sch_qfq.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556
  1. /*
  2. * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
  3. *
  4. * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
  5. * Copyright (c) 2012 Paolo Valente.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * version 2 as published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/bitops.h>
  14. #include <linux/errno.h>
  15. #include <linux/netdevice.h>
  16. #include <linux/pkt_sched.h>
  17. #include <net/sch_generic.h>
  18. #include <net/pkt_sched.h>
  19. #include <net/pkt_cls.h>
  20. /* Quick Fair Queueing Plus
  21. ========================
  22. Sources:
  23. [1] Paolo Valente,
  24. "Reducing the Execution Time of Fair-Queueing Schedulers."
  25. http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
  26. Sources for QFQ:
  27. [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
  28. Packet Scheduling with Tight Bandwidth Distribution Guarantees."
  29. See also:
  30. http://retis.sssup.it/~fabio/linux/qfq/
  31. */
  32. /*
  33. QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
  34. classes. Each aggregate is timestamped with a virtual start time S
  35. and a virtual finish time F, and scheduled according to its
  36. timestamps. S and F are computed as a function of a system virtual
  37. time function V. The classes within each aggregate are instead
  38. scheduled with DRR.
  39. To speed up operations, QFQ+ divides also aggregates into a limited
  40. number of groups. Which group a class belongs to depends on the
  41. ratio between the maximum packet length for the class and the weight
  42. of the class. Groups have their own S and F. In the end, QFQ+
  43. schedules groups, then aggregates within groups, then classes within
  44. aggregates. See [1] and [2] for a full description.
  45. Virtual time computations.
  46. S, F and V are all computed in fixed point arithmetic with
  47. FRAC_BITS decimal bits.
  48. QFQ_MAX_INDEX is the maximum index allowed for a group. We need
  49. one bit per index.
  50. QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
  51. The layout of the bits is as below:
  52. [ MTU_SHIFT ][ FRAC_BITS ]
  53. [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
  54. ^.__grp->index = 0
  55. *.__grp->slot_shift
  56. where MIN_SLOT_SHIFT is derived by difference from the others.
  57. The max group index corresponds to Lmax/w_min, where
  58. Lmax=1<<MTU_SHIFT, w_min = 1 .
  59. From this, and knowing how many groups (MAX_INDEX) we want,
  60. we can derive the shift corresponding to each group.
  61. Because we often need to compute
  62. F = S + len/w_i and V = V + len/wsum
  63. instead of storing w_i store the value
  64. inv_w = (1<<FRAC_BITS)/w_i
  65. so we can do F = S + len * inv_w * wsum.
  66. We use W_TOT in the formulas so we can easily move between
  67. static and adaptive weight sum.
  68. The per-scheduler-instance data contain all the data structures
  69. for the scheduler: bitmaps and bucket lists.
  70. */
  71. /*
  72. * Maximum number of consecutive slots occupied by backlogged classes
  73. * inside a group.
  74. */
  75. #define QFQ_MAX_SLOTS 32
  76. /*
  77. * Shifts used for aggregate<->group mapping. We allow class weights that are
  78. * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
  79. * group with the smallest index that can support the L_i / r_i configured
  80. * for the classes in the aggregate.
  81. *
  82. * grp->index is the index of the group; and grp->slot_shift
  83. * is the shift for the corresponding (scaled) sigma_i.
  84. */
  85. #define QFQ_MAX_INDEX 24
  86. #define QFQ_MAX_WSHIFT 10
  87. #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
  88. #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
  89. #define FRAC_BITS 30 /* fixed point arithmetic */
  90. #define ONE_FP (1UL << FRAC_BITS)
  91. #define IWSUM (ONE_FP/QFQ_MAX_WSUM)
  92. #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
  93. #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
  94. #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
  95. /*
  96. * Possible group states. These values are used as indexes for the bitmaps
  97. * array of struct qfq_queue.
  98. */
  99. enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
  100. struct qfq_group;
  101. struct qfq_aggregate;
  102. struct qfq_class {
  103. struct Qdisc_class_common common;
  104. unsigned int refcnt;
  105. unsigned int filter_cnt;
  106. struct gnet_stats_basic_packed bstats;
  107. struct gnet_stats_queue qstats;
  108. struct gnet_stats_rate_est rate_est;
  109. struct Qdisc *qdisc;
  110. struct list_head alist; /* Link for active-classes list. */
  111. struct qfq_aggregate *agg; /* Parent aggregate. */
  112. int deficit; /* DRR deficit counter. */
  113. };
  114. struct qfq_aggregate {
  115. struct hlist_node next; /* Link for the slot list. */
  116. u64 S, F; /* flow timestamps (exact) */
  117. /* group we belong to. In principle we would need the index,
  118. * which is log_2(lmax/weight), but we never reference it
  119. * directly, only the group.
  120. */
  121. struct qfq_group *grp;
  122. /* these are copied from the flowset. */
  123. u32 class_weight; /* Weight of each class in this aggregate. */
  124. /* Max pkt size for the classes in this aggregate, DRR quantum. */
  125. int lmax;
  126. u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
  127. u32 budgetmax; /* Max budget for this aggregate. */
  128. u32 initial_budget, budget; /* Initial and current budget. */
  129. int num_classes; /* Number of classes in this aggr. */
  130. struct list_head active; /* DRR queue of active classes. */
  131. struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
  132. };
  133. struct qfq_group {
  134. u64 S, F; /* group timestamps (approx). */
  135. unsigned int slot_shift; /* Slot shift. */
  136. unsigned int index; /* Group index. */
  137. unsigned int front; /* Index of the front slot. */
  138. unsigned long full_slots; /* non-empty slots */
  139. /* Array of RR lists of active aggregates. */
  140. struct hlist_head slots[QFQ_MAX_SLOTS];
  141. };
  142. struct qfq_sched {
  143. struct tcf_proto *filter_list;
  144. struct Qdisc_class_hash clhash;
  145. u64 oldV, V; /* Precise virtual times. */
  146. struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
  147. u32 num_active_agg; /* Num. of active aggregates */
  148. u32 wsum; /* weight sum */
  149. unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
  150. struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
  151. u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
  152. u32 max_agg_classes; /* Max number of classes per aggr. */
  153. struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
  154. };
  155. /*
  156. * Possible reasons why the timestamps of an aggregate are updated
  157. * enqueue: the aggregate switches from idle to active and must scheduled
  158. * for service
  159. * requeue: the aggregate finishes its budget, so it stops being served and
  160. * must be rescheduled for service
  161. */
  162. enum update_reason {enqueue, requeue};
  163. static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
  164. {
  165. struct qfq_sched *q = qdisc_priv(sch);
  166. struct Qdisc_class_common *clc;
  167. clc = qdisc_class_find(&q->clhash, classid);
  168. if (clc == NULL)
  169. return NULL;
  170. return container_of(clc, struct qfq_class, common);
  171. }
  172. static void qfq_purge_queue(struct qfq_class *cl)
  173. {
  174. unsigned int len = cl->qdisc->q.qlen;
  175. qdisc_reset(cl->qdisc);
  176. qdisc_tree_decrease_qlen(cl->qdisc, len);
  177. }
  178. static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
  179. [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
  180. [TCA_QFQ_LMAX] = { .type = NLA_U32 },
  181. };
  182. /*
  183. * Calculate a flow index, given its weight and maximum packet length.
