caiaq-input.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. /*
  2. * Copyright (c) 2006,2007 Daniel Mack, Tim Ruetz
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/moduleparam.h>
  21. #include <linux/input.h>
  22. #include <linux/usb.h>
  23. #include <linux/usb/input.h>
  24. #include <linux/spinlock.h>
  25. #include <sound/core.h>
  26. #include <sound/rawmidi.h>
  27. #include <sound/pcm.h>
  28. #include "caiaq-device.h"
  29. #include "caiaq-input.h"
  30. static unsigned short keycode_ak1[] = { KEY_C, KEY_B, KEY_A };
  31. static unsigned short keycode_rk2[] = { KEY_1, KEY_2, KEY_3, KEY_4,
  32. KEY_5, KEY_6, KEY_7 };
  33. static unsigned short keycode_rk3[] = { KEY_1, KEY_2, KEY_3, KEY_4,
  34. KEY_5, KEY_6, KEY_7, KEY_5, KEY_6 };
  35. static unsigned short keycode_kore[] = {
  36. KEY_FN_F1, /* "menu" */
  37. KEY_FN_F7, /* "lcd backlight */
  38. KEY_FN_F2, /* "control" */
  39. KEY_FN_F3, /* "enter" */
  40. KEY_FN_F4, /* "view" */
  41. KEY_FN_F5, /* "esc" */
  42. KEY_FN_F6, /* "sound" */
  43. KEY_FN_F8, /* array spacer, never triggered. */
  44. KEY_RIGHT,
  45. KEY_DOWN,
  46. KEY_UP,
  47. KEY_LEFT,
  48. KEY_SOUND, /* "listen" */
  49. KEY_RECORD,
  50. KEY_PLAYPAUSE,
  51. KEY_STOP,
  52. BTN_4, /* 8 softkeys */
  53. BTN_3,
  54. BTN_2,
  55. BTN_1,
  56. BTN_8,
  57. BTN_7,
  58. BTN_6,
  59. BTN_5,
  60. KEY_BRL_DOT4, /* touch sensitive knobs */
  61. KEY_BRL_DOT3,
  62. KEY_BRL_DOT2,
  63. KEY_BRL_DOT1,
  64. KEY_BRL_DOT8,
  65. KEY_BRL_DOT7,
  66. KEY_BRL_DOT6,
  67. KEY_BRL_DOT5
  68. };
  69. #define DEG90 (range / 2)
  70. #define DEG180 (range)
  71. #define DEG270 (DEG90 + DEG180)
  72. #define DEG360 (DEG180 * 2)
  73. #define HIGH_PEAK (268)
  74. #define LOW_PEAK (-7)
  75. /* some of these devices have endless rotation potentiometers
  76. * built in which use two tapers, 90 degrees phase shifted.
  77. * this algorithm decodes them to one single value, ranging
  78. * from 0 to 999 */
  79. static unsigned int decode_erp(unsigned char a, unsigned char b)
  80. {
  81. int weight_a, weight_b;
  82. int pos_a, pos_b;
  83. int ret;
  84. int range = HIGH_PEAK - LOW_PEAK;
  85. int mid_value = (HIGH_PEAK + LOW_PEAK) / 2;
  86. weight_b = abs(mid_value - a) - (range / 2 - 100) / 2;
  87. if (weight_b < 0)
  88. weight_b = 0;
  89. if (weight_b > 100)
  90. weight_b = 100;
  91. weight_a = 100 - weight_b;
  92. if (a < mid_value) {
  93. /* 0..90 and 270..360 degrees */
  94. pos_b = b - LOW_PEAK + DEG270;
  95. if (pos_b >= DEG360)
  96. pos_b -= DEG360;
  97. } else
  98. /* 90..270 degrees */
  99. pos_b = HIGH_PEAK - b + DEG90;
  100. if (b > mid_value)
  101. /* 0..180 degrees */
  102. pos_a = a - LOW_PEAK;
  103. else
  104. /* 180..360 degrees */
  105. pos_a = HIGH_PEAK - a + DEG180;
  106. /* interpolate both slider values, depending on weight factors */
  107. /* 0..99 x DEG360 */
  108. ret = pos_a * weight_a + pos_b * weight_b;
  109. /* normalize to 0..999 */
  110. ret *= 10;
  111. ret /= DEG360;
  112. if (ret < 0)
  113. ret += 1000;
  114. if (ret >= 1000)
  115. ret -= 1000;
  116. return ret;
  117. }
  118. #undef DEG90
  119. #undef DEG180
  120. #undef DEG270
  121. #undef DEG360
  122. #undef HIGH_PEAK
  123. #undef LOW_PEAK
  124. static void snd_caiaq_input_read_analog(struct snd_usb_caiaqdev *dev,
  125. const unsigned char *buf,
  126. unsigned int len)
  127. {
  128. struct input_dev *input_dev = dev->input_dev;
  129. switch (dev->chip.usb_id) {
  130. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL2):
  131. input_report_abs(input_dev, ABS_X, (buf[4] << 8) | buf[5]);
  132. input_report_abs(input_dev, ABS_Y, (buf[0] << 8) | buf[1]);
  133. input_report_abs(input_dev, ABS_Z, (buf[2] << 8) | buf[3]);
  134. input_sync(input_dev);
  135. break;
  136. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL3):
  137. input_report_abs(input_dev, ABS_X, (buf[0] << 8) | buf[1]);
