core.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915
  1. /*
  2. * linux/arch/arm/mach-versatile/core.c
  3. *
  4. * Copyright (C) 1999 - 2003 ARM Limited
  5. * Copyright (C) 2000 Deep Blue Solutions Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/init.h>
  22. #include <linux/device.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/sysdev.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/amba/bus.h>
  28. #include <linux/amba/clcd.h>
  29. #include <asm/system.h>
  30. #include <asm/hardware.h>
  31. #include <asm/io.h>
  32. #include <asm/irq.h>
  33. #include <asm/leds.h>
  34. #include <asm/hardware/arm_timer.h>
  35. #include <asm/hardware/icst307.h>
  36. #include <asm/hardware/vic.h>
  37. #include <asm/mach-types.h>
  38. #include <asm/mach/arch.h>
  39. #include <asm/mach/flash.h>
  40. #include <asm/mach/irq.h>
  41. #include <asm/mach/time.h>
  42. #include <asm/mach/map.h>
  43. #include <asm/mach/mmc.h>
  44. #include "core.h"
  45. #include "clock.h"
  46. /*
  47. * All IO addresses are mapped onto VA 0xFFFx.xxxx, where x.xxxx
  48. * is the (PA >> 12).
  49. *
  50. * Setup a VA for the Versatile Vectored Interrupt Controller.
  51. */
  52. #define __io_address(n) __io(IO_ADDRESS(n))
  53. #define VA_VIC_BASE __io_address(VERSATILE_VIC_BASE)
  54. #define VA_SIC_BASE __io_address(VERSATILE_SIC_BASE)
  55. static void sic_mask_irq(unsigned int irq)
  56. {
  57. irq -= IRQ_SIC_START;
  58. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  59. }
  60. static void sic_unmask_irq(unsigned int irq)
  61. {
  62. irq -= IRQ_SIC_START;
  63. writel(1 << irq, VA_SIC_BASE + SIC_IRQ_ENABLE_SET);
  64. }
  65. static struct irq_chip sic_chip = {
  66. .name = "SIC",
  67. .ack = sic_mask_irq,
  68. .mask = sic_mask_irq,
  69. .unmask = sic_unmask_irq,
  70. };
  71. static void
  72. sic_handle_irq(unsigned int irq, struct irqdesc *desc)
  73. {
  74. unsigned long status = readl(VA_SIC_BASE + SIC_IRQ_STATUS);
  75. if (status == 0) {
  76. do_bad_IRQ(irq, desc);
  77. return;
  78. }
  79. do {
  80. irq = ffs(status) - 1;
  81. status &= ~(1 << irq);
  82. irq += IRQ_SIC_START;
  83. desc = irq_desc + irq;
  84. desc_handle_irq(irq, desc);
  85. } while (status);
  86. }
  87. #if 1
  88. #define IRQ_MMCI0A IRQ_VICSOURCE22
  89. #define IRQ_AACI IRQ_VICSOURCE24
  90. #define IRQ_ETH IRQ_VICSOURCE25
  91. #define PIC_MASK 0xFFD00000
  92. #else
  93. #define IRQ_MMCI0A IRQ_SIC_MMCI0A
  94. #define IRQ_AACI IRQ_SIC_AACI
  95. #define IRQ_ETH IRQ_SIC_ETH
  96. #define PIC_MASK 0
  97. #endif
  98. void __init versatile_init_irq(void)
  99. {
  100. unsigned int i;
  101. vic_init(VA_VIC_BASE, IRQ_VIC_START, ~0);
  102. set_irq_chained_handler(IRQ_VICSOURCE31, sic_handle_irq);
  103. /* Do second interrupt controller */
  104. writel(~0, VA_SIC_BASE + SIC_IRQ_ENABLE_CLEAR);
  105. for (i = IRQ_SIC_START; i <= IRQ_SIC_END; i++) {
  106. if ((PIC_MASK & (1 << (i - IRQ_SIC_START))) == 0) {
  107. set_irq_chip(i, &sic_chip);
  108. set_irq_handler(i, do_level_IRQ);
  109. set_irq_flags(i, IRQF_VALID | IRQF_PROBE);
  110. }
  111. }
  112. /*
  113. * Interrupts on secondary controller from 0 to 8 are routed to
  114. * source 31 on PIC.
  115. * Interrupts from 21 to 31 are routed directly to the VIC on
  116. * the corresponding number on primary controller. This is controlled
  117. * by setting PIC_ENABLEx.