  184. * index = log_2(maxlen/weight) but we need to apply the scaling.
  185. * This is used only once at flow creation.
  186. */
  187. static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
  188. {
  189. u64 slot_size = (u64)maxlen * inv_w;
  190. unsigned long size_map;
  191. int index = 0;
  192. size_map = slot_size >> min_slot_shift;
  193. if (!size_map)
  194. goto out;
  195. index = __fls(size_map) + 1; /* basically a log_2 */
  196. index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
  197. if (index < 0)
  198. index = 0;
  199. out:
  200. pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
  201. (unsigned long) ONE_FP/inv_w, maxlen, index);
  202. return index;
  203. }
  204. static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
  205. static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
  206. enum update_reason);
  207. static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
  208. u32 lmax, u32 weight)
  209. {
  210. INIT_LIST_HEAD(&agg->active);
  211. hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
  212. agg->lmax = lmax;
  213. agg->class_weight = weight;
  214. }
  215. static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
  216. u32 lmax, u32 weight)
  217. {
  218. struct qfq_aggregate *agg;
  219. hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
  220. if (agg->lmax == lmax && agg->class_weight == weight)
  221. return agg;
  222. return NULL;
  223. }
  224. /* Update aggregate as a function of the new number of classes. */
  225. static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
  226. int new_num_classes)
  227. {
  228. u32 new_agg_weight;
  229. if (new_num_classes == q->max_agg_classes)
  230. hlist_del_init(&agg->nonfull_next);
  231. if (agg->num_classes > new_num_classes &&
  232. new_num_classes == q->max_agg_classes - 1) /* agg no more full */
  233. hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
  234. /* The next assignment may let
  235. * agg->initial_budget > agg->budgetmax
  236. * hold, we will take it into account in charge_actual_service().
  237. */
  238. agg->budgetmax = new_num_classes * agg->lmax;
  239. new_agg_weight = agg->class_weight * new_num_classes;
  240. agg->inv_w = ONE_FP/new_agg_weight;
  241. if (agg->grp == NULL) {
  242. int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
  243. q->min_slot_shift);
  244. agg->grp = &q->groups[i];
  245. }
  246. q->wsum +=
  247. (int) agg->class_weight * (new_num_classes - agg->num_classes);
  248. agg->num_classes = new_num_classes;
  249. }
  250. /* Add class to aggregate. */
  251. static void qfq_add_to_agg(struct qfq_sched *q,
  252. struct qfq_aggregate *agg,
  253. struct qfq_class *cl)
  254. {
  255. cl->agg = agg;
  256. qfq_update_agg(q, agg, agg->num_classes+1);
  257. if (cl->qdisc->q.qlen > 0) { /* adding an active class */
  258. list_add_tail(&cl->alist, &agg->active);
  259. if (list_first_entry(&agg->active, struct qfq_class, alist) ==
  260. cl && q->in_serv_agg != agg) /* agg was inactive */
  261. qfq_activate_agg(q, agg, enqueue); /* schedule agg */
  262. }
  263. }
  264. static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
  265. static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
  266. {
  267. if (!hlist_unhashed(&agg->nonfull_next))
  268. hlist_del_init(&agg->nonfull_next);
  269. if (q->in_serv_agg == agg)
  270. q->in_serv_agg = qfq_choose_next_agg(q);
  271. kfree(agg);
  272. }
  273. /* Deschedule class from within its parent aggregate. */
  274. static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
  275. {
  276. struct qfq_aggregate *agg = cl->agg;
  277. list_del(&cl->alist); /* remove from RR queue of the aggregate */
  278. if (list_empty(&agg->active)) /* agg is now inactive */
  279. qfq_deactivate_agg(q, agg);
  280. }
  281. /* Remove class from its parent aggregate. */
  282. static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
  283. {
  284. struct qfq_aggregate *agg = cl->agg;
  285. cl->agg = NULL;
  286. if (agg->num_classes == 1) { /* agg being emptied, destroy it */
  287. qfq_destroy_agg(q, agg);
  288. return;
  289. }
  290. qfq_update_agg(q, agg, agg->num_classes-1);
  291. }
  292. /* Deschedule class and remove it from its parent aggregate. */
  293. static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
  294. {
  295. if (cl->qdisc->q.qlen > 0) /* class is active */
  296. qfq_deactivate_class(q, cl);
  297. qfq_rm_from_agg(q, cl);
  298. }
  299. /* Move class to a new aggregate, matching the new class weight and/or lmax */
  300. static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
  301. u32 lmax)
  302. {
