vfpmodule.c 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. /*
  2. * linux/arch/arm/vfp/vfpmodule.c
  3. *
  4. * Copyright (C) 2004 ARM Limited.
  5. * Written by Deep Blue Solutions Limited.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/types.h>
  13. #include <linux/kernel.h>
  14. #include <linux/signal.h>
  15. #include <linux/sched.h>
  16. #include <linux/init.h>
  17. #include <asm/thread_notify.h>
  18. #include <asm/vfp.h>
  19. #include "vfpinstr.h"
  20. #include "vfp.h"
  21. /*
  22. * Our undef handlers (in entry.S)
  23. */
  24. void vfp_testing_entry(void);
  25. void vfp_support_entry(void);
  26. void (*vfp_vector)(void) = vfp_testing_entry;
  27. union vfp_state *last_VFP_context;
  28. /*
  29. * Dual-use variable.
  30. * Used in startup: set to non-zero if VFP checks fail
  31. * After startup, holds VFP architecture
  32. */
  33. unsigned int VFP_arch;
  34. static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
  35. {
  36. struct thread_info *thread = v;
  37. union vfp_state *vfp;
  38. if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
  39. /*
  40. * Always disable VFP so we can lazily save/restore the
  41. * old state.
  42. */
  43. fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
  44. return NOTIFY_DONE;
  45. }
  46. vfp = &thread->vfpstate;
  47. if (cmd == THREAD_NOTIFY_FLUSH) {
  48. /*
  49. * Per-thread VFP initialisation.
  50. */
  51. memset(vfp, 0, sizeof(union vfp_state));
  52. vfp->hard.fpexc = FPEXC_ENABLE;
  53. vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
  54. /*
  55. * Disable VFP to ensure we initialise it first.
  56. */
  57. fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
  58. }
  59. /* flush and release case: Per-thread VFP cleanup. */
  60. if (last_VFP_context == vfp)
  61. last_VFP_context = NULL;
  62. return NOTIFY_DONE;
  63. }
  64. static struct notifier_block vfp_notifier_block = {
  65. .notifier_call = vfp_notifier,
  66. };
  67. /*
  68. * Raise a SIGFPE for the current process.
  69. * sicode describes the signal being raised.
  70. */
  71. void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
  72. {
  73. siginfo_t info;
  74. memset(&info, 0, sizeof(info));
  75. info.si_signo = SIGFPE;
  76. info.si_code = sicode;
  77. info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
  78. /*
  79. * This is the same as NWFPE, because it's not clear what
  80. * this is used for
  81. */
  82. current->thread.error_code = 0;
  83. current->thread.trap_no = 6;
  84. send_sig_info(SIGFPE, &info, current);
  85. }
  86. static void vfp_panic(char *reason)
  87. {
  88. int i;
  89. printk(KERN_ERR "VFP: Error: %s\n", reason);
  90. printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
  91. fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
  92. for (i = 0; i < 32; i += 2)
  93. printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
  94. i, vfp_get_float(i), i+1, vfp_get_float(i+1));
  95. }
  96. /*
  97. * Process bitmask of exception conditions.
  98. */
  99. static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
  100. {
  101. int si_code = 0;
  102. pr_debug("VFP: raising exceptions %08x\n", exceptions);
  103. if (exceptions == VFP_EXCEPTION_ERROR) {
  104. vfp_panic("unhandled bounce");
  105. vfp_raise_sigfpe(0, regs);
  106. return;
  107. }
  108. /*
  109. * If any of the status flags are set, update the FPSCR.
  110. * Comparison instructions always return at least one of
  111. * these flags set.
  112. */
  113. if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
  114. fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
  115. fpscr |= exceptions;
  116. fmxr(FPSCR, fpscr);
  117. #define RAISE(stat,en,sig) \
  118. if (exceptions & stat && fpscr & en) \
  119. si_code = sig;
  120. /*
  121. * These are arranged in priority order, least to highest.
  122. */
  123. RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
  124. RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
  125. RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
  126. RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
  127. if (si_code)
  128. vfp_raise_sigfpe(si_code, regs);
  129. }
  130. /*
  131. * Emulate a VFP instruction.