  118. */
  119. writel(PIC_MASK, VA_SIC_BASE + SIC_INT_PIC_ENABLE);
  120. }
  121. static struct map_desc versatile_io_desc[] __initdata = {
  122. {
  123. .virtual = IO_ADDRESS(VERSATILE_SYS_BASE),
  124. .pfn = __phys_to_pfn(VERSATILE_SYS_BASE),
  125. .length = SZ_4K,
  126. .type = MT_DEVICE
  127. }, {
  128. .virtual = IO_ADDRESS(VERSATILE_SIC_BASE),
  129. .pfn = __phys_to_pfn(VERSATILE_SIC_BASE),
  130. .length = SZ_4K,
  131. .type = MT_DEVICE
  132. }, {
  133. .virtual = IO_ADDRESS(VERSATILE_VIC_BASE),
  134. .pfn = __phys_to_pfn(VERSATILE_VIC_BASE),
  135. .length = SZ_4K,
  136. .type = MT_DEVICE
  137. }, {
  138. .virtual = IO_ADDRESS(VERSATILE_SCTL_BASE),
  139. .pfn = __phys_to_pfn(VERSATILE_SCTL_BASE),
  140. .length = SZ_4K * 9,
  141. .type = MT_DEVICE
  142. },
  143. #ifdef CONFIG_MACH_VERSATILE_AB
  144. {
  145. .virtual = IO_ADDRESS(VERSATILE_GPIO0_BASE),
  146. .pfn = __phys_to_pfn(VERSATILE_GPIO0_BASE),
  147. .length = SZ_4K,
  148. .type = MT_DEVICE
  149. }, {
  150. .virtual = IO_ADDRESS(VERSATILE_IB2_BASE),
  151. .pfn = __phys_to_pfn(VERSATILE_IB2_BASE),
  152. .length = SZ_64M,
  153. .type = MT_DEVICE
  154. },
  155. #endif
  156. #ifdef CONFIG_DEBUG_LL
  157. {
  158. .virtual = IO_ADDRESS(VERSATILE_UART0_BASE),
  159. .pfn = __phys_to_pfn(VERSATILE_UART0_BASE),
  160. .length = SZ_4K,
  161. .type = MT_DEVICE
  162. },
  163. #endif
  164. #ifdef CONFIG_PCI
  165. {
  166. .virtual = IO_ADDRESS(VERSATILE_PCI_CORE_BASE),
  167. .pfn = __phys_to_pfn(VERSATILE_PCI_CORE_BASE),
  168. .length = SZ_4K,
  169. .type = MT_DEVICE
  170. }, {
  171. .virtual = (unsigned long)VERSATILE_PCI_VIRT_BASE,
  172. .pfn = __phys_to_pfn(VERSATILE_PCI_BASE),
  173. .length = VERSATILE_PCI_BASE_SIZE,
  174. .type = MT_DEVICE
  175. }, {
  176. .virtual = (unsigned long)VERSATILE_PCI_CFG_VIRT_BASE,
  177. .pfn = __phys_to_pfn(VERSATILE_PCI_CFG_BASE),
  178. .length = VERSATILE_PCI_CFG_BASE_SIZE,
  179. .type = MT_DEVICE
  180. },
  181. #if 0
  182. {
  183. .virtual = VERSATILE_PCI_VIRT_MEM_BASE0,
  184. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE0),
  185. .length = SZ_16M,
  186. .type = MT_DEVICE
  187. }, {
  188. .virtual = VERSATILE_PCI_VIRT_MEM_BASE1,
  189. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE1),
  190. .length = SZ_16M,
  191. .type = MT_DEVICE
  192. }, {
  193. .virtual = VERSATILE_PCI_VIRT_MEM_BASE2,
  194. .pfn = __phys_to_pfn(VERSATILE_PCI_MEM_BASE2),
  195. .length = SZ_16M,
  196. .type = MT_DEVICE
  197. },
  198. #endif
  199. #endif
  200. };
  201. void __init versatile_map_io(void)
  202. {
  203. iotable_init(versatile_io_desc, ARRAY_SIZE(versatile_io_desc));
  204. }
  205. #define VERSATILE_REFCOUNTER (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_24MHz_OFFSET)
  206. /*
  207. * This is the Versatile sched_clock implementation. This has
  208. * a resolution of 41.7ns, and a maximum value of about 179s.