  303. struct qfq_sched *q = qdisc_priv(sch);
  304. struct qfq_aggregate *new_agg = qfq_find_agg(q, lmax, weight);
  305. if (new_agg == NULL) { /* create new aggregate */
  306. new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
  307. if (new_agg == NULL)
  308. return -ENOBUFS;
  309. qfq_init_agg(q, new_agg, lmax, weight);
  310. }
  311. qfq_deact_rm_from_agg(q, cl);
  312. qfq_add_to_agg(q, new_agg, cl);
  313. return 0;
  314. }
  315. static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
  316. struct nlattr **tca, unsigned long *arg)
  317. {
  318. struct qfq_sched *q = qdisc_priv(sch);
  319. struct qfq_class *cl = (struct qfq_class *)*arg;
  320. bool existing = false;
  321. struct nlattr *tb[TCA_QFQ_MAX + 1];
  322. struct qfq_aggregate *new_agg = NULL;
  323. u32 weight, lmax, inv_w;
  324. int err;
  325. int delta_w;
  326. if (tca[TCA_OPTIONS] == NULL) {
  327. pr_notice("qfq: no options\n");
  328. return -EINVAL;
  329. }
  330. err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
  331. if (err < 0)
  332. return err;
  333. if (tb[TCA_QFQ_WEIGHT]) {
  334. weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
  335. if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
  336. pr_notice("qfq: invalid weight %u\n", weight);
  337. return -EINVAL;
  338. }
  339. } else
  340. weight = 1;
  341. if (tb[TCA_QFQ_LMAX]) {
  342. lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
  343. if (lmax < QFQ_MIN_LMAX || lmax > (1UL << QFQ_MTU_SHIFT)) {
  344. pr_notice("qfq: invalid max length %u\n", lmax);
  345. return -EINVAL;
  346. }
  347. } else
  348. lmax = psched_mtu(qdisc_dev(sch));
  349. inv_w = ONE_FP / weight;
  350. weight = ONE_FP / inv_w;
  351. if (cl != NULL &&
  352. lmax == cl->agg->lmax &&
  353. weight == cl->agg->class_weight)
  354. return 0; /* nothing to change */
  355. delta_w = weight - (cl ? cl->agg->class_weight : 0);
  356. if (q->wsum + delta_w > QFQ_MAX_WSUM) {
  357. pr_notice("qfq: total weight out of range (%d + %u)\n",
  358. delta_w, q->wsum);
  359. return -EINVAL;
  360. }
  361. if (cl != NULL) { /* modify existing class */
  362. if (tca[TCA_RATE]) {
  363. err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
  364. qdisc_root_sleeping_lock(sch),
  365. tca[TCA_RATE]);
  366. if (err)
  367. return err;
  368. }
  369. existing = true;
  370. goto set_change_agg;
  371. }
  372. /* create and init new class */
  373. cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
  374. if (cl == NULL)
  375. return -ENOBUFS;
  376. cl->refcnt = 1;
  377. cl->common.classid = classid;
  378. cl->deficit = lmax;
  379. cl->qdisc = qdisc_create_dflt(sch->dev_queue,
  380. &pfifo_qdisc_ops, classid);
  381. if (cl->qdisc == NULL)
  382. cl->qdisc = &noop_qdisc;
  383. if (tca[TCA_RATE]) {
  384. err = gen_new_estimator(&cl->bstats, &cl->rate_est,
  385. qdisc_root_sleeping_lock(sch),
  386. tca[TCA_RATE]);
  387. if (err)
  388. goto destroy_class;
  389. }
  390. sch_tree_lock(sch);
  391. qdisc_class_hash_insert(&q->clhash, &cl->common);
  392. sch_tree_unlock(sch);
  393. qdisc_class_hash_grow(sch, &q->clhash);
  394. set_change_agg:
  395. sch_tree_lock(sch);
  396. new_agg = qfq_find_agg(q, lmax, weight);
  397. if (new_agg == NULL) { /* create new aggregate */
  398. sch_tree_unlock(sch);
  399. new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
  400. if (new_agg == NULL) {
  401. err = -ENOBUFS;
  402. gen_kill_estimator(&cl->bstats, &cl->rate_est);
  403. goto destroy_class;
  404. }
  405. sch_tree_lock(sch);
  406. qfq_init_agg(q, new_agg, lmax, weight);
  407. }
  408. if (existing)
  409. qfq_deact_rm_from_agg(q, cl);
  410. qfq_add_to_agg(q, new_agg, cl);
  411. sch_tree_unlock(sch);
  412. *arg = (unsigned long)cl;
  413. return 0;
  414. destroy_class:
  415. qdisc_destroy(cl->qdisc);
  416. kfree(cl);
  417. return err;
  418. }
  419. static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
  420. {
  421. struct qfq_sched *q = qdisc_priv(sch);
  422. qfq_rm_from_agg(q, cl);
  423. gen_kill_estimator(&cl->bstats, &cl->rate_est);
  424. qdisc_destroy(cl->qdisc);
  425. kfree(cl);
  426. }
  427. static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
  428. {
  429. struct qfq_sched *q = qdisc_priv(sch);
  430. struct qfq_class *cl = (struct qfq_class *)arg;
  431. if (cl->filter_cnt > 0)
  432. return -EBUSY;
  433. sch_tree_lock(sch);
  434. qfq_purge_queue(cl);
  435. qdisc_class_hash_remove(&q->clhash, &cl->common);
  436. BUG_ON(--cl->refcnt == 0);
  437. /*
  438. * This shouldn't happen: we "hold" one cops->get() when called
  439. * from tc_ctl_tclass; the destroy method is done from cops->put().
