txrx.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/netdevice.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/hardirq.h>
  20. #include <net/ieee80211_radiotap.h>
  21. #include <linux/if_arp.h>
  22. #include <linux/moduleparam.h>
  23. #include "wil6210.h"
  24. #include "wmi.h"
  25. #include "txrx.h"
  26. static bool rtap_include_phy_info;
  27. module_param(rtap_include_phy_info, bool, S_IRUGO);
  28. MODULE_PARM_DESC(rtap_include_phy_info,
  29. " Include PHY info in the radiotap header, default - no");
  30. static inline int wil_vring_is_empty(struct vring *vring)
  31. {
  32. return vring->swhead == vring->swtail;
  33. }
  34. static inline u32 wil_vring_next_tail(struct vring *vring)
  35. {
  36. return (vring->swtail + 1) % vring->size;
  37. }
  38. static inline void wil_vring_advance_head(struct vring *vring, int n)
  39. {
  40. vring->swhead = (vring->swhead + n) % vring->size;
  41. }
  42. static inline int wil_vring_is_full(struct vring *vring)
  43. {
  44. return wil_vring_next_tail(vring) == vring->swhead;
  45. }
  46. /*
  47. * Available space in Tx Vring
  48. */
  49. static inline int wil_vring_avail_tx(struct vring *vring)
  50. {
  51. u32 swhead = vring->swhead;
  52. u32 swtail = vring->swtail;
  53. int used = (vring->size + swhead - swtail) % vring->size;
  54. return vring->size - used - 1;
  55. }
  56. static int wil_vring_alloc(struct wil6210_priv *wil, struct vring *vring)
  57. {
  58. struct device *dev = wil_to_dev(wil);
  59. size_t sz = vring->size * sizeof(vring->va[0]);
  60. uint i;
  61. BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
  62. vring->swhead = 0;
  63. vring->swtail = 0;
  64. vring->ctx = kzalloc(vring->size * sizeof(vring->ctx[0]), GFP_KERNEL);
  65. if (!vring->ctx) {
  66. vring->va = NULL;
  67. return -ENOMEM;
  68. }
  69. /*
  70. * vring->va should be aligned on its size rounded up to power of 2
  71. * This is granted by the dma_alloc_coherent
  72. */
  73. vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
  74. if (!vring->va) {
  75. wil_err(wil, "vring_alloc [%d] failed to alloc DMA mem\n",
  76. vring->size);
  77. kfree(vring->ctx);
  78. vring->ctx = NULL;
  79. return -ENOMEM;
  80. }
  81. /* initially, all descriptors are SW owned
  82. * For Tx and Rx, ownership bit is at the same location, thus
  83. * we can use any
  84. */
  85. for (i = 0; i < vring->size; i++) {
  86. volatile struct vring_tx_desc *d = &(vring->va[i].tx);
  87. d->dma.status = TX_DMA_STATUS_DU;
  88. }
  89. wil_dbg_misc(wil, "vring[%d] 0x%p:0x%016llx 0x%p\n", vring->size,
  90. vring->va, (unsigned long long)vring->pa, vring->ctx);
  91. return 0;
  92. }
  93. static void wil_vring_free(struct wil6210_priv *wil, struct vring *vring,
  94. int tx)
  95. {
  96. struct device *dev = wil_to_dev(wil);
  97. size_t sz = vring->size * sizeof(vring->va[0]);
  98. while (!wil_vring_is_empty(vring)) {
  99. if (tx) {
  100. volatile struct vring_tx_desc *d =
  101. &vring->va[vring->swtail].tx;
  102. dma_addr_t pa = d->dma.addr_low |
  103. ((u64)d->dma.addr_high << 32);
  104. struct sk_buff *skb = vring->ctx[vring->swtail];
  105. if (skb) {
  106. dma_unmap_single(dev, pa, d->dma.length,
  107. DMA_TO_DEVICE);
  108. dev_kfree_skb_any(skb);
  109. vring->ctx[vring->swtail] = NULL;
  110. } else {
  111. dma_unmap_page(dev, pa, d->dma.length,
  112. DMA_TO_DEVICE);
  113. }