  209. */
  210. unsigned long long sched_clock(void)
  211. {
  212. unsigned long long v;
  213. v = (unsigned long long)readl(VERSATILE_REFCOUNTER) * 125;
  214. do_div(v, 3);
  215. return v;
  216. }
  217. #define VERSATILE_FLASHCTRL (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_FLASH_OFFSET)
  218. static int versatile_flash_init(void)
  219. {
  220. u32 val;
  221. val = __raw_readl(VERSATILE_FLASHCTRL);
  222. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  223. __raw_writel(val, VERSATILE_FLASHCTRL);
  224. return 0;
  225. }
  226. static void versatile_flash_exit(void)
  227. {
  228. u32 val;
  229. val = __raw_readl(VERSATILE_FLASHCTRL);
  230. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  231. __raw_writel(val, VERSATILE_FLASHCTRL);
  232. }
  233. static void versatile_flash_set_vpp(int on)
  234. {
  235. u32 val;
  236. val = __raw_readl(VERSATILE_FLASHCTRL);
  237. if (on)
  238. val |= VERSATILE_FLASHPROG_FLVPPEN;
  239. else
  240. val &= ~VERSATILE_FLASHPROG_FLVPPEN;
  241. __raw_writel(val, VERSATILE_FLASHCTRL);
  242. }
  243. static struct flash_platform_data versatile_flash_data = {
  244. .map_name = "cfi_probe",
  245. .width = 4,
  246. .init = versatile_flash_init,
  247. .exit = versatile_flash_exit,
  248. .set_vpp = versatile_flash_set_vpp,
  249. };
  250. static struct resource versatile_flash_resource = {
  251. .start = VERSATILE_FLASH_BASE,
  252. .end = VERSATILE_FLASH_BASE + VERSATILE_FLASH_SIZE - 1,
  253. .flags = IORESOURCE_MEM,
  254. };
  255. static struct platform_device versatile_flash_device = {
  256. .name = "armflash",
  257. .id = 0,
  258. .dev = {
  259. .platform_data = &versatile_flash_data,
  260. },
  261. .num_resources = 1,
  262. .resource = &versatile_flash_resource,
  263. };
  264. static struct resource smc91x_resources[] = {
  265. [0] = {
  266. .start = VERSATILE_ETH_BASE,
  267. .end = VERSATILE_ETH_BASE + SZ_64K - 1,
  268. .flags = IORESOURCE_MEM,
  269. },
  270. [1] = {
  271. .start = IRQ_ETH,
  272. .end = IRQ_ETH,
  273. .flags = IORESOURCE_IRQ,
  274. },
  275. };
  276. static struct platform_device smc91x_device = {
  277. .name = "smc91x",
  278. .id = 0,
  279. .num_resources = ARRAY_SIZE(smc91x_resources),
  280. .resource = smc91x_resources,
  281. };
  282. #define VERSATILE_SYSMCI (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_MCI_OFFSET)
  283. unsigned int mmc_status(struct device *dev)
  284. {
  285. struct amba_device *adev = container_of(dev, struct amba_device, dev);
  286. u32 mask;
  287. if (adev->res.start == VERSATILE_MMCI0_BASE)
  288. mask = 1;
  289. else
  290. mask = 2;
  291. return readl(VERSATILE_SYSMCI) & mask;
  292. }
  293. static struct mmc_platform_data mmc0_plat_data = {
  294. .ocr_mask = MMC_VDD_32_33|MMC_VDD_33_34,
  295. .status = mmc_status,
  296. };
  297. /*
  298. * Clock handling
  299. */
  300. static const struct icst307_params versatile_oscvco_params = {
  301. .ref = 24000,
  302. .vco_max = 200000,
  303. .vd_min = 4 + 8,
  304. .vd_max = 511 + 8,
  305. .rd_min = 1 + 2,
  306. .rd_max = 127 + 2,
  307. };
  308. static void versatile_oscvco_set(struct clk *clk, struct icst307_vco vco)
  309. {
  310. void __iomem *sys_lock = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LOCK_OFFSET;
  311. void __iomem *sys_osc = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_OSCCLCD_OFFSET;
  312. u32 val;
  313. val = readl(sys_osc) & ~0x7ffff;
  314. val |= vco.v | (vco.r << 9) | (vco.s << 16);
  315. writel(0xa05f, sys_lock);
  316. writel(val, sys_osc);
  317. writel(0, sys_lock);
  318. }
  319. static struct clk versatile_clcd_clk = {
  320. .name = "CLCDCLK",
  321. .params = &versatile_oscvco_params,
  322. .setvco = versatile_oscvco_set,
  323. };
  324. /*
  325. * CLCD support.