  440. */
  441. sch_tree_unlock(sch);
  442. return 0;
  443. }
  444. static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
  445. {
  446. struct qfq_class *cl = qfq_find_class(sch, classid);
  447. if (cl != NULL)
  448. cl->refcnt++;
  449. return (unsigned long)cl;
  450. }
  451. static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
  452. {
  453. struct qfq_class *cl = (struct qfq_class *)arg;
  454. if (--cl->refcnt == 0)
  455. qfq_destroy_class(sch, cl);
  456. }
  457. static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
  458. {
  459. struct qfq_sched *q = qdisc_priv(sch);
  460. if (cl)
  461. return NULL;
  462. return &q->filter_list;
  463. }
  464. static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
  465. u32 classid)
  466. {
  467. struct qfq_class *cl = qfq_find_class(sch, classid);
  468. if (cl != NULL)
  469. cl->filter_cnt++;
  470. return (unsigned long)cl;
  471. }
  472. static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
  473. {
  474. struct qfq_class *cl = (struct qfq_class *)arg;
  475. cl->filter_cnt--;
  476. }
  477. static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
  478. struct Qdisc *new, struct Qdisc **old)
  479. {
  480. struct qfq_class *cl = (struct qfq_class *)arg;
  481. if (new == NULL) {
  482. new = qdisc_create_dflt(sch->dev_queue,
  483. &pfifo_qdisc_ops, cl->common.classid);
  484. if (new == NULL)
  485. new = &noop_qdisc;
  486. }
  487. sch_tree_lock(sch);
  488. qfq_purge_queue(cl);
  489. *old = cl->qdisc;
  490. cl->qdisc = new;
  491. sch_tree_unlock(sch);
  492. return 0;
  493. }
  494. static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
  495. {
  496. struct qfq_class *cl = (struct qfq_class *)arg;
  497. return cl->qdisc;
  498. }
  499. static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
  500. struct sk_buff *skb, struct tcmsg *tcm)
  501. {
  502. struct qfq_class *cl = (struct qfq_class *)arg;
  503. struct nlattr *nest;
  504. tcm->tcm_parent = TC_H_ROOT;
  505. tcm->tcm_handle = cl->common.classid;
  506. tcm->tcm_info = cl->qdisc->handle;
  507. nest = nla_nest_start(skb, TCA_OPTIONS);
  508. if (nest == NULL)
  509. goto nla_put_failure;
  510. if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
  511. nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
  512. goto nla_put_failure;
  513. return nla_nest_end(skb, nest);
  514. nla_put_failure:
  515. nla_nest_cancel(skb, nest);
  516. return -EMSGSIZE;
  517. }
  518. static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
  519. struct gnet_dump *d)
  520. {
  521. struct qfq_class *cl = (struct qfq_class *)arg;
  522. struct tc_qfq_stats xstats;
  523. memset(&xstats, 0, sizeof(xstats));
  524. cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
  525. xstats.weight = cl->agg->class_weight;
  526. xstats.lmax = cl->agg->lmax;
  527. if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
  528. gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
  529. gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
  530. return -1;
  531. return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
  532. }
  533. static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
  534. {
  535. struct qfq_sched *q = qdisc_priv(sch);
  536. struct qfq_class *cl;
  537. unsigned int i;
  538. if (arg->stop)
  539. return;
  540. for (i = 0; i < q->clhash.hashsize; i++) {
  541. hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
  542. if (arg->count < arg->skip) {
  543. arg->count++;
  544. continue;
  545. }
  546. if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
  547. arg->stop = 1;
  548. return;
  549. }
  550. arg->count++;
  551. }
  552. }
  553. }
  554. static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
  555. int *qerr)
  556. {
  557. struct qfq_sched *q = qdisc_priv(sch);
  558. struct qfq_class *cl;
  559. struct tcf_result res;
  560. int result;
  561. if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
  562. pr_debug("qfq_classify: found %d\n", skb->priority);
  563. cl = qfq_find_class(sch, skb->priority);
  564. if (cl != NULL)
  565. return cl;
  566. }
  567. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
  568. result = tc_classify(skb, q->filter_list, &res);
  569. if (result >= 0) {
  570. #ifdef CONFIG_NET_CLS_ACT
  571. switch (result) {
  572. case TC_ACT_QUEUED:
  573. case TC_ACT_STOLEN:
  574. *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
  575. case TC_ACT_SHOT:
  576. return NULL;
  577. }
  578. #endif
  579. cl = (struct qfq_class *)res.class;
  580. if (cl == NULL)
  581. cl = qfq_find_class(sch, res.classid);
  582. return cl;
  583. }
  584. return NULL;
  585. }
  586. /* Generic comparison function, handling wraparound. */
  587. static inline int qfq_gt(u64 a, u64 b)
  588. {
  589. return (s64)(a - b) > 0;
  590. }
  591. /* Round a precise timestamp to its slotted value. */
  592. static inline u64 qfq_round_down(u64 ts, unsigned int shift)
  593. {
  594. return ts & ~((1ULL << shift) - 1);
  595. }
  596. /* return the pointer to the group with lowest index in the bitmap */
  597. static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
  598. unsigned long bitmap)
  599. {
  600. int index = __ffs(bitmap);
  601. return &q->groups[index];
  602. }
  603. /* Calculate a mask to mimic what would be ffs_from(). */
  604. static inline unsigned long mask_from(unsigned long bitmap, int from)
  605. {
  606. return bitmap & ~((1UL << from) - 1);
  607. }
  608. /*
  609. * The state computation relies on ER=0, IR=1, EB=2, IB=3
  610. * First compute eligibility comparing grp->S, q->V,
  611. * then check if someone is blocking us and possibly add EB
  612. */
  613. static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
  614. {
  615. /* if S > V we are not eligible */
  616. unsigned int state = qfq_gt(grp->S, q->V);
  617. unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
  618. struct qfq_group *next;
  619. if (mask) {
  620. next = qfq_ffs(q, mask);
  621. if (qfq_gt(grp->F, next->F))
  622. state |= EB;
  623. }
  624. return state;
  625. }
  626. /*
  627. * In principle
  628. * q->bitmaps[dst] |= q->bitmaps[src] & mask;
  629. * q->bitmaps[src] &= ~mask;
  630. * but we should make sure that src != dst
  631. */
  632. static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
  633. int src, int dst)
  634. {
  635. q->bitmaps[dst] |= q->bitmaps[src] & mask;
  636. q->bitmaps[src] &= ~mask;
  637. }
  638. static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
  639. {
  640. unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
  641. struct qfq_group *next;
  642. if (mask) {
  643. next = qfq_ffs(q, mask);
  644. if (!qfq_gt(next->F, old_F))
  645. return;
  646. }
  647. mask = (1UL << index) - 1;
  648. qfq_move_groups(q, mask, EB, ER);
  649. qfq_move_groups(q, mask, IB, IR);
  650. }
  651. /*
  652. * perhaps
  653. *
  654. old_V ^= q->V;
  655. old_V >>= q->min_slot_shift;
  656. if (old_V) {
  657. ...
  658. }
  659. *
  660. */
  661. static void qfq_make_eligible(struct qfq_sched *q)
  662. {
  663. unsigned long vslot = q->V >> q->min_slot_shift;
  664. unsigned long old_vslot = q->oldV >> q->min_slot_shift;
  665. if (vslot != old_vslot) {
  666. unsigned long mask = (1ULL << fls(vslot ^ old_vslot)) - 1;
  667. qfq_move_groups(q, mask, IR, ER);
  668. qfq_move_groups(q, mask, IB, EB);
  669. }
  670. }
  671. /*
  672. * The index of the slot in which the aggregate is to be inserted must
  673. * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1'
  674. * because the start time of the group may be moved backward by one
  675. * slot after the aggregate has been inserted, and this would cause
  676. * non-empty slots to be right-shifted by one position.