  114. vring->swtail = wil_vring_next_tail(vring);
  115. } else { /* rx */
  116. volatile struct vring_rx_desc *d =
  117. &vring->va[vring->swtail].rx;
  118. dma_addr_t pa = d->dma.addr_low |
  119. ((u64)d->dma.addr_high << 32);
  120. struct sk_buff *skb = vring->ctx[vring->swhead];
  121. dma_unmap_single(dev, pa, d->dma.length,
  122. DMA_FROM_DEVICE);
  123. kfree_skb(skb);
  124. wil_vring_advance_head(vring, 1);
  125. }
  126. }
  127. dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
  128. kfree(vring->ctx);
  129. vring->pa = 0;
  130. vring->va = NULL;
  131. vring->ctx = NULL;
  132. }
  133. /**
  134. * Allocate one skb for Rx VRING
  135. *
  136. * Safe to call from IRQ
  137. */
  138. static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct vring *vring,
  139. u32 i, int headroom)
  140. {
  141. struct device *dev = wil_to_dev(wil);
  142. unsigned int sz = RX_BUF_LEN;
  143. volatile struct vring_rx_desc *d = &(vring->va[i].rx);
  144. dma_addr_t pa;
  145. /* TODO align */
  146. struct sk_buff *skb = dev_alloc_skb(sz + headroom);
  147. if (unlikely(!skb))
  148. return -ENOMEM;
  149. skb_reserve(skb, headroom);
  150. skb_put(skb, sz);
  151. pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
  152. if (unlikely(dma_mapping_error(dev, pa))) {
  153. kfree_skb(skb);
  154. return -ENOMEM;
  155. }
  156. d->dma.d0 = BIT(9) | RX_DMA_D0_CMD_DMA_IT;
  157. d->dma.addr_low = lower_32_bits(pa);
  158. d->dma.addr_high = (u16)upper_32_bits(pa);
  159. /* ip_length don't care */
  160. /* b11 don't care */
  161. /* error don't care */
  162. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  163. d->dma.length = sz;
  164. vring->ctx[i] = skb;
  165. return 0;
  166. }
  167. /**
  168. * Adds radiotap header
  169. *
  170. * Any error indicated as "Bad FCS"
  171. *
  172. * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
  173. * - Rx descriptor: 32 bytes
  174. * - Phy info
  175. */
  176. static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
  177. struct sk_buff *skb,
  178. volatile struct vring_rx_desc *d)
  179. {
  180. struct wireless_dev *wdev = wil->wdev;
  181. struct wil6210_rtap {
  182. struct ieee80211_radiotap_header rthdr;
  183. /* fields should be in the order of bits in rthdr.it_present */
  184. /* flags */
  185. u8 flags;
  186. /* channel */
  187. __le16 chnl_freq __aligned(2);
  188. __le16 chnl_flags;
  189. /* MCS */
  190. u8 mcs_present;
  191. u8 mcs_flags;
  192. u8 mcs_index;
  193. } __packed;
  194. struct wil6210_rtap_vendor {
  195. struct wil6210_rtap rtap;
  196. /* vendor */
  197. u8 vendor_oui[3] __aligned(2);
  198. u8 vendor_ns;
  199. __le16 vendor_skip;
  200. u8 vendor_data[0];
  201. } __packed;
  202. struct wil6210_rtap_vendor *rtap_vendor;
  203. int rtap_len = sizeof(struct wil6210_rtap);
  204. int phy_length = 0; /* phy info header size, bytes */
  205. static char phy_data[128];
  206. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  207. if (rtap_include_phy_info) {
  208. rtap_len = sizeof(*rtap_vendor) + sizeof(*d);
  209. /* calculate additional length */
  210. if (d->dma.status & RX_DMA_STATUS_PHY_INFO) {
  211. /**
  212. * PHY info starts from 8-byte boundary
  213. * there are 8-byte lines, last line may be partially
  214. * written (HW bug), thus FW configures for last line
  215. * to be excessive. Driver skips this last line.