  326. */
  327. #define SYS_CLCD_MODE_MASK (3 << 0)
  328. #define SYS_CLCD_MODE_888 (0 << 0)
  329. #define SYS_CLCD_MODE_5551 (1 << 0)
  330. #define SYS_CLCD_MODE_565_RLSB (2 << 0)
  331. #define SYS_CLCD_MODE_565_BLSB (3 << 0)
  332. #define SYS_CLCD_NLCDIOON (1 << 2)
  333. #define SYS_CLCD_VDDPOSSWITCH (1 << 3)
  334. #define SYS_CLCD_PWR3V5SWITCH (1 << 4)
  335. #define SYS_CLCD_ID_MASK (0x1f << 8)
  336. #define SYS_CLCD_ID_SANYO_3_8 (0x00 << 8)
  337. #define SYS_CLCD_ID_UNKNOWN_8_4 (0x01 << 8)
  338. #define SYS_CLCD_ID_EPSON_2_2 (0x02 << 8)
  339. #define SYS_CLCD_ID_SANYO_2_5 (0x07 << 8)
  340. #define SYS_CLCD_ID_VGA (0x1f << 8)
  341. static struct clcd_panel vga = {
  342. .mode = {
  343. .name = "VGA",
  344. .refresh = 60,
  345. .xres = 640,
  346. .yres = 480,
  347. .pixclock = 39721,
  348. .left_margin = 40,
  349. .right_margin = 24,
  350. .upper_margin = 32,
  351. .lower_margin = 11,
  352. .hsync_len = 96,
  353. .vsync_len = 2,
  354. .sync = 0,
  355. .vmode = FB_VMODE_NONINTERLACED,
  356. },
  357. .width = -1,
  358. .height = -1,
  359. .tim2 = TIM2_BCD | TIM2_IPC,
  360. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  361. .bpp = 16,
  362. };
  363. static struct clcd_panel sanyo_3_8_in = {
  364. .mode = {
  365. .name = "Sanyo QVGA",
  366. .refresh = 116,
  367. .xres = 320,
  368. .yres = 240,
  369. .pixclock = 100000,
  370. .left_margin = 6,
  371. .right_margin = 6,
  372. .upper_margin = 5,
  373. .lower_margin = 5,
  374. .hsync_len = 6,
  375. .vsync_len = 6,
  376. .sync = 0,
  377. .vmode = FB_VMODE_NONINTERLACED,
  378. },
  379. .width = -1,
  380. .height = -1,
  381. .tim2 = TIM2_BCD,
  382. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  383. .bpp = 16,
  384. };
  385. static struct clcd_panel sanyo_2_5_in = {
  386. .mode = {
  387. .name = "Sanyo QVGA Portrait",
  388. .refresh = 116,
  389. .xres = 240,
  390. .yres = 320,
  391. .pixclock = 100000,
  392. .left_margin = 20,
  393. .right_margin = 10,
  394. .upper_margin = 2,
  395. .lower_margin = 2,
  396. .hsync_len = 10,
  397. .vsync_len = 2,
  398. .sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
  399. .vmode = FB_VMODE_NONINTERLACED,
  400. },
  401. .width = -1,
  402. .height = -1,
  403. .tim2 = TIM2_IVS | TIM2_IHS | TIM2_IPC,
  404. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  405. .bpp = 16,
  406. };
  407. static struct clcd_panel epson_2_2_in = {
  408. .mode = {
  409. .name = "Epson QCIF",
  410. .refresh = 390,
  411. .xres = 176,
  412. .yres = 220,
  413. .pixclock = 62500,
  414. .left_margin = 3,
  415. .right_margin = 2,
  416. .upper_margin = 1,
  417. .lower_margin = 0,
  418. .hsync_len = 3,
  419. .vsync_len = 2,
  420. .sync = 0,
  421. .vmode = FB_VMODE_NONINTERLACED,
  422. },
  423. .width = -1,
  424. .height = -1,
  425. .tim2 = TIM2_BCD | TIM2_IPC,
  426. .cntl = CNTL_LCDTFT | CNTL_LCDVCOMP(1),
  427. .bpp = 16,
  428. };
  429. /*
  430. * Detect which LCD panel is connected, and return the appropriate
  431. * clcd_panel structure. Note: we do not have any information on
  432. * the required timings for the 8.4in panel, so we presently assume
  433. * VGA timings.