  677. *
  678. * If the weight and lmax (max_pkt_size) of the classes do not change,
  679. * then QFQ+ does meet the above contraint according to the current
  680. * values of its parameters. In fact, if the weight and lmax of the
  681. * classes do not change, then, from the theory, QFQ+ guarantees that
  682. * the slot index is never higher than
  683. * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
  684. * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18
  685. *
  686. * When the weight of a class is increased or the lmax of the class is
  687. * decreased, a new aggregate with smaller slot size than the original
  688. * parent aggregate of the class may happen to be activated. The
  689. * activation of this aggregate should be properly delayed to when the
  690. * service of the class has finished in the ideal system tracked by
  691. * QFQ+. If the activation of the aggregate is not delayed to this
  692. * reference time instant, then this aggregate may be unjustly served
  693. * before other aggregates waiting for service. This may cause the
  694. * above bound to the slot index to be violated for some of these
  695. * unlucky aggregates.
  696. *
  697. * Instead of delaying the activation of the new aggregate, which is
  698. * quite complex, the following inaccurate but simple solution is used:
  699. * if the slot index is higher than QFQ_MAX_SLOTS-2, then the
  700. * timestamps of the aggregate are shifted backward so as to let the
  701. * slot index become equal to QFQ_MAX_SLOTS-2.
  702. */
  703. static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
  704. u64 roundedS)
  705. {
  706. u64 slot = (roundedS - grp->S) >> grp->slot_shift;
  707. unsigned int i; /* slot index in the bucket list */
  708. if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
  709. u64 deltaS = roundedS - grp->S -
  710. ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
  711. agg->S -= deltaS;
  712. agg->F -= deltaS;
  713. slot = QFQ_MAX_SLOTS - 2;
  714. }
  715. i = (grp->front + slot) % QFQ_MAX_SLOTS;
  716. hlist_add_head(&agg->next, &grp->slots[i]);
  717. __set_bit(slot, &grp->full_slots);
  718. }
  719. /* Maybe introduce hlist_first_entry?? */
  720. static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
  721. {
  722. return hlist_entry(grp->slots[grp->front].first,
  723. struct qfq_aggregate, next);
  724. }
  725. /*
  726. * remove the entry from the slot
  727. */
  728. static void qfq_front_slot_remove(struct qfq_group *grp)
  729. {
  730. struct qfq_aggregate *agg = qfq_slot_head(grp);
  731. BUG_ON(!agg);
  732. hlist_del(&agg->next);
  733. if (hlist_empty(&grp->slots[grp->front]))
  734. __clear_bit(0, &grp->full_slots);
  735. }
  736. /*
  737. * Returns the first aggregate in the first non-empty bucket of the
  738. * group. As a side effect, adjusts the bucket list so the first
  739. * non-empty bucket is at position 0 in full_slots.
  740. */
  741. static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
  742. {
  743. unsigned int i;
  744. pr_debug("qfq slot_scan: grp %u full %#lx\n",
  745. grp->index, grp->full_slots);
  746. if (grp->full_slots == 0)
  747. return NULL;
  748. i = __ffs(grp->full_slots); /* zero based */
  749. if (i > 0) {
  750. grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
  751. grp->full_slots >>= i;
  752. }
  753. return qfq_slot_head(grp);
  754. }
  755. /*
  756. * adjust the bucket list. When the start time of a group decreases,
  757. * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
  758. * move the objects. The mask of occupied slots must be shifted
  759. * because we use ffs() to find the first non-empty slot.
  760. * This covers decreases in the group's start time, but what about
  761. * increases of the start time ?
  762. * Here too we should make sure that i is less than 32
  763. */
  764. static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
  765. {
  766. unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
  767. grp->full_slots <<= i;
  768. grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
  769. }
  770. static void qfq_update_eligible(struct qfq_sched *q)
  771. {
  772. struct qfq_group *grp;
  773. unsigned long ineligible;
  774. ineligible = q->bitmaps[IR] | q->bitmaps[IB];
  775. if (ineligible) {
  776. if (!q->bitmaps[ER]) {
  777. grp = qfq_ffs(q, ineligible);
  778. if (qfq_gt(grp->S, q->V))
  779. q->V = grp->S;
  780. }
  781. qfq_make_eligible(q);
  782. }
  783. }
  784. /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
  785. static void agg_dequeue(struct qfq_aggregate *agg,
  786. struct qfq_class *cl, unsigned int len)
  787. {
  788. qdisc_dequeue_peeked(cl->qdisc);
  789. cl->deficit -= (int) len;
  790. if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
  791. list_del(&cl->alist);
  792. else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
  793. cl->deficit += agg->lmax;
  794. list_move_tail(&cl->alist, &agg->active);
  795. }
  796. }
  797. static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
  798. struct qfq_class **cl,
  799. unsigned int *len)
  800. {
  801. struct sk_buff *skb;
  802. *cl = list_first_entry(&agg->active, struct qfq_class, alist);
  803. skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
  804. if (skb == NULL)
  805. WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
  806. else
  807. *len = qdisc_pkt_len(skb);
  808. return skb;
  809. }
  810. /* Update F according to the actual service received by the aggregate. */
  811. static inline void charge_actual_service(struct qfq_aggregate *agg)
  812. {
  813. /* Compute the service received by the aggregate, taking into
  814. * account that, after decreasing the number of classes in
  815. * agg, it may happen that
  816. * agg->initial_budget - agg->budget > agg->bugdetmax
  817. */
  818. u32 service_received = min(agg->budgetmax,
  819. agg->initial_budget - agg->budget);
  820. agg->F = agg->S + (u64)service_received * agg->inv_w;
  821. }
  822. static inline void qfq_update_agg_ts(struct qfq_sched *q,
  823. struct qfq_aggregate *agg,
  824. enum update_reason reason);
  825. static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
  826. static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
  827. {
  828. struct qfq_sched *q = qdisc_priv(sch);
  829. struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
  830. struct qfq_class *cl;
  831. struct sk_buff *skb = NULL;
  832. /* next-packet len, 0 means no more active classes in in-service agg */
  833. unsigned int len = 0;
  834. if (in_serv_agg == NULL)
  835. return NULL;
  836. if (!list_empty(&in_serv_agg->active))
  837. skb = qfq_peek_skb(in_serv_agg, &cl, &len);
  838. /*
  839. * If there are no active classes in the in-service aggregate,
  840. * or if the aggregate has not enough budget to serve its next
  841. * class, then choose the next aggregate to serve.