  216. */
  217. int len = min_t(int, 8 + sizeof(phy_data),
  218. wil_rxdesc_phy_length(d));
  219. if (len > 8) {
  220. void *p = skb_tail_pointer(skb);
  221. void *pa = PTR_ALIGN(p, 8);
  222. if (skb_tailroom(skb) >= len + (pa - p)) {
  223. phy_length = len - 8;
  224. memcpy(phy_data, pa, phy_length);
  225. }
  226. }
  227. }
  228. rtap_len += phy_length;
  229. }
  230. if (skb_headroom(skb) < rtap_len &&
  231. pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
  232. wil_err(wil, "Unable to expand headrom to %d\n", rtap_len);
  233. return;
  234. }
  235. rtap_vendor = (void *)skb_push(skb, rtap_len);
  236. memset(rtap_vendor, 0, rtap_len);
  237. rtap_vendor->rtap.rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
  238. rtap_vendor->rtap.rthdr.it_len = cpu_to_le16(rtap_len);
  239. rtap_vendor->rtap.rthdr.it_present = cpu_to_le32(
  240. (1 << IEEE80211_RADIOTAP_FLAGS) |
  241. (1 << IEEE80211_RADIOTAP_CHANNEL) |
  242. (1 << IEEE80211_RADIOTAP_MCS));
  243. if (d->dma.status & RX_DMA_STATUS_ERROR)
  244. rtap_vendor->rtap.flags |= IEEE80211_RADIOTAP_F_BADFCS;
  245. rtap_vendor->rtap.chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
  246. rtap_vendor->rtap.chnl_flags = cpu_to_le16(0);
  247. rtap_vendor->rtap.mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
  248. rtap_vendor->rtap.mcs_flags = 0;
  249. rtap_vendor->rtap.mcs_index = wil_rxdesc_mcs(d);
  250. if (rtap_include_phy_info) {
  251. rtap_vendor->rtap.rthdr.it_present |= cpu_to_le32(1 <<
  252. IEEE80211_RADIOTAP_VENDOR_NAMESPACE);
  253. /* OUI for Wilocity 04:ce:14 */
  254. rtap_vendor->vendor_oui[0] = 0x04;
  255. rtap_vendor->vendor_oui[1] = 0xce;
  256. rtap_vendor->vendor_oui[2] = 0x14;
  257. rtap_vendor->vendor_ns = 1;
  258. /* Rx descriptor + PHY data */
  259. rtap_vendor->vendor_skip = cpu_to_le16(sizeof(*d) +
  260. phy_length);
  261. memcpy(rtap_vendor->vendor_data, (void *)d, sizeof(*d));
  262. memcpy(rtap_vendor->vendor_data + sizeof(*d), phy_data,
  263. phy_length);
  264. }
  265. }
  266. /*
  267. * Fast swap in place between 2 registers
  268. */
  269. static void wil_swap_u16(u16 *a, u16 *b)
  270. {
  271. *a ^= *b;
  272. *b ^= *a;
  273. *a ^= *b;
  274. }
  275. static void wil_swap_ethaddr(void *data)
  276. {
  277. struct ethhdr *eth = data;
  278. u16 *s = (u16 *)eth->h_source;
  279. u16 *d = (u16 *)eth->h_dest;
  280. wil_swap_u16(s++, d++);
  281. wil_swap_u16(s++, d++);
  282. wil_swap_u16(s, d);
  283. }
  284. /**
  285. * reap 1 frame from @swhead
  286. *
  287. * Safe to call from IRQ
  288. */
  289. static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
  290. struct vring *vring)
  291. {
  292. struct device *dev = wil_to_dev(wil);
  293. struct net_device *ndev = wil_to_ndev(wil);
  294. volatile struct vring_rx_desc *d;
  295. struct sk_buff *skb;
  296. dma_addr_t pa;
  297. unsigned int sz = RX_BUF_LEN;
  298. u8 ftype;
  299. u8 ds_bits;
  300. if (wil_vring_is_empty(vring))
  301. return NULL;
  302. d = &(vring->va[vring->swhead].rx);
  303. if (!(d->dma.status & RX_DMA_STATUS_DU)) {
  304. /* it is not error, we just reached end of Rx done area */
  305. return NULL;
  306. }
  307. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  308. skb = vring->ctx[vring->swhead];
  309. dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
  310. skb_trim(skb, d->dma.length);
  311. wil->stats.last_mcs_rx = wil_rxdesc_mcs(d);
  312. /* use radiotap header only if required */