  434. */
  435. static struct clcd_panel *versatile_clcd_panel(void)
  436. {
  437. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  438. struct clcd_panel *panel = &vga;
  439. u32 val;
  440. val = readl(sys_clcd) & SYS_CLCD_ID_MASK;
  441. if (val == SYS_CLCD_ID_SANYO_3_8)
  442. panel = &sanyo_3_8_in;
  443. else if (val == SYS_CLCD_ID_SANYO_2_5)
  444. panel = &sanyo_2_5_in;
  445. else if (val == SYS_CLCD_ID_EPSON_2_2)
  446. panel = &epson_2_2_in;
  447. else if (val == SYS_CLCD_ID_VGA)
  448. panel = &vga;
  449. else {
  450. printk(KERN_ERR "CLCD: unknown LCD panel ID 0x%08x, using VGA\n",
  451. val);
  452. panel = &vga;
  453. }
  454. return panel;
  455. }
  456. /*
  457. * Disable all display connectors on the interface module.
  458. */
  459. static void versatile_clcd_disable(struct clcd_fb *fb)
  460. {
  461. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  462. u32 val;
  463. val = readl(sys_clcd);
  464. val &= ~SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  465. writel(val, sys_clcd);
  466. #ifdef CONFIG_MACH_VERSATILE_AB
  467. /*
  468. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light off
  469. */
  470. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  471. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  472. unsigned long ctrl;
  473. ctrl = readl(versatile_ib2_ctrl);
  474. ctrl &= ~0x01;
  475. writel(ctrl, versatile_ib2_ctrl);
  476. }
  477. #endif
  478. }
  479. /*
  480. * Enable the relevant connector on the interface module.
  481. */
  482. static void versatile_clcd_enable(struct clcd_fb *fb)
  483. {
  484. void __iomem *sys_clcd = __io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_CLCD_OFFSET;
  485. u32 val;
  486. val = readl(sys_clcd);
  487. val &= ~SYS_CLCD_MODE_MASK;
  488. switch (fb->fb.var.green.length) {
  489. case 5:
  490. val |= SYS_CLCD_MODE_5551;
  491. break;
  492. case 6:
  493. val |= SYS_CLCD_MODE_565_RLSB;
  494. break;
  495. case 8:
  496. val |= SYS_CLCD_MODE_888;
  497. break;
  498. }
  499. /*
  500. * Set the MUX
  501. */
  502. writel(val, sys_clcd);
  503. /*
  504. * And now enable the PSUs
  505. */
  506. val |= SYS_CLCD_NLCDIOON | SYS_CLCD_PWR3V5SWITCH;
  507. writel(val, sys_clcd);
  508. #ifdef CONFIG_MACH_VERSATILE_AB
  509. /*
  510. * If the LCD is Sanyo 2x5 in on the IB2 board, turn the back-light on
  511. */
  512. if (machine_is_versatile_ab() && fb->panel == &sanyo_2_5_in) {
  513. void __iomem *versatile_ib2_ctrl = __io_address(VERSATILE_IB2_CTRL);
  514. unsigned long ctrl;
  515. ctrl = readl(versatile_ib2_ctrl);
  516. ctrl |= 0x01;
  517. writel(ctrl, versatile_ib2_ctrl);
  518. }
  519. #endif
  520. }
  521. static unsigned long framesize = SZ_1M;
  522. static int versatile_clcd_setup(struct clcd_fb *fb)
  523. {
  524. dma_addr_t dma;
  525. fb->panel = versatile_clcd_panel();
  526. fb->fb.screen_base = dma_alloc_writecombine(&fb->dev->dev, framesize,