  138. input_report_abs(input_dev, ABS_Y, (buf[2] << 8) | buf[3]);
  139. input_report_abs(input_dev, ABS_Z, (buf[4] << 8) | buf[5]);
  140. input_sync(input_dev);
  141. break;
  142. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  143. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  144. input_report_abs(input_dev, ABS_X, (buf[0] << 8) | buf[1]);
  145. input_report_abs(input_dev, ABS_Y, (buf[2] << 8) | buf[3]);
  146. input_report_abs(input_dev, ABS_Z, (buf[4] << 8) | buf[5]);
  147. input_sync(input_dev);
  148. break;
  149. }
  150. }
  151. static void snd_caiaq_input_read_erp(struct snd_usb_caiaqdev *dev,
  152. const char *buf, unsigned int len)
  153. {
  154. struct input_dev *input_dev = dev->input_dev;
  155. int i;
  156. switch (dev->chip.usb_id) {
  157. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AK1):
  158. i = decode_erp(buf[0], buf[1]);
  159. input_report_abs(input_dev, ABS_X, i);
  160. input_sync(input_dev);
  161. break;
  162. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  163. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  164. i = decode_erp(buf[7], buf[5]);
  165. input_report_abs(input_dev, ABS_HAT0X, i);
  166. i = decode_erp(buf[12], buf[14]);
  167. input_report_abs(input_dev, ABS_HAT0Y, i);
  168. i = decode_erp(buf[15], buf[13]);
  169. input_report_abs(input_dev, ABS_HAT1X, i);
  170. i = decode_erp(buf[0], buf[2]);
  171. input_report_abs(input_dev, ABS_HAT1Y, i);
  172. i = decode_erp(buf[3], buf[1]);
  173. input_report_abs(input_dev, ABS_HAT2X, i);
  174. i = decode_erp(buf[8], buf[10]);
  175. input_report_abs(input_dev, ABS_HAT2Y, i);
  176. i = decode_erp(buf[11], buf[9]);
  177. input_report_abs(input_dev, ABS_HAT3X, i);
  178. i = decode_erp(buf[4], buf[6]);
  179. input_report_abs(input_dev, ABS_HAT3Y, i);
  180. input_sync(input_dev);
  181. break;
  182. }
  183. }
  184. static void snd_caiaq_input_read_io(struct snd_usb_caiaqdev *dev,
  185. char *buf, unsigned int len)
  186. {
  187. struct input_dev *input_dev = dev->input_dev;
  188. unsigned short *keycode = input_dev->keycode;
  189. int i;
  190. if (!keycode)
  191. return;
  192. if (input_dev->id.product == USB_PID_RIGKONTROL2)
  193. for (i = 0; i < len; i++)
  194. buf[i] = ~buf[i];
  195. for (i = 0; i < input_dev->keycodemax && i < len * 8; i++)
  196. input_report_key(input_dev, keycode[i],
  197. buf[i / 8] & (1 << (i % 8)));
  198. if (dev->chip.usb_id ==
  199. USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER) ||
  200. dev->chip.usb_id ==
  201. USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2))
  202. input_report_abs(dev->input_dev, ABS_MISC, 255 - buf[4]);
  203. input_sync(input_dev);
  204. }
  205. void snd_usb_caiaq_input_dispatch(struct snd_usb_caiaqdev *dev,
  206. char *buf,
  207. unsigned int len)
  208. {
  209. if (!dev->input_dev || len < 1)
  210. return;
  211. switch (buf[0]) {
  212. case EP1_CMD_READ_ANALOG:
  213. snd_caiaq_input_read_analog(dev, buf + 1, len - 1);
  214. break;
  215. case EP1_CMD_READ_ERP:
  216. snd_caiaq_input_read_erp(dev, buf + 1, len - 1);
  217. break;
  218. case EP1_CMD_READ_IO:
  219. snd_caiaq_input_read_io(dev, buf + 1, len - 1);
  220. break;
  221. }
  222. }
  223. int snd_usb_caiaq_input_init(struct snd_usb_caiaqdev *dev)
  224. {
  225. struct usb_device *usb_dev = dev->chip.dev;
  226. struct input_dev *input;
  227. int i, ret;
  228. input = input_allocate_device();
  229. if (!input)
  230. return -ENOMEM;
  231. usb_make_path(usb_dev, dev->phys, sizeof(dev->phys));
  232. strlcat(dev->phys, "/input0", sizeof(dev->phys));
  233. input->name = dev->product_name;
  234. input->phys = dev->phys;
  235. usb_to_input_id(usb_dev, &input->id);
  236. input->dev.parent = &usb_dev->dev;
  237. switch (dev->chip.usb_id) {
  238. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL2):