  313. if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
  314. wil_rx_add_radiotap_header(wil, skb, d);
  315. wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", vring->swhead, d->dma.length);
  316. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_NONE, 32, 4,
  317. (const void *)d, sizeof(*d), false);
  318. wil_vring_advance_head(vring, 1);
  319. /* no extra checks if in sniffer mode */
  320. if (ndev->type != ARPHRD_ETHER)
  321. return skb;
  322. /*
  323. * Non-data frames may be delivered through Rx DMA channel (ex: BAR)
  324. * Driver should recognize it by frame type, that is found
  325. * in Rx descriptor. If type is not data, it is 802.11 frame as is
  326. */
  327. ftype = wil_rxdesc_ftype(d) << 2;
  328. if (ftype != IEEE80211_FTYPE_DATA) {
  329. wil_dbg_txrx(wil, "Non-data frame ftype 0x%08x\n", ftype);
  330. /* TODO: process it */
  331. kfree_skb(skb);
  332. return NULL;
  333. }
  334. if (skb->len < ETH_HLEN) {
  335. wil_err(wil, "Short frame, len = %d\n", skb->len);
  336. /* TODO: process it (i.e. BAR) */
  337. kfree_skb(skb);
  338. return NULL;
  339. }
  340. ds_bits = wil_rxdesc_ds_bits(d);
  341. if (ds_bits == 1) {
  342. /*
  343. * HW bug - in ToDS mode, i.e. Rx on AP side,
  344. * addresses get swapped
  345. */
  346. wil_swap_ethaddr(skb->data);
  347. }
  348. return skb;
  349. }
  350. /**
  351. * allocate and fill up to @count buffers in rx ring
  352. * buffers posted at @swtail
  353. */
  354. static int wil_rx_refill(struct wil6210_priv *wil, int count)
  355. {
  356. struct net_device *ndev = wil_to_ndev(wil);
  357. struct vring *v = &wil->vring_rx;
  358. u32 next_tail;
  359. int rc = 0;
  360. int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
  361. WIL6210_RTAP_SIZE : 0;
  362. for (; next_tail = wil_vring_next_tail(v),
  363. (next_tail != v->swhead) && (count-- > 0);
  364. v->swtail = next_tail) {
  365. rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
  366. if (rc) {
  367. wil_err(wil, "Error %d in wil_rx_refill[%d]\n",
  368. rc, v->swtail);
  369. break;
  370. }
  371. }
  372. iowrite32(v->swtail, wil->csr + HOSTADDR(v->hwtail));
  373. return rc;
  374. }
  375. /*
  376. * Pass Rx packet to the netif. Update statistics.
  377. */
  378. static void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
  379. {
  380. int rc;
  381. unsigned int len = skb->len;
  382. skb_orphan(skb);
  383. if (in_interrupt())
  384. rc = netif_rx(skb);
  385. else
  386. rc = netif_rx_ni(skb);
  387. if (likely(rc == NET_RX_SUCCESS)) {
  388. ndev->stats.rx_packets++;
  389. ndev->stats.rx_bytes += len;
  390. } else {
  391. ndev->stats.rx_dropped++;
  392. }
  393. }
  394. /**
  395. * Proceed all completed skb's from Rx VRING
  396. *
  397. * Safe to call from IRQ
  398. */
  399. void wil_rx_handle(struct wil6210_priv *wil)
  400. {
  401. struct net_device *ndev = wil_to_ndev(wil);
  402. struct vring *v = &wil->vring_rx;
  403. struct sk_buff *skb;
  404. if (!v->va) {
  405. wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
  406. return;
  407. }
  408. wil_dbg_txrx(wil, "%s()\n", __func__);
  409. while (NULL != (skb = wil_vring_reap_rx(wil, v))) {
  410. wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
  411. skb->data, skb_headlen(skb), false);
  412. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  413. skb->dev = ndev;
  414. skb_reset_mac_header(skb);
  415. skb->ip_summed = CHECKSUM_UNNECESSARY;