  527. &dma, GFP_KERNEL);
  528. if (!fb->fb.screen_base) {
  529. printk(KERN_ERR "CLCD: unable to map framebuffer\n");
  530. return -ENOMEM;
  531. }
  532. fb->fb.fix.smem_start = dma;
  533. fb->fb.fix.smem_len = framesize;
  534. return 0;
  535. }
  536. static int versatile_clcd_mmap(struct clcd_fb *fb, struct vm_area_struct *vma)
  537. {
  538. return dma_mmap_writecombine(&fb->dev->dev, vma,
  539. fb->fb.screen_base,
  540. fb->fb.fix.smem_start,
  541. fb->fb.fix.smem_len);
  542. }
  543. static void versatile_clcd_remove(struct clcd_fb *fb)
  544. {
  545. dma_free_writecombine(&fb->dev->dev, fb->fb.fix.smem_len,
  546. fb->fb.screen_base, fb->fb.fix.smem_start);
  547. }
  548. static struct clcd_board clcd_plat_data = {
  549. .name = "Versatile",
  550. .check = clcdfb_check,
  551. .decode = clcdfb_decode,
  552. .disable = versatile_clcd_disable,
  553. .enable = versatile_clcd_enable,
  554. .setup = versatile_clcd_setup,
  555. .mmap = versatile_clcd_mmap,
  556. .remove = versatile_clcd_remove,
  557. };
  558. #define AACI_IRQ { IRQ_AACI, NO_IRQ }
  559. #define AACI_DMA { 0x80, 0x81 }
  560. #define MMCI0_IRQ { IRQ_MMCI0A,IRQ_SIC_MMCI0B }
  561. #define MMCI0_DMA { 0x84, 0 }
  562. #define KMI0_IRQ { IRQ_SIC_KMI0, NO_IRQ }
  563. #define KMI0_DMA { 0, 0 }
  564. #define KMI1_IRQ { IRQ_SIC_KMI1, NO_IRQ }
  565. #define KMI1_DMA { 0, 0 }
  566. /*
  567. * These devices are connected directly to the multi-layer AHB switch
  568. */
  569. #define SMC_IRQ { NO_IRQ, NO_IRQ }
  570. #define SMC_DMA { 0, 0 }
  571. #define MPMC_IRQ { NO_IRQ, NO_IRQ }
  572. #define MPMC_DMA { 0, 0 }
  573. #define CLCD_IRQ { IRQ_CLCDINT, NO_IRQ }
  574. #define CLCD_DMA { 0, 0 }
  575. #define DMAC_IRQ { IRQ_DMAINT, NO_IRQ }
  576. #define DMAC_DMA { 0, 0 }
  577. /*
  578. * These devices are connected via the core APB bridge
  579. */
  580. #define SCTL_IRQ { NO_IRQ, NO_IRQ }
  581. #define SCTL_DMA { 0, 0 }
  582. #define WATCHDOG_IRQ { IRQ_WDOGINT, NO_IRQ }
  583. #define WATCHDOG_DMA { 0, 0 }
  584. #define GPIO0_IRQ { IRQ_GPIOINT0, NO_IRQ }
  585. #define GPIO0_DMA { 0, 0 }
  586. #define GPIO1_IRQ { IRQ_GPIOINT1, NO_IRQ }
  587. #define GPIO1_DMA { 0, 0 }
  588. #define RTC_IRQ { IRQ_RTCINT, NO_IRQ }
  589. #define RTC_DMA { 0, 0 }
  590. /*
  591. * These devices are connected via the DMA APB bridge
  592. */
  593. #define SCI_IRQ { IRQ_SCIINT, NO_IRQ }
  594. #define SCI_DMA { 7, 6 }
  595. #define UART0_IRQ { IRQ_UARTINT0, NO_IRQ }
  596. #define UART0_DMA { 15, 14 }
  597. #define UART1_IRQ { IRQ_UARTINT1, NO_IRQ }
  598. #define UART1_DMA { 13, 12 }
  599. #define UART2_IRQ { IRQ_UARTINT2, NO_IRQ }
  600. #define UART2_DMA { 11, 10 }
  601. #define SSP_IRQ { IRQ_SSPINT, NO_IRQ }
  602. #define SSP_DMA { 9, 8 }
  603. /* FPGA Primecells */
  604. AMBA_DEVICE(aaci, "fpga:04", AACI, NULL);
  605. AMBA_DEVICE(mmc0, "fpga:05", MMCI0, &mmc0_plat_data);