  842. */
  843. if (len == 0 || in_serv_agg->budget < len) {
  844. charge_actual_service(in_serv_agg);
  845. /* recharge the budget of the aggregate */
  846. in_serv_agg->initial_budget = in_serv_agg->budget =
  847. in_serv_agg->budgetmax;
  848. if (!list_empty(&in_serv_agg->active)) {
  849. /*
  850. * Still active: reschedule for
  851. * service. Possible optimization: if no other
  852. * aggregate is active, then there is no point
  853. * in rescheduling this aggregate, and we can
  854. * just keep it as the in-service one. This
  855. * should be however a corner case, and to
  856. * handle it, we would need to maintain an
  857. * extra num_active_aggs field.
  858. */
  859. qfq_update_agg_ts(q, in_serv_agg, requeue);
  860. qfq_schedule_agg(q, in_serv_agg);
  861. } else if (sch->q.qlen == 0) { /* no aggregate to serve */
  862. q->in_serv_agg = NULL;
  863. return NULL;
  864. }
  865. /*
  866. * If we get here, there are other aggregates queued:
  867. * choose the new aggregate to serve.
  868. */
  869. in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
  870. skb = qfq_peek_skb(in_serv_agg, &cl, &len);
  871. }
  872. if (!skb)
  873. return NULL;
  874. sch->q.qlen--;
  875. qdisc_bstats_update(sch, skb);
  876. agg_dequeue(in_serv_agg, cl, len);
  877. /* If lmax is lowered, through qfq_change_class, for a class
  878. * owning pending packets with larger size than the new value
  879. * of lmax, then the following condition may hold.
  880. */
  881. if (unlikely(in_serv_agg->budget < len))
  882. in_serv_agg->budget = 0;
  883. else
  884. in_serv_agg->budget -= len;
  885. q->V += (u64)len * IWSUM;
  886. pr_debug("qfq dequeue: len %u F %lld now %lld\n",
  887. len, (unsigned long long) in_serv_agg->F,
  888. (unsigned long long) q->V);
  889. return skb;
  890. }
  891. static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
  892. {
  893. struct qfq_group *grp;
  894. struct qfq_aggregate *agg, *new_front_agg;
  895. u64 old_F;
  896. qfq_update_eligible(q);
  897. q->oldV = q->V;
  898. if (!q->bitmaps[ER])
  899. return NULL;
  900. grp = qfq_ffs(q, q->bitmaps[ER]);
  901. old_F = grp->F;
  902. agg = qfq_slot_head(grp);
  903. /* agg starts to be served, remove it from schedule */
  904. qfq_front_slot_remove(grp);
  905. new_front_agg = qfq_slot_scan(grp);
  906. if (new_front_agg == NULL) /* group is now inactive, remove from ER */
  907. __clear_bit(grp->index, &q->bitmaps[ER]);
  908. else {
  909. u64 roundedS = qfq_round_down(new_front_agg->S,
  910. grp->slot_shift);
  911. unsigned int s;
  912. if (grp->S == roundedS)
  913. return agg;
  914. grp->S = roundedS;
  915. grp->F = roundedS + (2ULL << grp->slot_shift);
  916. __clear_bit(grp->index, &q->bitmaps[ER]);
  917. s = qfq_calc_state(q, grp);
  918. __set_bit(grp->index, &q->bitmaps[s]);
  919. }
  920. qfq_unblock_groups(q, grp->index, old_F);
  921. return agg;
  922. }
  923. /*
  924. * Assign a reasonable start time for a new aggregate in group i.
  925. * Admissible values for \hat(F) are multiples of \sigma_i
  926. * no greater than V+\sigma_i . Larger values mean that
  927. * we had a wraparound so we consider the timestamp to be stale.
  928. *
  929. * If F is not stale and F >= V then we set S = F.
  930. * Otherwise we should assign S = V, but this may violate
  931. * the ordering in EB (see [2]). So, if we have groups in ER,
  932. * set S to the F_j of the first group j which would be blocking us.
  933. * We are guaranteed not to move S backward because
  934. * otherwise our group i would still be blocked.
  935. */
  936. static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
  937. {
  938. unsigned long mask;
  939. u64 limit, roundedF;
  940. int slot_shift = agg->grp->slot_shift;
  941. roundedF = qfq_round_down(agg->F, slot_shift);
  942. limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
  943. if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
  944. /* timestamp was stale */
  945. mask = mask_from(q->bitmaps[ER], agg->grp->index);
  946. if (mask) {
  947. struct qfq_group *next = qfq_ffs(q, mask);
  948. if (qfq_gt(roundedF, next->F)) {
  949. if (qfq_gt(limit, next->F))
  950. agg->S = next->F;
  951. else /* preserve timestamp correctness */
  952. agg->S = limit;
  953. return;
  954. }
  955. }
  956. agg->S = q->V;
  957. } else /* timestamp is not stale */
  958. agg->S = agg->F;
  959. }
  960. /*
  961. * Update the timestamps of agg before scheduling/rescheduling it for
  962. * service. In particular, assign to agg->F its maximum possible
  963. * value, i.e., the virtual finish time with which the aggregate
  964. * should be labeled if it used all its budget once in service.