  416. skb->pkt_type = PACKET_OTHERHOST;
  417. skb->protocol = htons(ETH_P_802_2);
  418. } else {
  419. skb->protocol = eth_type_trans(skb, ndev);
  420. }
  421. wil_netif_rx_any(skb, ndev);
  422. }
  423. wil_rx_refill(wil, v->size);
  424. }
  425. int wil_rx_init(struct wil6210_priv *wil)
  426. {
  427. struct vring *vring = &wil->vring_rx;
  428. int rc;
  429. vring->size = WIL6210_RX_RING_SIZE;
  430. rc = wil_vring_alloc(wil, vring);
  431. if (rc)
  432. return rc;
  433. rc = wmi_rx_chain_add(wil, vring);
  434. if (rc)
  435. goto err_free;
  436. rc = wil_rx_refill(wil, vring->size);
  437. if (rc)
  438. goto err_free;
  439. return 0;
  440. err_free:
  441. wil_vring_free(wil, vring, 0);
  442. return rc;
  443. }
  444. void wil_rx_fini(struct wil6210_priv *wil)
  445. {
  446. struct vring *vring = &wil->vring_rx;
  447. if (vring->va)
  448. wil_vring_free(wil, vring, 0);
  449. }
  450. int wil_vring_init_tx(struct wil6210_priv *wil, int id, int size,
  451. int cid, int tid)
  452. {
  453. int rc;
  454. struct wmi_vring_cfg_cmd cmd = {
  455. .action = cpu_to_le32(WMI_VRING_CMD_ADD),
  456. .vring_cfg = {
  457. .tx_sw_ring = {
  458. .max_mpdu_size = cpu_to_le16(TX_BUF_LEN),
  459. },
  460. .ringid = id,
  461. .cidxtid = (cid & 0xf) | ((tid & 0xf) << 4),
  462. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  463. .mac_ctrl = 0,
  464. .to_resolution = 0,
  465. .agg_max_wsize = 16,
  466. .schd_params = {
  467. .priority = cpu_to_le16(0),
  468. .timeslot_us = cpu_to_le16(0xfff),
  469. },
  470. },
  471. };
  472. struct {
  473. struct wil6210_mbox_hdr_wmi wmi;
  474. struct wmi_vring_cfg_done_event cmd;
  475. } __packed reply;
  476. struct vring *vring = &wil->vring_tx[id];
  477. if (vring->va) {
  478. wil_err(wil, "Tx ring [%d] already allocated\n", id);
  479. rc = -EINVAL;
  480. goto out;
  481. }
  482. vring->size = size;
  483. rc = wil_vring_alloc(wil, vring);
  484. if (rc)
  485. goto out;
  486. cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
  487. cmd.vring_cfg.tx_sw_ring.ring_size = cpu_to_le16(vring->size);
  488. rc = wmi_call(wil, WMI_VRING_CFG_CMDID, &cmd, sizeof(cmd),
  489. WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), 100);
  490. if (rc)
  491. goto out_free;
  492. if (reply.cmd.status != WMI_VRING_CFG_SUCCESS) {
  493. wil_err(wil, "Tx config failed, status 0x%02x\n",
  494. reply.cmd.status);
  495. rc = -EINVAL;
  496. goto out_free;
  497. }
  498. vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
  499. return 0;
  500. out_free:
  501. wil_vring_free(wil, vring, 1);
  502. out:
  503. return rc;
  504. }
  505. void wil_vring_fini_tx(struct wil6210_priv *wil, int id)
  506. {
  507. struct vring *vring = &wil->vring_tx[id];
  508. if (!vring->va)
  509. return;
  510. wil_vring_free(wil, vring, 1);
  511. }
  512. static struct vring *wil_find_tx_vring(struct wil6210_priv *wil,
  513. struct sk_buff *skb)
  514. {
  515. struct vring *v = &wil->vring_tx[0];
  516. if (v->va)
  517. return v;
  518. return NULL;
  519. }
  520. static int wil_tx_desc_map(volatile struct vring_tx_desc *d,
  521. dma_addr_t pa, u32 len)
  522. {
  523. d->dma.addr_low = lower_32_bits(pa);
  524. d->dma.addr_high = (u16)upper_32_bits(pa);
  525. d->dma.ip_length = 0;
  526. /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
  527. d->dma.b11 = 0/*14 | BIT(7)*/;
  528. d->dma.error = 0;
  529. d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