  606. AMBA_DEVICE(kmi0, "fpga:06", KMI0, NULL);
  607. AMBA_DEVICE(kmi1, "fpga:07", KMI1, NULL);
  608. /* DevChip Primecells */
  609. AMBA_DEVICE(smc, "dev:00", SMC, NULL);
  610. AMBA_DEVICE(mpmc, "dev:10", MPMC, NULL);
  611. AMBA_DEVICE(clcd, "dev:20", CLCD, &clcd_plat_data);
  612. AMBA_DEVICE(dmac, "dev:30", DMAC, NULL);
  613. AMBA_DEVICE(sctl, "dev:e0", SCTL, NULL);
  614. AMBA_DEVICE(wdog, "dev:e1", WATCHDOG, NULL);
  615. AMBA_DEVICE(gpio0, "dev:e4", GPIO0, NULL);
  616. AMBA_DEVICE(gpio1, "dev:e5", GPIO1, NULL);
  617. AMBA_DEVICE(rtc, "dev:e8", RTC, NULL);
  618. AMBA_DEVICE(sci0, "dev:f0", SCI, NULL);
  619. AMBA_DEVICE(uart0, "dev:f1", UART0, NULL);
  620. AMBA_DEVICE(uart1, "dev:f2", UART1, NULL);
  621. AMBA_DEVICE(uart2, "dev:f3", UART2, NULL);
  622. AMBA_DEVICE(ssp0, "dev:f4", SSP, NULL);
  623. static struct amba_device *amba_devs[] __initdata = {
  624. &dmac_device,
  625. &uart0_device,
  626. &uart1_device,
  627. &uart2_device,
  628. &smc_device,
  629. &mpmc_device,
  630. &clcd_device,
  631. &sctl_device,
  632. &wdog_device,
  633. &gpio0_device,
  634. &gpio1_device,
  635. &rtc_device,
  636. &sci0_device,
  637. &ssp0_device,
  638. &aaci_device,
  639. &mmc0_device,
  640. &kmi0_device,
  641. &kmi1_device,
  642. };
  643. #ifdef CONFIG_LEDS
  644. #define VA_LEDS_BASE (__io_address(VERSATILE_SYS_BASE) + VERSATILE_SYS_LED_OFFSET)
  645. static void versatile_leds_event(led_event_t ledevt)
  646. {
  647. unsigned long flags;
  648. u32 val;
  649. local_irq_save(flags);
  650. val = readl(VA_LEDS_BASE);
  651. switch (ledevt) {
  652. case led_idle_start:
  653. val = val & ~VERSATILE_SYS_LED0;
  654. break;
  655. case led_idle_end:
  656. val = val | VERSATILE_SYS_LED0;
  657. break;
  658. case led_timer:
  659. val = val ^ VERSATILE_SYS_LED1;
  660. break;
  661. case led_halted:
  662. val = 0;
  663. break;
  664. default:
  665. break;
  666. }
  667. writel(val, VA_LEDS_BASE);
  668. local_irq_restore(flags);
  669. }
  670. #endif /* CONFIG_LEDS */
  671. void __init versatile_init(void)
  672. {
  673. int i;
  674. clk_register(&versatile_clcd_clk);
  675. platform_device_register(&versatile_flash_device);
  676. platform_device_register(&smc91x_device);
  677. for (i = 0; i < ARRAY_SIZE(amba_devs); i++) {
  678. struct amba_device *d = amba_devs[i];
  679. amba_device_register(d, &iomem_resource);
  680. }
  681. #ifdef CONFIG_LEDS
  682. leds_event = versatile_leds_event;
  683. #endif
  684. }
  685. /*
  686. * Where is the timer (VA)?
  687. */
  688. #define TIMER0_VA_BASE __io_address(VERSATILE_TIMER0_1_BASE)
  689. #define TIMER1_VA_BASE (__io_address(VERSATILE_TIMER0_1_BASE) + 0x20)
  690. #define TIMER2_VA_BASE __io_address(VERSATILE_TIMER2_3_BASE)
  691. #define TIMER3_VA_BASE (__io_address(VERSATILE_TIMER2_3_BASE) + 0x20)
  692. #define VA_IC_BASE __io_address(VERSATILE_VIC_BASE)
  693. /*
  694. * How long is the timer interval?