  965. */
  966. static inline void
  967. qfq_update_agg_ts(struct qfq_sched *q,
  968. struct qfq_aggregate *agg, enum update_reason reason)
  969. {
  970. if (reason != requeue)
  971. qfq_update_start(q, agg);
  972. else /* just charge agg for the service received */
  973. agg->S = agg->F;
  974. agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
  975. }
  976. static void qfq_schedule_agg(struct qfq_sched *, struct qfq_aggregate *);
  977. static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
  978. {
  979. struct qfq_sched *q = qdisc_priv(sch);
  980. struct qfq_class *cl;
  981. struct qfq_aggregate *agg;
  982. int err = 0;
  983. cl = qfq_classify(skb, sch, &err);
  984. if (cl == NULL) {
  985. if (err & __NET_XMIT_BYPASS)
  986. sch->qstats.drops++;
  987. kfree_skb(skb);
  988. return err;
  989. }
  990. pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
  991. if (unlikely(cl->agg->lmax < qdisc_pkt_len(skb))) {
  992. pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
  993. cl->agg->lmax, qdisc_pkt_len(skb), cl->common.classid);
  994. err = qfq_change_agg(sch, cl, cl->agg->class_weight,
  995. qdisc_pkt_len(skb));
  996. if (err)
  997. return err;
  998. }
  999. err = qdisc_enqueue(skb, cl->qdisc);
  1000. if (unlikely(err != NET_XMIT_SUCCESS)) {
  1001. pr_debug("qfq_enqueue: enqueue failed %d\n", err);
  1002. if (net_xmit_drop_count(err)) {
  1003. cl->qstats.drops++;
  1004. sch->qstats.drops++;
  1005. }
  1006. return err;
  1007. }
  1008. bstats_update(&cl->bstats, skb);
  1009. ++sch->q.qlen;
  1010. agg = cl->agg;
  1011. /* if the queue was not empty, then done here */
  1012. if (cl->qdisc->q.qlen != 1) {
  1013. if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
  1014. list_first_entry(&agg->active, struct qfq_class, alist)
  1015. == cl && cl->deficit < qdisc_pkt_len(skb))
  1016. list_move_tail(&cl->alist, &agg->active);
  1017. return err;
  1018. }
  1019. /* schedule class for service within the aggregate */
  1020. cl->deficit = agg->lmax;
  1021. list_add_tail(&cl->alist, &agg->active);
  1022. if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
  1023. q->in_serv_agg == agg)
  1024. return err; /* non-empty or in service, nothing else to do */
  1025. qfq_activate_agg(q, agg, enqueue);
  1026. return err;
  1027. }
  1028. /*
  1029. * Schedule aggregate according to its timestamps.
  1030. */
  1031. static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
  1032. {
  1033. struct qfq_group *grp = agg->grp;
  1034. u64 roundedS;
  1035. int s;
  1036. roundedS = qfq_round_down(agg->S, grp->slot_shift);
  1037. /*
  1038. * Insert agg in the correct bucket.
  1039. * If agg->S >= grp->S we don't need to adjust the
  1040. * bucket list and simply go to the insertion phase.
  1041. * Otherwise grp->S is decreasing, we must make room
  1042. * in the bucket list, and also recompute the group state.
  1043. * Finally, if there were no flows in this group and nobody
  1044. * was in ER make sure to adjust V.
  1045. */
  1046. if (grp->full_slots) {
  1047. if (!qfq_gt(grp->S, agg->S))
  1048. goto skip_update;
  1049. /* create a slot for this agg->S */
  1050. qfq_slot_rotate(grp, roundedS);
  1051. /* group was surely ineligible, remove */
  1052. __clear_bit(grp->index, &q->bitmaps[IR]);
  1053. __clear_bit(grp->index, &q->bitmaps[IB]);
  1054. } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
  1055. q->in_serv_agg == NULL)
  1056. q->V = roundedS;
  1057. grp->S = roundedS;
  1058. grp->F = roundedS + (2ULL << grp->slot_shift);
  1059. s = qfq_calc_state(q, grp);
  1060. __set_bit(grp->index, &q->bitmaps[s]);
  1061. pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
  1062. s, q->bitmaps[s],
  1063. (unsigned long long) agg->S,
  1064. (unsigned long long) agg->F,
  1065. (unsigned long long) q->V);
  1066. skip_update:
  1067. qfq_slot_insert(grp, agg, roundedS);
  1068. }
  1069. /* Update agg ts and schedule agg for service */
  1070. static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
  1071. enum update_reason reason)
  1072. {
  1073. agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
  1074. qfq_update_agg_ts(q, agg, reason);
  1075. if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
  1076. q->in_serv_agg = agg; /* start serving this aggregate */
  1077. /* update V: to be in service, agg must be eligible */
  1078. q->oldV = q->V = agg->S;
  1079. } else if (agg != q->in_serv_agg)
  1080. qfq_schedule_agg(q, agg);
  1081. }
  1082. static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
  1083. struct qfq_aggregate *agg)
  1084. {
  1085. unsigned int i, offset;
  1086. u64 roundedS;
  1087. roundedS = qfq_round_down(agg->S, grp->slot_shift);
  1088. offset = (roundedS - grp->S) >> grp->slot_shift;
  1089. i = (grp->front + offset) % QFQ_MAX_SLOTS;
  1090. hlist_del(&agg->next);
  1091. if (hlist_empty(&grp->slots[i]))
  1092. __clear_bit(offset, &grp->full_slots);
  1093. }
  1094. /*
  1095. * Called to forcibly deschedule an aggregate. If the aggregate is
  1096. * not in the front bucket, or if the latter has other aggregates in
  1097. * the front bucket, we can simply remove the aggregate with no other
  1098. * side effects.
  1099. * Otherwise we must propagate the event up.