  530. d->dma.length = len;
  531. d->dma.d0 = 0;
  532. d->mac.d[0] = 0;
  533. d->mac.d[1] = 0;
  534. d->mac.d[2] = 0;
  535. d->mac.ucode_cmd = 0;
  536. /* use dst index 0 */
  537. d->mac.d[1] |= BIT(MAC_CFG_DESC_TX_1_DST_INDEX_EN_POS) |
  538. (0 << MAC_CFG_DESC_TX_1_DST_INDEX_POS);
  539. /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
  540. d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
  541. (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
  542. return 0;
  543. }
  544. static int wil_tx_vring(struct wil6210_priv *wil, struct vring *vring,
  545. struct sk_buff *skb)
  546. {
  547. struct device *dev = wil_to_dev(wil);
  548. volatile struct vring_tx_desc *d;
  549. u32 swhead = vring->swhead;
  550. int avail = wil_vring_avail_tx(vring);
  551. int nr_frags = skb_shinfo(skb)->nr_frags;
  552. uint f;
  553. int vring_index = vring - wil->vring_tx;
  554. uint i = swhead;
  555. dma_addr_t pa;
  556. wil_dbg_txrx(wil, "%s()\n", __func__);
  557. if (avail < vring->size/8)
  558. netif_tx_stop_all_queues(wil_to_ndev(wil));
  559. if (avail < 1 + nr_frags) {
  560. wil_err(wil, "Tx ring full. No space for %d fragments\n",
  561. 1 + nr_frags);
  562. return -ENOMEM;
  563. }
  564. d = &(vring->va[i].tx);
  565. /* FIXME FW can accept only unicast frames for the peer */
  566. memcpy(skb->data, wil->dst_addr[vring_index], ETH_ALEN);
  567. pa = dma_map_single(dev, skb->data,
  568. skb_headlen(skb), DMA_TO_DEVICE);
  569. wil_dbg_txrx(wil, "Tx skb %d bytes %p -> %#08llx\n", skb_headlen(skb),
  570. skb->data, (unsigned long long)pa);
  571. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
  572. skb->data, skb_headlen(skb), false);
  573. if (unlikely(dma_mapping_error(dev, pa)))
  574. return -EINVAL;
  575. /* 1-st segment */
  576. wil_tx_desc_map(d, pa, skb_headlen(skb));
  577. d->mac.d[2] |= ((nr_frags + 1) <<
  578. MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
  579. /* middle segments */
  580. for (f = 0; f < nr_frags; f++) {
  581. const struct skb_frag_struct *frag =
  582. &skb_shinfo(skb)->frags[f];
  583. int len = skb_frag_size(frag);
  584. i = (swhead + f + 1) % vring->size;
  585. d = &(vring->va[i].tx);
  586. pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
  587. DMA_TO_DEVICE);
  588. if (unlikely(dma_mapping_error(dev, pa)))
  589. goto dma_error;
  590. wil_tx_desc_map(d, pa, len);
  591. vring->ctx[i] = NULL;
  592. }
  593. /* for the last seg only */
  594. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
  595. d->dma.d0 |= BIT(9); /* BUG: undocumented bit */
  596. d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
  597. d->dma.d0 |= (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
  598. wil_hex_dump_txrx("Tx ", DUMP_PREFIX_NONE, 32, 4,
  599. (const void *)d, sizeof(*d), false);
  600. /* advance swhead */
  601. wil_vring_advance_head(vring, nr_frags + 1);
  602. wil_dbg_txrx(wil, "Tx swhead %d -> %d\n", swhead, vring->swhead);
  603. iowrite32(vring->swhead, wil->csr + HOSTADDR(vring->hwtail));
  604. /* hold reference to skb
  605. * to prevent skb release before accounting
  606. * in case of immediate "tx done"
  607. */
  608. vring->ctx[i] = skb_get(skb);
  609. return 0;
  610. dma_error:
  611. /* unmap what we have mapped */
  612. /* Note: increment @f to operate with positive index */
  613. for (f++; f > 0; f--) {
  614. i = (swhead + f) % vring->size;
  615. d = &(vring->va[i].tx);