  132. */
  133. static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
  134. {
  135. u32 exceptions = VFP_EXCEPTION_ERROR;
  136. pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
  137. if (INST_CPRTDO(inst)) {
  138. if (!INST_CPRT(inst)) {
  139. /*
  140. * CPDO
  141. */
  142. if (vfp_single(inst)) {
  143. exceptions = vfp_single_cpdo(inst, fpscr);
  144. } else {
  145. exceptions = vfp_double_cpdo(inst, fpscr);
  146. }
  147. } else {
  148. /*
  149. * A CPRT instruction can not appear in FPINST2, nor
  150. * can it cause an exception. Therefore, we do not
  151. * have to emulate it.
  152. */
  153. }
  154. } else {
  155. /*
  156. * A CPDT instruction can not appear in FPINST2, nor can
  157. * it cause an exception. Therefore, we do not have to
  158. * emulate it.
  159. */
  160. }
  161. return exceptions & ~VFP_NAN_FLAG;
  162. }
  163. /*
  164. * Package up a bounce condition.
  165. */
  166. void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
  167. {
  168. u32 fpscr, orig_fpscr, exceptions, inst;
  169. pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
  170. /*
  171. * Enable access to the VFP so we can handle the bounce.
  172. */
  173. fmxr(FPEXC, fpexc & ~(FPEXC_EXCEPTION|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
  174. orig_fpscr = fpscr = fmrx(FPSCR);
  175. /*
  176. * If we are running with inexact exceptions enabled, we need to
  177. * emulate the trigger instruction. Note that as we're emulating
  178. * the trigger instruction, we need to increment PC.
  179. */
  180. if (fpscr & FPSCR_IXE) {
  181. regs->ARM_pc += 4;
  182. goto emulate;
  183. }
  184. barrier();
  185. /*
  186. * Modify fpscr to indicate the number of iterations remaining
  187. */
  188. if (fpexc & FPEXC_EXCEPTION) {
  189. u32 len;
  190. len = fpexc + (1 << FPEXC_LENGTH_BIT);
  191. fpscr &= ~FPSCR_LENGTH_MASK;
  192. fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
  193. }
  194. /*
  195. * Handle the first FP instruction. We used to take note of the
  196. * FPEXC bounce reason, but this appears to be unreliable.
  197. * Emulate the bounced instruction instead.
  198. */
  199. inst = fmrx(FPINST);
  200. exceptions = vfp_emulate_instruction(inst, fpscr, regs);
  201. if (exceptions)
  202. vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
  203. /*
  204. * If there isn't a second FP instruction, exit now.
  205. */
  206. if (!(fpexc & FPEXC_FPV2))
  207. return;
  208. /*
  209. * The barrier() here prevents fpinst2 being read
  210. * before the condition above.
  211. */
  212. barrier();
  213. trigger = fmrx(FPINST2);
  214. orig_fpscr = fpscr = fmrx(FPSCR);
  215. emulate:
  216. exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
  217. if (exceptions)
  218. vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
  219. }
  220. /*
  221. * VFP support code initialisation.
  222. */
  223. static int __init vfp_init(void)
  224. {
  225. unsigned int vfpsid;
  226. /*
  227. * First check that there is a VFP that we can use.
  228. * The handler is already setup to just log calls, so
  229. * we just need to read the VFPSID register.
  230. */
  231. vfpsid = fmrx(FPSID);
  232. printk(KERN_INFO "VFP support v0.3: ");
  233. if (VFP_arch) {
  234. printk("not present\n");
  235. } else if (vfpsid & FPSID_NODOUBLE) {
  236. printk("no double precision support\n");
  237. } else {
  238. VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
  239. printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
  240. (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
  241. (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
  242. (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
  243. (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
  244. (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
  245. vfp_vector = vfp_support_entry;
  246. thread_register_notifier(&vfp_notifier_block);
  247. }
  248. return 0;
  249. }
  250. late_initcall(vfp_init);