  1100. */
  1101. static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
  1102. {
  1103. struct qfq_group *grp = agg->grp;
  1104. unsigned long mask;
  1105. u64 roundedS;
  1106. int s;
  1107. if (agg == q->in_serv_agg) {
  1108. charge_actual_service(agg);
  1109. q->in_serv_agg = qfq_choose_next_agg(q);
  1110. return;
  1111. }
  1112. agg->F = agg->S;
  1113. qfq_slot_remove(q, grp, agg);
  1114. if (!grp->full_slots) {
  1115. __clear_bit(grp->index, &q->bitmaps[IR]);
  1116. __clear_bit(grp->index, &q->bitmaps[EB]);
  1117. __clear_bit(grp->index, &q->bitmaps[IB]);
  1118. if (test_bit(grp->index, &q->bitmaps[ER]) &&
  1119. !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
  1120. mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
  1121. if (mask)
  1122. mask = ~((1UL << __fls(mask)) - 1);
  1123. else
  1124. mask = ~0UL;
  1125. qfq_move_groups(q, mask, EB, ER);
  1126. qfq_move_groups(q, mask, IB, IR);
  1127. }
  1128. __clear_bit(grp->index, &q->bitmaps[ER]);
  1129. } else if (hlist_empty(&grp->slots[grp->front])) {
  1130. agg = qfq_slot_scan(grp);
  1131. roundedS = qfq_round_down(agg->S, grp->slot_shift);
  1132. if (grp->S != roundedS) {
  1133. __clear_bit(grp->index, &q->bitmaps[ER]);
  1134. __clear_bit(grp->index, &q->bitmaps[IR]);
  1135. __clear_bit(grp->index, &q->bitmaps[EB]);
  1136. __clear_bit(grp->index, &q->bitmaps[IB]);
  1137. grp->S = roundedS;
  1138. grp->F = roundedS + (2ULL << grp->slot_shift);
  1139. s = qfq_calc_state(q, grp);
  1140. __set_bit(grp->index, &q->bitmaps[s]);
  1141. }
  1142. }
  1143. }
  1144. static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
  1145. {
  1146. struct qfq_sched *q = qdisc_priv(sch);
  1147. struct qfq_class *cl = (struct qfq_class *)arg;
  1148. if (cl->qdisc->q.qlen == 0)
  1149. qfq_deactivate_class(q, cl);
  1150. }
  1151. static unsigned int qfq_drop_from_slot(struct qfq_sched *q,
  1152. struct hlist_head *slot)
  1153. {
  1154. struct qfq_aggregate *agg;
  1155. struct qfq_class *cl;
  1156. unsigned int len;
  1157. hlist_for_each_entry(agg, slot, next) {
  1158. list_for_each_entry(cl, &agg->active, alist) {
  1159. if (!cl->qdisc->ops->drop)
  1160. continue;
  1161. len = cl->qdisc->ops->drop(cl->qdisc);
  1162. if (len > 0) {
  1163. if (cl->qdisc->q.qlen == 0)
  1164. qfq_deactivate_class(q, cl);
  1165. return len;
  1166. }
  1167. }
  1168. }
  1169. return 0;
  1170. }
  1171. static unsigned int qfq_drop(struct Qdisc *sch)
  1172. {
  1173. struct qfq_sched *q = qdisc_priv(sch);
  1174. struct qfq_group *grp;
  1175. unsigned int i, j, len;
  1176. for (i = 0; i <= QFQ_MAX_INDEX; i++) {
  1177. grp = &q->groups[i];
  1178. for (j = 0; j < QFQ_MAX_SLOTS; j++) {
  1179. len = qfq_drop_from_slot(q, &grp->slots[j]);
  1180. if (len > 0) {
  1181. sch->q.qlen--;
  1182. return len;
  1183. }
  1184. }
  1185. }
  1186. return 0;
  1187. }
  1188. static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
  1189. {
  1190. struct qfq_sched *q = qdisc_priv(sch);
  1191. struct qfq_group *grp;
  1192. int i, j, err;
  1193. u32 max_cl_shift, maxbudg_shift, max_classes;
  1194. err = qdisc_class_hash_init(&q->clhash);
  1195. if (err < 0)
  1196. return err;
  1197. if (qdisc_dev(sch)->tx_queue_len + 1 > QFQ_MAX_AGG_CLASSES)
  1198. max_classes = QFQ_MAX_AGG_CLASSES;
  1199. else
  1200. max_classes = qdisc_dev(sch)->tx_queue_len + 1;
  1201. /* max_cl_shift = floor(log_2(max_classes)) */
  1202. max_cl_shift = __fls(max_classes);
  1203. q->max_agg_classes = 1<<max_cl_shift;
  1204. /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
  1205. maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
  1206. q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
  1207. for (i = 0; i <= QFQ_MAX_INDEX; i++) {
  1208. grp = &q->groups[i];
  1209. grp->index = i;
  1210. grp->slot_shift = q->min_slot_shift + i;
  1211. for (j = 0; j < QFQ_MAX_SLOTS; j++)
  1212. INIT_HLIST_HEAD(&grp->slots[j]);
  1213. }
  1214. INIT_HLIST_HEAD(&q->nonfull_aggs);
  1215. return 0;
  1216. }
  1217. static void qfq_reset_qdisc(struct Qdisc *sch)
  1218. {
  1219. struct qfq_sched *q = qdisc_priv(sch);
  1220. struct qfq_class *cl;
  1221. unsigned int i;
  1222. for (i = 0; i < q->clhash.hashsize; i++) {
  1223. hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
  1224. if (cl->qdisc->q.qlen > 0)
  1225. qfq_deactivate_class(q, cl);
  1226. qdisc_reset(cl->qdisc);
  1227. }
  1228. }
  1229. sch->q.qlen = 0;
  1230. }
  1231. static void qfq_destroy_qdisc(struct Qdisc *sch)
  1232. {
  1233. struct qfq_sched *q = qdisc_priv(sch);
  1234. struct qfq_class *cl;
  1235. struct hlist_node *next;
  1236. unsigned int i;
  1237. tcf_destroy_chain(&q->filter_list);
  1238. for (i = 0; i < q->clhash.hashsize; i++) {
  1239. hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
  1240. common.hnode) {
  1241. qfq_destroy_class(sch, cl);
  1242. }
  1243. }
  1244. qdisc_class_hash_destroy(&q->clhash);
  1245. }
  1246. static const struct Qdisc_class_ops qfq_class_ops = {
  1247. .change = qfq_change_class,
  1248. .delete = qfq_delete_class,
  1249. .get = qfq_get_class,
  1250. .put = qfq_put_class,
  1251. .tcf_chain = qfq_tcf_chain,
  1252. .bind_tcf = qfq_bind_tcf,
  1253. .unbind_tcf = qfq_unbind_tcf,
  1254. .graft = qfq_graft_class,
  1255. .leaf = qfq_class_leaf,
  1256. .qlen_notify = qfq_qlen_notify,
  1257. .dump = qfq_dump_class,
  1258. .dump_stats = qfq_dump_class_stats,
  1259. .walk = qfq_walk,
  1260. };
  1261. static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
  1262. .cl_ops = &qfq_class_ops,
  1263. .id = "qfq",
  1264. .priv_size = sizeof(struct qfq_sched),
  1265. .enqueue = qfq_enqueue,
  1266. .dequeue = qfq_dequeue,
  1267. .peek = qdisc_peek_dequeued,
  1268. .drop = qfq_drop,
  1269. .init = qfq_init_qdisc,
  1270. .reset = qfq_reset_qdisc,
  1271. .destroy = qfq_destroy_qdisc,
  1272. .owner = THIS_MODULE,
  1273. };
  1274. static int __init qfq_init(void)
  1275. {
  1276. return register_qdisc(&qfq_qdisc_ops);
  1277. }
  1278. static void __exit qfq_exit(void)
  1279. {
  1280. unregister_qdisc(&qfq_qdisc_ops);
  1281. }
  1282. module_init(qfq_init);
  1283. module_exit(qfq_exit);
  1284. MODULE_LICENSE("GPL");