  616. d->dma.status = TX_DMA_STATUS_DU;
  617. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  618. if (vring->ctx[i])
  619. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  620. else
  621. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  622. }
  623. return -EINVAL;
  624. }
  625. netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  626. {
  627. struct wil6210_priv *wil = ndev_to_wil(ndev);
  628. struct vring *vring;
  629. int rc;
  630. wil_dbg_txrx(wil, "%s()\n", __func__);
  631. if (!test_bit(wil_status_fwready, &wil->status)) {
  632. wil_err(wil, "FW not ready\n");
  633. goto drop;
  634. }
  635. if (!test_bit(wil_status_fwconnected, &wil->status)) {
  636. wil_err(wil, "FW not connected\n");
  637. goto drop;
  638. }
  639. if (wil->wdev->iftype == NL80211_IFTYPE_MONITOR) {
  640. wil_err(wil, "Xmit in monitor mode not supported\n");
  641. goto drop;
  642. }
  643. if (skb->protocol == cpu_to_be16(ETH_P_PAE)) {
  644. rc = wmi_tx_eapol(wil, skb);
  645. } else {
  646. /* find vring */
  647. vring = wil_find_tx_vring(wil, skb);
  648. if (!vring) {
  649. wil_err(wil, "No Tx VRING available\n");
  650. goto drop;
  651. }
  652. /* set up vring entry */
  653. rc = wil_tx_vring(wil, vring, skb);
  654. }
  655. switch (rc) {
  656. case 0:
  657. /* statistics will be updated on the tx_complete */
  658. dev_kfree_skb_any(skb);
  659. return NETDEV_TX_OK;
  660. case -ENOMEM:
  661. return NETDEV_TX_BUSY;
  662. default:
  663. break; /* goto drop; */
  664. }
  665. drop:
  666. netif_tx_stop_all_queues(ndev);
  667. ndev->stats.tx_dropped++;
  668. dev_kfree_skb_any(skb);
  669. return NET_XMIT_DROP;
  670. }
  671. /**
  672. * Clean up transmitted skb's from the Tx VRING
  673. *
  674. * Safe to call from IRQ
  675. */
  676. void wil_tx_complete(struct wil6210_priv *wil, int ringid)
  677. {
  678. struct net_device *ndev = wil_to_ndev(wil);
  679. struct device *dev = wil_to_dev(wil);
  680. struct vring *vring = &wil->vring_tx[ringid];
  681. if (!vring->va) {
  682. wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
  683. return;
  684. }
  685. wil_dbg_txrx(wil, "%s(%d)\n", __func__, ringid);
  686. while (!wil_vring_is_empty(vring)) {
  687. volatile struct vring_tx_desc *d = &vring->va[vring->swtail].tx;
  688. dma_addr_t pa;
  689. struct sk_buff *skb;
  690. if (!(d->dma.status & TX_DMA_STATUS_DU))
  691. break;
  692. wil_dbg_txrx(wil,
  693. "Tx[%3d] : %d bytes, status 0x%02x err 0x%02x\n",
  694. vring->swtail, d->dma.length, d->dma.status,
  695. d->dma.error);
  696. wil_hex_dump_txrx("TxC ", DUMP_PREFIX_NONE, 32, 4,
  697. (const void *)d, sizeof(*d), false);
  698. pa = d->dma.addr_low | ((u64)d->dma.addr_high << 32);
  699. skb = vring->ctx[vring->swtail];
  700. if (skb) {
  701. if (d->dma.error == 0) {
  702. ndev->stats.tx_packets++;
  703. ndev->stats.tx_bytes += skb->len;
  704. } else {
  705. ndev->stats.tx_errors++;
  706. }
  707. dma_unmap_single(dev, pa, d->dma.length, DMA_TO_DEVICE);
  708. dev_kfree_skb_any(skb);
  709. vring->ctx[vring->swtail] = NULL;
  710. } else {
  711. dma_unmap_page(dev, pa, d->dma.length, DMA_TO_DEVICE);
  712. }
  713. d->dma.addr_low = 0;
  714. d->dma.addr_high = 0;
  715. d->dma.length = 0;
  716. d->dma.status = TX_DMA_STATUS_DU;
  717. vring->swtail = wil_vring_next_tail(vring);
  718. }
  719. if (wil_vring_avail_tx(vring) > vring->size/4)
  720. netif_tx_wake_all_queues(wil_to_ndev(wil));
  721. }