  239. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  240. input->absbit[0] = BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  241. BIT_MASK(ABS_Z);
  242. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_rk2));
  243. memcpy(dev->keycode, keycode_rk2, sizeof(keycode_rk2));
  244. input->keycodemax = ARRAY_SIZE(keycode_rk2);
  245. input_set_abs_params(input, ABS_X, 0, 4096, 0, 10);
  246. input_set_abs_params(input, ABS_Y, 0, 4096, 0, 10);
  247. input_set_abs_params(input, ABS_Z, 0, 4096, 0, 10);
  248. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 0);
  249. break;
  250. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_RIGKONTROL3):
  251. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  252. input->absbit[0] = BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  253. BIT_MASK(ABS_Z);
  254. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_rk3));
  255. memcpy(dev->keycode, keycode_rk3, sizeof(keycode_rk3));
  256. input->keycodemax = ARRAY_SIZE(keycode_rk3);
  257. input_set_abs_params(input, ABS_X, 0, 1024, 0, 10);
  258. input_set_abs_params(input, ABS_Y, 0, 1024, 0, 10);
  259. input_set_abs_params(input, ABS_Z, 0, 1024, 0, 10);
  260. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 0);
  261. break;
  262. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_AK1):
  263. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  264. input->absbit[0] = BIT_MASK(ABS_X);
  265. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_ak1));
  266. memcpy(dev->keycode, keycode_ak1, sizeof(keycode_ak1));
  267. input->keycodemax = ARRAY_SIZE(keycode_ak1);
  268. input_set_abs_params(input, ABS_X, 0, 999, 0, 10);
  269. snd_usb_caiaq_set_auto_msg(dev, 1, 0, 5);
  270. break;
  271. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER):
  272. case USB_ID(USB_VID_NATIVEINSTRUMENTS, USB_PID_KORECONTROLLER2):
  273. input->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
  274. input->absbit[0] = BIT_MASK(ABS_HAT0X) | BIT_MASK(ABS_HAT0Y) |
  275. BIT_MASK(ABS_HAT1X) | BIT_MASK(ABS_HAT1Y) |
  276. BIT_MASK(ABS_HAT2X) | BIT_MASK(ABS_HAT2Y) |
  277. BIT_MASK(ABS_HAT3X) | BIT_MASK(ABS_HAT3Y) |
  278. BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) |
  279. BIT_MASK(ABS_Z);
  280. input->absbit[BIT_WORD(ABS_MISC)] |= BIT_MASK(ABS_MISC);
  281. BUILD_BUG_ON(sizeof(dev->keycode) < sizeof(keycode_kore));
  282. memcpy(dev->keycode, keycode_kore, sizeof(keycode_kore));
  283. input->keycodemax = ARRAY_SIZE(keycode_kore);
  284. input_set_abs_params(input, ABS_HAT0X, 0, 999, 0, 10);
  285. input_set_abs_params(input, ABS_HAT0Y, 0, 999, 0, 10);
  286. input_set_abs_params(input, ABS_HAT1X, 0, 999, 0, 10);
  287. input_set_abs_params(input, ABS_HAT1Y, 0, 999, 0, 10);
  288. input_set_abs_params(input, ABS_HAT2X, 0, 999, 0, 10);
  289. input_set_abs_params(input, ABS_HAT2Y, 0, 999, 0, 10);
  290. input_set_abs_params(input, ABS_HAT3X, 0, 999, 0, 10);
  291. input_set_abs_params(input, ABS_HAT3Y, 0, 999, 0, 10);
  292. input_set_abs_params(input, ABS_X, 0, 4096, 0, 10);
  293. input_set_abs_params(input, ABS_Y, 0, 4096, 0, 10);
  294. input_set_abs_params(input, ABS_Z, 0, 4096, 0, 10);
  295. input_set_abs_params(input, ABS_MISC, 0, 255, 0, 1);
  296. snd_usb_caiaq_set_auto_msg(dev, 1, 10, 5);
  297. break;
  298. default:
  299. /* no input methods supported on this device */
  300. input_free_device(input);
  301. return 0;
  302. }
  303. input->keycode = dev->keycode;
  304. input->keycodesize = sizeof(unsigned short);
  305. for (i = 0; i < input->keycodemax; i++)
  306. __set_bit(dev->keycode[i], input->keybit);
  307. ret = input_register_device(input);
  308. if (ret < 0) {
  309. input_free_device(input);
  310. return ret;
  311. }
  312. dev->input_dev = input;
  313. return 0;
  314. }
  315. void snd_usb_caiaq_input_free(struct snd_usb_caiaqdev *dev)
  316. {
  317. if (!dev || !dev->input_dev)
  318. return;
  319. input_unregister_device(dev->input_dev);
  320. dev->input_dev = NULL;
  321. }