  695. */
  696. #define TIMER_INTERVAL (TICKS_PER_uSEC * mSEC_10)
  697. #if TIMER_INTERVAL >= 0x100000
  698. #define TIMER_RELOAD (TIMER_INTERVAL >> 8)
  699. #define TIMER_DIVISOR (TIMER_CTRL_DIV256)
  700. #define TICKS2USECS(x) (256 * (x) / TICKS_PER_uSEC)
  701. #elif TIMER_INTERVAL >= 0x10000
  702. #define TIMER_RELOAD (TIMER_INTERVAL >> 4) /* Divide by 16 */
  703. #define TIMER_DIVISOR (TIMER_CTRL_DIV16)
  704. #define TICKS2USECS(x) (16 * (x) / TICKS_PER_uSEC)
  705. #else
  706. #define TIMER_RELOAD (TIMER_INTERVAL)
  707. #define TIMER_DIVISOR (TIMER_CTRL_DIV1)
  708. #define TICKS2USECS(x) ((x) / TICKS_PER_uSEC)
  709. #endif
  710. /*
  711. * Returns number of ms since last clock interrupt. Note that interrupts
  712. * will have been disabled by do_gettimeoffset()
  713. */
  714. static unsigned long versatile_gettimeoffset(void)
  715. {
  716. unsigned long ticks1, ticks2, status;
  717. /*
  718. * Get the current number of ticks. Note that there is a race
  719. * condition between us reading the timer and checking for
  720. * an interrupt. We get around this by ensuring that the
  721. * counter has not reloaded between our two reads.
  722. */
  723. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  724. do {
  725. ticks1 = ticks2;
  726. status = __raw_readl(VA_IC_BASE + VIC_RAW_STATUS);
  727. ticks2 = readl(TIMER0_VA_BASE + TIMER_VALUE) & 0xffff;
  728. } while (ticks2 > ticks1);
  729. /*
  730. * Number of ticks since last interrupt.
  731. */
  732. ticks1 = TIMER_RELOAD - ticks2;
  733. /*
  734. * Interrupt pending? If so, we've reloaded once already.
  735. *
  736. * FIXME: Need to check this is effectively timer 0 that expires
  737. */
  738. if (status & IRQMASK_TIMERINT0_1)
  739. ticks1 += TIMER_RELOAD;
  740. /*
  741. * Convert the ticks to usecs
  742. */
  743. return TICKS2USECS(ticks1);
  744. }
  745. /*
  746. * IRQ handler for the timer
  747. */
  748. static irqreturn_t versatile_timer_interrupt(int irq, void *dev_id)
  749. {
  750. write_seqlock(&xtime_lock);
  751. // ...clear the interrupt
  752. writel(1, TIMER0_VA_BASE + TIMER_INTCLR);
  753. timer_tick();
  754. write_sequnlock(&xtime_lock);
  755. return IRQ_HANDLED;
  756. }
  757. static struct irqaction versatile_timer_irq = {
  758. .name = "Versatile Timer Tick",
  759. .flags = IRQF_DISABLED | IRQF_TIMER,
  760. .handler = versatile_timer_interrupt,
  761. };
  762. /*
  763. * Set up timer interrupt, and return the current time in seconds.
  764. */
  765. static void __init versatile_timer_init(void)
  766. {
  767. u32 val;
  768. /*
  769. * set clock frequency:
  770. * VERSATILE_REFCLK is 32KHz
  771. * VERSATILE_TIMCLK is 1MHz
  772. */
  773. val = readl(__io_address(VERSATILE_SCTL_BASE));
  774. writel((VERSATILE_TIMCLK << VERSATILE_TIMER1_EnSel) |
  775. (VERSATILE_TIMCLK << VERSATILE_TIMER2_EnSel) |
  776. (VERSATILE_TIMCLK << VERSATILE_TIMER3_EnSel) |
  777. (VERSATILE_TIMCLK << VERSATILE_TIMER4_EnSel) | val,
  778. __io_address(VERSATILE_SCTL_BASE));
  779. /*
  780. * Initialise to a known state (all timers off)
  781. */
  782. writel(0, TIMER0_VA_BASE + TIMER_CTRL);
  783. writel(0, TIMER1_VA_BASE + TIMER_CTRL);
  784. writel(0, TIMER2_VA_BASE + TIMER_CTRL);
  785. writel(0, TIMER3_VA_BASE + TIMER_CTRL);
  786. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_LOAD);
  787. writel(TIMER_RELOAD, TIMER0_VA_BASE + TIMER_VALUE);
  788. writel(TIMER_DIVISOR | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC |
  789. TIMER_CTRL_IE, TIMER0_VA_BASE + TIMER_CTRL);
  790. /*
  791. * Make irqs happen for the system timer
  792. */
  793. setup_irq(IRQ_TIMERINT0_1, &versatile_timer_irq);
  794. }
  795. struct sys_timer versatile_timer = {
  796. .init = versatile_timer_init,
  797. .offset = versatile_gettimeoffset,
  798. };