return float32_sub(halfPi,float32_arcsin(rFm));
  189. }
  190. float32 float32_log(float32 rFm)
  191. {
  192. return float32_div(float32_ln(rFm),getSingleConstant(7));
  193. }
  194. float32 float32_tan(float32 rFm)
  195. {
  196. return float32_div(float32_sin(rFm),float32_cos(rFm));
  197. }
  198. float32 float32_pow(float32 rFn,float32 rFm)
  199. {
  200. return float32_exp(float32_mul(rFm,float32_ln(rFn)));
  201. }
  202. float32 float32_pol(float32 rFn,float32 rFm)
  203. {
  204. return float32_arctan(float32_div(rFn,rFm));
  205. }
  206. #endif